# Contingency Tables 

## Session 7

Module 1 Probability \& Statistical Inference

The Summer Institutes
DEPARTMENT OF BIOSTATISTICS SCHOOL OF PUBLIC HEALTH
University of WashingTon

## Overview

## 1. Defining Categorical Variables

- Contingency (two-way) tables
- $\chi^{2}$ Tests


## 2. Comparing Two Categorical Variables

3. $2 \times 2$ Tables

- Sampling designs
- Testing for association
- Estimation of effects

A factor is a type of variable that can take one of a small number of possible values. The possible values are called the levels of the factor.

Also known as a categorical variable or discrete variable.

## Examples

> Gender with three levels:
1 = Male, 2 = Female, 3 = Non-binary
> Disease status with three levels:

$$
1 \text { = Progression, } 2 \text { = Stable, } 3 \text { = Improved }
$$

> Age with four levels:

$$
1=20-29 \mathrm{yrs}, 2=30-39 \mathrm{yrs}, 3=40-49 \mathrm{yrs}, 4=50-59 \mathrm{yrs}
$$



## Factors and Contingency Tables

- One-way tables summarize the proportion of observations within each level of one factor.
- Contingency tables, aka two-way tables summarize the proportion of observations within each combination of levels from two factors.
- Also called an $\mathbf{R} \times \mathbf{C}$ table
- Often used to assess whether two factors are related
- Can test whether the factors are related using a $\chi^{2}$ test
- Examining two-way tables of Factor A vs Factor B at each level of a third Factor C shows how the A/B association may be explained or modified by C (Session 8).


## Categorical Data: R x C table <br> Doll and Hill (1952)

## Retrospective assessment of smoking frequency

The table displays the daily average number of cigarettes for lung cancer patients and control patients.
! Note the equal numbers of cases and controls.

|  | None | $\begin{gathered} <\mathbf{5} \\ \text { cigarettes } \end{gathered}$ | $5-14$ <br> cigarettes | 15-24 <br> cigarettes | $\begin{aligned} & \text { 25-49 } \\ & \text { cigarettes } \end{aligned}$ | 50+ <br> cigarettes | $1357$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cases | 7 | 55 | 489 | 475 | 293 | 38 |  |
| (Cancer) | 0.5\% | 4.1\% | 36.0\% | 35.0\% | 21.6\% | 2.8\% |  |
| Controls | 61 | 129 | 570 | 431 | 154 | 12 | 1357 |
| (No Cancer) | 4.5\% | 9.5\% | 42.0\% | 31.8\% | 11.3\% | 0.9\% |  |
|  | 68 | 184 | 1059 | 906 | 447 | 50 | 2714 |

## Categorical Data: $\mathrm{x}^{2}$ test Doll and Hill (1952)

## Scientific Question

Is the distribution of smoking frequencies for those with cancer different from the distribution for those without cancer?

Restate scientific question as statistical hypotheses:
$H_{0}$ : distribution of smoking same in both groups
$\mathrm{H}_{\mathrm{A}}$ : distribution of smoking not the same
What does $\mathrm{H}_{0}$ predict we would observe if all we knew were the marginal totals?


## Categorical Data: $\mathrm{x}^{2}$ test Doll and Hill (1952)

## Scientific Question

Is the distribution of smoking frequencies for those with cancer different from the distribution for those without cancer?

- Each group has the same proportion in each cell as the overall marginal proportion. The "equal" expected number for each group is the result of the equal sample size in each group.
- We can test $\mathrm{H}_{0}$ by summarizing the difference between the observed and expected cell counts



## Break \#1

Pause the video, take a break, stretch, then review relevant exercises from worksheet.

Afterwards, continue on!

## Categorical Data <br> $\mathrm{X}^{2}$ Test Statistic

- sumbup(obsenvedcount expected count) for all cells
Summing the differences between the observed and expected counts provides an overall assessment of $\mathrm{H}_{0}$.
- sum up-lobservedcountexpectedcount|for allcells

$$
X^{2}=\sum_{i=1}^{R} \sum_{j=1}^{C} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}} \sim \chi^{2}((R-1)(C-1))
$$

$X^{2}$ is known as the Pearson's Chi-square Statistic

- Large values of $X^{2}$ suggests the data are not consistent with $H_{0}$
- Small values of $X^{2}$ suggests the data are consistent with $\mathrm{H}_{0}$
- The $\chi^{2}$ distribution approximates the distribution of $X^{2}$ when $H_{0}$ true
- Computer intensive "exact" tests also possible


## Categorical Data: x $^{2}$ test <br> Doll and Hill (1952)

The contributions to the $X^{2}$ statistic are...

| None | < 5 | 5-14 | 15-24 | 25-49 | + |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | cigarettes | cigarettes | cigarettes | cigarettes | cigar |


| Cases <br> (Cancer) | $\frac{(7-34)^{2}}{34}=21.4$ | $\frac{(55-92)^{2}}{92}=14.9$ | 3.1 | 1.1 | 21.6 | 6.8 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Controls <br> (No Cancer) | $\frac{(61-34)^{2}}{34}=21.4$ | 14.9 | 3.1 | 1.1 | 21.6 | 6.8 |

$$
X^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}=137.8 \longrightarrow \quad \begin{aligned}
& \text { pchisq(137.8, df }=5 \text {, lower.tail=FALSE) } \\
& \text { p-value }=\mathrm{P}\left(\mathrm{X}^{2}>137.8 \mid \mathrm{H}_{0}\right)<0.0001
\end{aligned}
$$

Conclusion Reject $\mathrm{H}_{0}$ at $\mathrm{a}=0.05$

## Categorical Data: $\mathrm{x}^{\mathbf{2}}$ Test

## Factor Levels

Summary Conducting $\chi^{2}$ a test

1. Compute the expected cell counts under null hypothesis (no association):

$$
E_{i j}=N_{i} M_{j} / T
$$

2. Compute the chi-square statistic:

$$
X^{2}=\sum_{i=1}^{R} \sum_{j=1}^{C} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}
$$

3. Compare $X^{2}$ to $\chi^{2}(d f)$ where

$$
d f=(R-1) \times(C-1)
$$

4. Interpret p-value

| $\begin{aligned} & n \\ & \frac{2}{3} \\ & \text { o } \\ & \text { iv } \end{aligned}$ | One | One | Two | Three |  | C | TOTAL$N_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{O}_{11}$ | $\mathrm{O}_{12}$ | $\mathrm{O}_{13}$ | ... | $\mathrm{O}_{1 \mathrm{c}}$ |  |
|  | Two | $\mathrm{O}_{21}$ |  |  |  |  | $\mathrm{N}_{2}$ |
|  | Three | $\mathrm{O}_{31}$ |  |  |  |  | $\mathrm{N}_{3}$ |
|  |  | ... |  |  |  | PROE |  |
|  | R | $\mathrm{O}_{\mathrm{R} 1}$ |  |  |  | $\mathrm{O}_{\mathrm{RC}}$ | $\mathrm{N}_{\mathrm{R}}$ |
|  | TOTAL | $M_{1}$ | $\mathrm{M}_{2}$ | $M_{3}$ | ... | $M_{c}$ | T |

## $2 \times 2$ Tables

## Epidemiological Applications

We can write the chi-square statistic for a $2 \times 2$ table as

$$
X^{2}=\frac{N(a d-b c)^{2}}{n_{1} \cdot n_{2} \cdot m_{1} \cdot m_{2}}
$$

Compare $X^{2}$ to $\chi^{2}(1)$.

## Disease Status



## $2 \times 2$ Tables

## x Epidemiological Applications: Pauling (1971)

Patients are randomized to either receive Vitamin C or placebo. Patients are followed-up to ascertain the development of a cold.

Question 1 Is treatment with Vitamin C associated with a reduced probability of getting a cold?

Question 2 If Vitamin C is associated with reducing colds, then what is the magnitude of the effect?

## Disease Status



## $2 \times 2$ Tables

## 这 Epidemiological Applications: Pauling (1971)

## Scientific Q1

Is treatment with Vitamin C associated with a reduced probability of getting a cold?

$$
\begin{aligned}
& \begin{aligned}
X^{2} & =\frac{279(17 \cdot 109-31 \cdot 122)^{2}}{139 \cdot 140 \cdot 48 \cdot 231} \\
\quad & =4.81
\end{aligned} \\
& \text { pchisq(4.81, df }=1 \text {, lower.tail=FALSE }) \\
& \text { p-value }=P\left(X^{2}>4.81 \mid \mathrm{H}_{0}\right)=0.028 \\
& \therefore \text { © Conclusion Reject } \mathrm{H}_{0} \text { at } \mathrm{a}=0.05
\end{aligned}
$$

Restate scientific question as statistical hypotheses:
$H_{0}$ : probability of disease does not depend on treatment
$H_{A}$ : probability of disease does depend on treatment

## Disease Status

|  | Vit C | Cold | no Cold | TOTAL$139$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 17 \\ (12 \%) \end{gathered}$ | $\begin{gathered} 122 \\ (88 \%) \end{gathered}$ |  |
|  | Placebo | $\begin{gathered} 31 \\ (22 \%) \end{gathered}$ | $\begin{gathered} 109 \\ (78 \%) \end{gathered}$ | 140 |
|  | TOTAL | 48 | 231 | 279 |

## $2 \times 2$ Tables <br> Epidemiological Applications: Risk Ratio

## Scientific Q2

If Vitamin C is associated with reducing colds, what is the magnitude of the effect?

In the Pauling (1971) example, they fixed the number of $E$ and not $E$, then evaluated the disease status after a fixed period of time (same for everyone).
This is a prospective cohort study.
Given this design we can estimate the risk ratio (RR) as $R R=\frac{P(D \mid E)}{P(D \mid \bar{E})}=\frac{p_{1}}{p_{2}}$
The range of RR is $[0, \infty)$. The range of $\ln (\mathrm{RR})$ is $(-\infty,+\infty)$.
Using the natural log of RR, we're able to use a Normal approximation to calculate a confidence interval!

$$
\begin{aligned}
& \ln (\widehat{R R})=\ln \left(\frac{\widehat{p}_{1}}{\widehat{p}_{2}}\right)=\ln \left(\frac{a / n_{1}}{c / n_{2}}\right) \\
& \ln (\widehat{R R}) \sim N\left[\ln \left(\frac{\widehat{p}_{1}}{\widehat{p}_{2}}\right), \frac{1-p_{1}}{p_{1} n_{1}}+\frac{1-p_{2}}{p_{2} n_{2}}\right]
\end{aligned}
$$

95\% CI : Calculate
INFERENTIAL STATISTIC

$$
\ln (\widehat{R R}) \pm 1.96 \sqrt{\frac{b}{a(a+b)}+\frac{d}{c(c+d)}}
$$

then exponentiate the endpoints.

## Break \#2

Pause the video, take a break, stretch, then review relevant exercises from worksheet.

Afterwards, continue on!

## $2 \times 2$ Tables

Epidemiological Applications: Keller (AJPH, 1965)

Patients with (cases) and without (controls) oral cancer were surveyed regarding their smoking frequency.
(This table collapses over the smoking frequency categories.)
Question 1 Is oral cancer associated with smoking?
Question 2 If smoking is associated with oral cancer, then what is the magnitude of the risk?

| $\begin{aligned} & 0 \\ & \frac{0}{5} \\ & n \\ & 0 \\ & 0 \\ & 0 \\ & \\ & \end{aligned}$ | Disease Status |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Case | Control | TOTAL |
|  | Smoker | 484 | 385 | 869 |
|  | Non-Smoker | 27 | 109 | 117 |
|  | TOTAL | 511 | 475 | 986 |

Session 7

| $\begin{aligned} & \frac{0}{3} \\ & \tilde{D} \\ & 0 \\ & 0 \\ & 0 \\ & \\ & \hline \end{aligned}$ | Smoker | Case Control |  | $869$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 484 | 385 |  |
|  | Non-Smoker | 27 | 109 | 117 |
|  | TOTAL | 511 | 475 | 986 |

## Keller (AJPH, 1965)

In this example we fixed the number of cases and controls then ascertained exposure status. Such a design is known as case-control study. Based on this we are able to directly estimate:

$$
P(E \mid D) \text { and } P(E \mid \bar{D})
$$

However, we are interested in the risk ratio of disease given exposure, which is not estimable from these data alone - we've fixed the number of diseased and diseased free subjects.

$$
P(E \mid D) \neq P(D \mid E)
$$

odds of exposure
(conditional on
having the disease)

$$
\frac{P(E \mid D)}{P(E \mid \bar{D})} \neq \frac{P(D \mid E)}{P(D \mid \bar{E})}
$$

$$
\frac{P(E \mid D) /(1-P(E \mid D))}{P(E \mid \bar{D}) /(1-P(E \mid \bar{D}))}=\frac{P(D \mid E) /(1-P(D \mid E))}{P(D \mid \bar{E}) /(1-P(D \mid \bar{E}))}
$$

## Odds Ratio

Instead of the risk ratio we can estimate the exposure odds ratio which (surprisingly) is equivalent to the disease odds ratio:

$$
\begin{aligned}
\begin{array}{c}
\text { odds of exposure } \\
\text { (conditional on } \\
\text { having the disease) }
\end{array} & \frac{P(E \mid D) /(1-P(E \mid D))}{P(E \mid \bar{D}) /(1-P(E \mid \bar{D}))}=\frac{P(D \mid E) /(1-P(D \mid E))}{P(D \mid \bar{E}) /(1-P(D \mid \bar{E}))} \\
\because \text { exposure odds ratio } & \because \text { disease odds ratio }
\end{aligned}
$$

Furthermore, for rare diseases $\begin{aligned} & 1-P(D \mid E) \approx 1 \\ & 1-P(D \mid \bar{E}) \approx 1\end{aligned}$ so the disease odds ratio approximates the risk ratio:

$$
\begin{aligned}
& \frac{P(D \mid E) /(1-P(D \mid E))}{P(D \mid \bar{E}) /(1-P(D \mid \bar{E}))} \approx \frac{P(D \mid E)}{P(D \mid \bar{E})} \\
& \because \text { disease odds ratio } \quad \Theta \text { risk ratio }
\end{aligned}
$$

## For rare diseases

 (i.e., prevalence < 5\%), the (sample) odds ratio estimates the (population) risk ratio.
## Odds Ratio

Like the risk ratio, the odds ratio ranges from $[0, \infty)$.

$$
\begin{gathered}
O R=\frac{p_{1}\left(1-p_{1}\right)}{p_{2}\left(1-p_{2}\right)} \\
\text { population odds ratio }
\end{gathered}
$$

$\widehat{O R}=\frac{a \cdot d}{b \cdot c}$
sample odds ratio

The log odds ratio has $(-\infty,+\infty)$ as its range and the Normal distribution approximates its sampling distribution. Confidence intervals are based upon:

$$
\ln (\widehat{O R}) \sim N\left[\ln (O R), \frac{1}{n_{1} p_{1}}+\frac{1}{n_{1}\left(1-p_{1}\right)}+\frac{1}{n_{2} p_{2}}+\frac{1}{n_{2}\left(1-p_{2}\right)}\right]
$$

...and a $\mathbf{9 5 \%} \mathbf{C I}$ for the log odds ratio is given by:

$$
\ln \left(\frac{a d}{b c}\right) \pm 1.96 \sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}} \quad \begin{aligned}
& \text { Exponentiate the endpoints to } \\
& \text { get the Cl for the odds ratio on } \\
& \text { its original scale. }
\end{aligned}
$$

## Break \#3

Pause the video, take a break, stretch, then review relevant exercises from worksheet.

Afterwards, continue on!


## $2 \times 2$ Tables

## Epidemiological Applications: Sex-Linked Traits

Suppose we collect a random sample of Drosophila fruit flies and cross-classify by eye color and sex.

Question 1 Is eye color associated with sex?
Question 2 If eye color is associated with sex, then what is the magnitude of the effect?

|  |  | Sex |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  | Male | Female | TOTAL

## $2 \times 2$ Tables

这 Epidemiological Applications: Sex-Linked Traits
This is a cross-sectional study since only the total for the entire table is fixed in advance. The row totals or column totals are not fixed in advance.

- Sample from the entire population, not by disease status or exposure status
- Use chi-square test to test for association
- Use RR or OR to summarize association

| 능 | Sex |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Male | Female | TOTAL |
| 0 | Red | 165 | 300 | 465 |
| $\underset{\text { ® }}{\text { - }}$ | White | 176 | 81 | 257 |
|  | TOTAL | 341 | 381 | 722 |

- Cases of disease are prevalent cases (compared to incident cases in a prospective study.


## Break \#4

Pause the video, take a break, stretch, then review relevant exercises from worksheet.

Afterwards, continue on!


