# **Contingency Tables**

#### **Session 7**

Module 1 Probability & Statistical Inference

The Summer Institutes

DEPARTMENT OF BIOSTATISTICS SCHOOL OF PUBLIC HEALTH

UNIVERSITY of WASHINGTON





### **1. Defining Categorical Variables**

- Contingency (two-way) tables
- $\chi^2$  Tests

## 2. Comparing Two Categorical Variables

## 3. 2 x 2 Tables

- Sampling designs
- Testing for association
- Estimation of effects

**Session 7** PROBABILITY AND INFERENTIAL STATISTICS JNIVERSITY of WASHINGTON





A **factor** is a type of variable that can take one of a small number of possible values. The possible values are called the **levels** of the factor.

Also known as a categorical variable or discrete variable.

#### **Examples**

- Sender with three levels: 1 = Male, 2 = Female, 3 = Non-binary
- > **Disease status** with three levels:
  - 1 = Progression, 2 = Stable, 3 = Improved
- > Age with four levels: 1 = 20-29 yrs, 2 = 30-39 yrs, 3 = 40-49 yrs, 4 = 50-59 yrs

**Session 7** PROBABILITY AND INFERENTIAL STATISTICS JNIVERSITY of WASHINGTON



# **Factors and Contingency Tables**

- One-way tables summarize the proportion of observations within each level of <u>one</u> factor.
- Contingency tables, aka two-way tables summarize the proportion of observations within each combination of levels from two factors.
  - Also called an **R x C** table
  - Often used to assess whether two factors are related
  - Can test whether the factors are related using a  $\chi^2$  test
  - Examining two-way tables of Factor A vs Factor B at each level of a third Factor C shows how the A/B association may be explained or modified by C (Session 8).

**Session 7** PROBABILITY AND INFERENTIAL STATISTICS JNIVERSITY of WASHINGTON



## Categorical Data: R x C table Doll and Hill (1952)

#### **Retrospective assessment of smoking frequency**

The table displays the daily average number of cigarettes for lung cancer patients and control patients.

1 Note the equal numbers of cases and controls.

|                                | None       | < 5<br>cigarettes | <b>5-14</b><br>cigarettes | <b>15-24</b><br>cigarettes | <b>25-49</b><br>cigarettes | 50+<br>cigarettes | Session 7                                                                             |
|--------------------------------|------------|-------------------|---------------------------|----------------------------|----------------------------|-------------------|---------------------------------------------------------------------------------------|
| <b>Cases</b><br>(Cancer)       | 7<br>0.5%  | 55<br>4.1%        | 489<br>36.0%              | 475<br>35.0%               | 293<br>21.6%               | 38<br>2.8%        | PROBABILITY AND<br>1357 <sub>INFERENTIAL</sub> STATISTICS<br>UNIVERSITY of WASHINGTON |
| <b>Controls</b><br>(No Cancer) | 61<br>4.5% | 129<br>9.5%       | 570<br>42.0%              | 431<br>31.8%               | 154<br>11.3%               | 12<br>0.9%        | 1357                                                                                  |
|                                | 68         | 184               | 1059                      | 906                        | 447                        | 50                | 2714                                                                                  |

## Categorical Data: $\chi^2$ test Doll and Hill (1952)

#### **Scientific Question**

Is the distribution of smoking frequencies for those with cancer different from the distribution for those without cancer? **Restate scientific question as statistical hypotheses:**  $H_0$ : distribution of smoking same in both groups  $H_A$ : distribution of smoking not the same

What does H<sub>0</sub> predict we would observe if all we knew were the marginal totals?



## Categorical Data: $\chi^2$ test Doll and Hill (1952)

#### **Scientific Question**

Is the distribution of smoking frequencies for those with cancer different from the distribution for those without cancer?

- Each group has the same proportion in each cell as the overall **marginal proportion.** The "equal" expected number for each group is the result of the equal sample size in each group.
- We can test H<sub>0</sub> by summarizing the difference between the <u>observed</u> and <u>expected</u> cell counts

|                                | None | < 5<br>cigarettes | <b>5-14</b><br>cigarettes | <b>15-24</b><br>cigarettes | <b>25-49</b><br>cigarettes | 50+<br>cigarettes | Session 7                                                                             |
|--------------------------------|------|-------------------|---------------------------|----------------------------|----------------------------|-------------------|---------------------------------------------------------------------------------------|
| <b>Cases</b><br>(Cancer)       | 34   | 92                | 529.5                     | 453                        | 223.5                      | 25                | PROBABILITY AND<br>1357 <sub>INFERENTIAL</sub> STATISTICS<br>UNIVERSITY of WASHINGTON |
| <b>Controls</b><br>(No Cancer) | 34   | 92                | 529.5                     | 453                        | 223.5                      | 25                | 1357                                                                                  |
|                                | 68   | 184               | 1059                      | 906                        | 447                        | 50                | 2714                                                                                  |

Break #1

Pause the video, take a break, stretch, then review relevant exercises from worksheet.

Afterwards, continue on!



Image Credit: indg0.com

## **Categorical Data** X<sup>2</sup> Test Statistic

Summing the differences between the observed and expected counts provides an overall assessment of  $H_0$ .

$$X^2 = \sum_{i=1}^R \sum_{j=1}^C rac{(O_{ij} - E_{ij})^2}{E_{ij}} ~\sim~ \chi^2((R-1)(C-1))$$

#### X<sup>2</sup> is known as the **Pearson's Chi-square Statistic**

- Large values of  $X^2$  suggests the data are not consistent with  $H_0$
- Small values of X<sup>2</sup> suggests the data are consistent with H<sub>0</sub>
- The  $\chi^2$  distribution approximates the distribution of X<sup>2</sup> when H<sub>0</sub> true
  - Computer intensive "exact" tests also possible

PROBABILITY AND INFERENTIAL STATISTICS JNIVERSITY of WASHINGTON

expected count) fe

expected count

observed



## Categorical Data: $\chi^2$ test Doll and Hill (1952)

The contributions to the X<sup>2</sup> statistic are...

|                               | None                          | < 5<br>cigarettes             | <b>5-14</b><br>cigarettes | <b>15-24</b><br>cigarettes | <b>25-49</b><br>cigarettes | 50+<br>cigarettes               |                                    |
|-------------------------------|-------------------------------|-------------------------------|---------------------------|----------------------------|----------------------------|---------------------------------|------------------------------------|
| <b>Cases</b><br>(Cancer)      | $rac{(7-34)^2}{34} = 21.4$   | $\frac{(55-92)^2}{92} = 14.9$ | 3.1                       | 1.1                        | 21.6                       | 6.8                             |                                    |
| <b>Controls</b><br>No Cancer) | $\frac{(61-34)^2}{34} = 21.4$ | 14.9                          | 3.1                       | 1.1                        | <b>21.6</b>                | 6.8 <sup>Ses</sup><br>PROBABILI | <b>sion 7</b><br>Ty and<br>Tistics |

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} = 137.8$$

pchisq(137.8, df = 5, lower.tail=FALSE) f WASHINGTO

p-value = P(
$$X^2 > 137.8 | H_0$$
) < 0.0001

**Conclusion** Reject  $H_0$  at  $\alpha = 0.05$ 

# Categorical Data: x<sup>2</sup> Test

#### <u>Summary</u> Conducting $\chi^2$ a test

1. Compute the expected cell counts under null hypothesis (no association):

 $E_{ij} = N_i M_j / T$ 

2. Compute the chi-square statistic:

$$X^2 = \sum_{i=1}^R \sum_{j=1}^C rac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

3. Compare  $X^2$  to  $\chi^2(df)$  where

 $df = (R-1) \times (C-1)$ 

4. Interpret p-value

#### **Factor Levels**



## 2 x 2 Tables

#### **Epidemiological Applications**

We can write the chi-square statistic for a 2 x 2 table as

$$X^2=rac{N(ad-bc)^2}{n_1\cdot n_2\cdot m_1\cdot m_2}$$

Compare X<sup>2</sup> to  $\chi^2(1)$ .



## **2 x 2 Tables** Epidemiological Applications: Pauling (1971)

Patients are randomized to either receive Vitamin C or placebo. Patients are followed-up to ascertain the development of a cold.

**Question 1** Is treatment with Vitamin C associated with a reduced probability of getting a cold?

**Question 2** If Vitamin C is associated with reducing colds, then what is the magnitude of the effect?



#### **Disease Status**

## **2 x 2 Tables** Epidemiological Applications: Pauling (1971)

**Scientific Q1** 

Is treatment with Vitamin C associated with a reduced probability of getting a cold?

#### Restate scientific question as statistical hypotheses:

 $H_0$ : probability of disease <u>does not</u> depend on treatment  $H_A$ : probability of disease <u>does</u> depend on treatment

#### **Disease Status**

$$X^2 = rac{279(17\cdot 109 - 31\cdot 122)^2}{139\cdot 140\cdot 48\cdot 231} = 4.81$$

pchisq(4.81, df = 1, lower.tail=FALSE)  

$$P_{1} = P(X^{2} > 4.81 + 11) = 0.028$$

p-value = P( $X^2 > 4.81 | H_0$ ) = 0.028



## **2 x 2 Tables** Epidemiological Applications: Risk Ratio

**Scientific Q2** If Vitamin C is associated with reducing colds, what is the magnitude of the effect?

In the Pauling (1971) example, they fixed the number of *E* and *not E*, then evaluated the disease status after a <u>fixed period of time</u> (same for everyone).

#### This is a **prospective cohort study**.

Given this design we can estimate the **risk ratio** (**RR**) as  $RR = \frac{P(D|E)}{P(D|\bar{E})} = \frac{p_1}{p_2}$ The range of PR is [0, m). The range of ln(PR) is (-m, +m)

The range of RR is [0,  $\infty$ ). The range of ln(RR) is (-  $\infty$ , + $\infty$ ).

Using the natural log of RR, we're able to use a Normal approximation to calculate a confidence interval!

$$egin{aligned} &\lnig(\widehat{RR}ig) = \lnig(rac{\widehat{p}_1}{\widehat{p}_2}ig) = \lnig(rac{a/n_1}{c/n_2}ig) \ &\lnig(\widehat{RR}ig) \sim N\left[\lnig(rac{\widehat{p}_1}{\widehat{p}_2}ig),rac{1-p_1}{p_1n_1}+rac{1-p_2}{p_2n_2}ig] \end{aligned}$$

95% CI : Calculate

$$\ln\Bigl(\widehat{RR}\Bigr)\pm 1.96\sqrt{rac{b}{a(a+b)}+rac{d}{c(c+d)}}$$

then exponentiate the endpoints.

Break #2

Pause the video, take a break, stretch, then review relevant exercises from worksheet.

Afterwards, continue on!



Image Credit: indg0.com

## **2 x 2 Tables** Epidemiological Applications: Keller (AJPH, 1965)

Patients with (cases) and without (controls) oral cancer were surveyed regarding their smoking frequency.

(This table collapses over the smoking frequency categories.)

**Question 1** Is oral cancer associated with smoking?

**Question 2** If smoking is associated with oral cancer, then what is the magnitude of the risk?



**Keller (AJPH, 1965)** 

In this example we fixed the number of **cases** and **controls** then ascertained exposure status. Such a design is known as **case-control study**. Based on this we are able to directly estimate:

 $P(E \,|\, D)$  and  $P(E \,|\, \overline{D})$ 

 $P(E \mid D) \neq P(D \mid E)$ 

However, we are interested in the **risk ratio** of disease given exposure, which is **not estimable from these data alone** - we've fixed the number of diseased and diseased free subjects.

odds of exposure (conditional on having the disease)  $\frac{P(E \mid D)}{P(E \mid \overline{D})} \neq \frac{P(D \mid E)}{P(D \mid \overline{E})}$  $\frac{P(E \mid D)/(1 - P(E \mid D))}{P(E \mid \overline{D})/(1 - P(E \mid \overline{D}))} = \frac{P(D \mid E)/(1 - P(D \mid E))}{P(D \mid \overline{E})/(1 - P(D \mid \overline{E}))}$  **Session 7** PROBABILITY AND INFERENTIAL STATISTICS UNIVERSITY of WASHINGTON



## **Odds Ratio**

Instead of the risk ratio we can estimate the **exposure odds ratio** which (surprisingly) is equivalent to the **disease odds ratio**:

odds of exposure (conditional on having the disease)

 $\frac{P(E \mid D)/(1 - P(E \mid D))}{P(E \mid \overline{D})/(1 - P(E \mid \overline{D}))} = \frac{P(D \mid E)/(1 - P(D \mid E))}{P(D \mid \overline{E})/(1 - P(D \mid \overline{E}))}$ 😒 exposure odds ratio 👘

🙂 disease odds ratio



DEFINITION

**Odds Ratio** 

Like the risk ratio, the odds ratio ranges from  $[0, \infty)$ .

 $OR = rac{p_1(1-p_1)}{p_2(1-p_2)}$   $\widehat{OR} = rac{a \cdot d}{b \cdot c}$  population odds ratio sample odds ratio

The **log odds ratio** has  $(-\infty, +\infty)$  as its range and the Normal distribution approximates its sampling distribution. Confidence intervals are based upon:

$$\ln\left(\widehat{OR}\right) \sim N\left[\ln(OR), \frac{1}{n_1p_1} + \frac{1}{n_1(1-p_1)} + \frac{1}{n_2p_2} + \frac{1}{n_2(1-p_2)}\right] \xrightarrow{\text{PROBABILITY AND}}_{\text{INFERENTIAL STATISTICS}}$$
...and a **95% CI** for the log odds ratio is given by:  
$$\ln\left(\frac{ad}{bc}\right) \pm 1.96\sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}} \xrightarrow{\text{Exponentiate the endpoints to}}_{\substack{\text{get the CI for the odds ratio on}}}$$

20

Break #3

Pause the video, take a break, stretch, then review relevant exercises from worksheet.

Afterwards, continue on!



Image Credit: indg0.com

## **2 x 2 Tables** Epidemiological Applications: Sex-Linked Traits

Suppose we collect a random sample of Drosophila fruit flies and cross-classify by eye color and sex.

**Question 1** Is eye color associated with sex?

**Question 2** If eye color is associated with sex, then what is the magnitude of the effect?



## **2 x 2 Tables** Epidemiological Applications: Sex-Linked Traits

This is a **cross-sectional study** since only the total for the entire table is fixed in advance. The row totals or column totals are not fixed in advance.

- Sample from the entire population, not by disease status or exposure status
- Use chi-square test to test for association
- Use RR or OR to summarize association
- Cases of disease are prevalent cases (compared to incident cases in a prospective study.



Break #4

Pause the video, take a break, stretch, then review relevant exercises from worksheet.

Afterwards, continue on!



Image Credit: indg0.com