Stratified Contingency Tables

Session 8

Module 1 Probability \& Statistical Inference

The Summer Institutes
DEPARTMENT OF BIOSTATISTICS SCHOOL OF PUBLIC HEALTH
University of WashingTon

Overview

1. 2×2 Tables

- Paired Binary Data

2. Stratified Tables

- Confounding
- Effect Modification

2×2 Tables

爻 Epidemiological Applications: Matched Case Control Study
213 subjects with a history of acute myocardial infarction (AMI) were matched by age and sex with one of their siblings who did not have a history of AMI. The prevalence of a particular polymorphism was compared between the siblings.
Question 1 Is there an association between the polymorphism prevalence and AMI?

Question 2 If there is an association then what is the magnitude of the effect?

2×2 Tables

㜽 Epidemiological Applications: Matched Case Control Study

Q:Can't we simply use Pearson's χ^{2} Test to assess whether this is evidence for an increase in knowledge?

A: NO!!! Pearson's χ^{2} test assumes that the columns are independent samples. In this design the 213 with AMI are genetically related to the 213 w/o AMI. This is an example of paired binary data.

2×2 Tables

宏 Epidemiological Applications: Paired Binary Data
For paired binary data we display the results as shown in the table.

This analysis explicitly recognizes the heterogeneity of subjects.

The concordant pairs (73 and 103) provide no information about the association between AMI and the polymorphism.

The information regarding the association is in the discordant pairs, 14 and 23.

2×2 Tables

Epidemiological Applications: Paired Binary Data
For paired binary data we display the results as shown in the table.

This analysis explicitly recognizes the heterogeneity of subjects.

$$
\begin{aligned}
& \mathrm{p}_{1}=\mathrm{P}(\text { carrier } \mid \mathrm{AMI})=\mathrm{p}_{11}+\mathrm{p}_{01} \\
& \mathrm{p}_{0}=\mathrm{P}(\text { carrier } \mid \text { No } A M I)=\mathrm{p}_{11}+\mathrm{p}_{10} \\
& \mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{0} \\
& \mathrm{H}_{\mathrm{A}}: \mathrm{p}_{1} \neq \mathrm{p}_{0}
\end{aligned}
$$

The information for testing these hypotheses is contained in the discordant pairs $(0,1)$ and $(1,0)$.

AMI

$\begin{aligned} & \underset{i}{\Sigma} \\ & \mathbf{O} \end{aligned}$		1	0	TOTAL
	1	n_{11}	n_{10}	
	0	n_{01}	n_{00}	

2×2 Tables

Epidemiological Applications: McNemar's Test for Paired Binary Data

Under the null hypothesis we expect equal numbers of $(0,1)$ pairs and $(1,0)$ pairs. We can evaluate this hypothesis using or McNemar's Test for Paired Binary Data. The McNemar's chi-squared statistic is

$$
X^{2}=\frac{\left(\left|n_{10}-n_{01}\right|-1\right)^{2}}{n_{10}-n_{01}} \sim \chi^{2}(1)
$$

The odds ratio comparing the odds of carrier in those with AMI to odds of carrier in those w/o AMI is estimated by:

$$
\widehat{O R}=\frac{n_{01}}{n_{10}}
$$

Confidence intervals can be obtained as described in Breslow and Day (1981), section 5.2, or in Armitage and Berry (1987), chapter 16.

Break \#1

Pause the video, take a break, stretch, then review relevant exercises from worksheet.

Afterwards, continue on!

Effect Modification

脳 Stratified Tables

Often, a third variable influences the relationship between the two primary measures (e.g., disease and exposure).

Example (right):

Effect of seat belt use on car accident fatality

Seat Belt

$$
\begin{array}{rll}
\text { Fatality } & 10 / 50 & 20 / 50 \\
\text { Rate } & (20 \%) & (40 \%)
\end{array}
$$

Effect Modification

Stratified Tables

But, suppose we also consider impact speed.

How does this affect your inference?

This is an example of effect modification or interaction.

- Effects are different in subgroups of a third variable, and the overall effect is intermediate.

边 Dead	< 40 mph Seat Belt		$\text { > } 40 \mathrm{mph}$ Seat Belt	
	3	2	7	18
	27	18	13	12
TOTAL	30	20	20	30
Fatality	3/30	2/20	7/20	18/30
Rate	(10\%)	(10\%)	(35\%)	(60\%)

Session 8
ABILITY AND
AL STATISTICS WAShington

Effect Modification

Dependence on the effect measure used

© Effect modification depends on the effect measure used!

Table Rate of fractures over 5 years by age and calcium level in drinking water.
> There's evidence of effect modification on the risk ratio scale.
> There's no evidence of effect modification on the risk difference scale.

Suppose we are interested in the relationship between
lung cancer incidence
and
heavy drinking (defined as ≥ 2 drinks per day)
We conduct a prospective cohort study where drinking status is determined at baseline and the cohort is followed for 10 years to determine cancer endpoints.

We also measure smoking status at baseline.

Confounding

1) Pooled data, not controlling for smoking

- A higher proportion of heavy drinkers are smokers (800/1700 vs 200/2300)

- A higher proportion of lung cancer cases are smokers (30/1000 vs 30/3000)
- The comparison of heavy drinkers to not-heavy drinkers is really a comparison of smokers to nonsmokers

2) Stratify by smoking status at baseline

Smokers			
Heavy Drinker			
	Yes	No	TOTAL
\cdots Yes	24	6	30
N No	776	194	970
TOTAL	800	200	1000

Nonsmokers

Heavy Drinker

Confounding

A confounder is associated with both the disease and exposure and is not in the causal path between disease and exposure

> An apparent association between E and D is completely explained by C. C is a confounder.

- The implicit assumption is that we want to know if E "causes" D
- A simple, common example from genetics is the linked gene: we discover a gene which appears to be associated with disease ... does it cause the disease or is it merely linked to the true causal gene?

Break \#2

Pause the video, take a break, stretch, then review relevant exercises from worksheet.

Afterwards, continue on!

Adjusting the OR via Stratification

Basic idea

- Compute separate OR for each stratum
- Assess homogeneity of OR's across strata Is there EM?
- Pool OR's: used weighted average

Adjust for confounding

- Global test of pooled OR = 1

Is there association, after adjustment

- Different methods of pooling, testing have been proposed.

We will focus on Mantel-Haenszel methods

- \int Same idea for RR and RD

Rosner $\$ 13.5$

爻 Mantel-Haenszel Methods
A 1985 study identified a group of 509 cancer cases and 489 controls by mail questionnaire. The main purpose of the study was to look at the effect of passive smoking on cancer risk.
In the study passive smoking was defined as exposure to the cigarette smoke of a spouse who smoked at least one cigarette/day for at least 6 months.
One potential confounding variable was smoking by the test subjects themselves since personal smoking is related to both cancer risk and having a spouse that smokes.
Therefore, it was important to control for personal smoking before looking at the relationship between passive smoking and cancer risk.

Rosner $\$ 13.5$

Mantel-Haenszel Methods

1) Pooled data, not controlling for personal smoking

1) Pooled data, not controlling for personal smoking

Rosner $\$ 13.5$

2) Stratified by personal smoking

Mantel-Haenszel Methods

Personal Smoking: Smokers

Personal Smoking: Nonsmokers

	Passive Smoking			
$$	Case	Yes	No	TOTAL
		161	117	278
¢	Control	130	124	254
U	TOTAL	291	241	532

$$
\begin{gathered}
\mathbf{O R}=1.31 \\
p \text {-value }=0.1192
\end{gathered}
$$

$O R=2.09$
p-value $=0.0001$

For information on how to complete these calculations in R:
https://a-little-book-of-r-for-biomedical-statistics.readthedocs.io/en/latest/src/biomedicalstats.html

Rosner $\$ 13.5$

2) Stratified by personal smoking

x Mantel-Haenszel Methods

Personal Smoking: Smokers

Proportion					
	Exposed	Unexposed	1	Total	Exposed
Cases	161	117	1	278	0.5791
Controls	130	124	1	254	0.5118
Total	291	241	1	532	0.5470
			1		
	Point estimate		\| [95\% Conf. Interval]		
Odds ratio	1. 312558		1	. 9184614	1.875813
Attr. frac. ex.	. 2381286		\| -. 0887774		. 4668978
Attr. frac. pop	. 137909		1 仡		
		i2(1) =		. $43 \mathrm{Pr}>$ ch	$=0.1192$

Personal Smoking: Nonsmokers

. cci 12011180155
Proportion

For information on how to complete these calculations in R:
https://a-little-book-of-r-for-biomedical-statistics.readthedocs.io/en/latest/src/biomedicalstats.htm/

Stratified Contingency Tables

Mantel-Haenszel Methods

Q: How can we combine the information from both stratum-specific tables to obtain an overall test of significance that takes account of the stratification?

A: Mantel-Haenszel Methods - assesses association between disease and exposure after controlling for one or more confounding variables.

Exposure

where $i=1,2, \ldots, K$ is the number of strata.

Stratified Contingency Tables

Mantel-Haenszel Methods

(1) Test of effect modification (heterogeneity, interaction)

```
\(\mathrm{H}_{0}: \mathrm{OR}_{1}=\mathrm{OR}_{2}=\ldots=\mathrm{OR}_{\mathrm{K}}\)
\(H_{A}\) : not all stratum-specific ORs are equal
```

(2) Estimate the common odds ratio

The Mantel-Haenszel estimate of the odds ratio assumes there is a common odds ratio:

$$
\mathrm{OR}_{\text {pool }}=\mathrm{OR}_{1}=\mathrm{OR}_{2}=\ldots=\mathrm{OR}_{\mathrm{K}}
$$

To estimate the common odds ratio we take a weighted average of the stratum-specific odds ratios:

MH estimate: $\widehat{O R}_{\text {pool }}=\sum_{i=1}^{K} w_{i} \cdot \widehat{O R}_{i}$
(3) Test of common odds ratio
H_{0} : common odds ratio is 1.0
H_{A} : common odds ratio $\neq 1.0$

Rosner $\$ 13.5$

Mantel-Haenszel Methods

cc case passive [freq=number], by(smoke) bd
Calculating the pooled OR and testing whether it is different from 1

Break \#3

Pause the video, take a break, stretch, then review relevant exercises from worksheet.

Afterwards, continue on!

