Stratified Contingency Tables

Session 8

Module 1 Probability & Statistical Inference

The Summer Institutes

DEPARTMENT OF BIOSTATISTICS SCHOOL OF PUBLIC HEALTH

UNIVERSITY of WASHINGTON

Overview

1. 2 x 2 Tables

• Paired Binary Data

2. Stratified Tables

- Confounding
- Effect Modification

Session 8 PROBABILITY AND INFERENTIAL STATISTICS JNIVERSITY of WASHINGTON

2 x 2 Tables

Epidemiological Applications: Matched Case Control Study

213 subjects with a history of acute myocardial infarction (AMI) were **matched** by age and sex with one of their siblings who did not have a history of AMI. The prevalence of a particular polymorphism was compared between the siblings.

Question 1 Is there an association between the polymorphism prevalence and AMI?

Question 2 If there is an association then what is the magnitude of the effect?

Session 8 PROBABILITY AND INFERENTIAL STATISTICS UNIVERSITY of WASHINGTON

2 x 2 Tables

Epidemiological Applications: Matched Case Control Study

Q: Can't we simply use Pearson's χ^2 Test to assess whether this is evidence for an increase in knowledge?

A: NO!!! Pearson's χ^2 test assumes that the columns are **independent** samples. In this design the 213 with AMI are genetically related to the 213 w/o AMI. This is an example of **paired binary data**.

2 x 2 Tables Enidemiological Applications: Pa

Epidemiological Applications: Paired Binary Data

For **paired binary data** we display the results as shown in the table.

This analysis explicitly recognizes the heterogeneity of subjects.

The **concordant pairs** (73 and 103) provide no information about the association between AMI and the polymorphism.

P The information regarding the association is in the **discordant pairs**, 14 and 23.

2 x 2 Tables Epidemiological Applications: Paired Binary Data

For **paired binary data** we display the results as shown in the table.

This analysis explicitly recognizes the heterogeneity of subjects.

$$p_1 = P(carrier | AMI) = p_{11} + p_{01}$$

 $p_0 = P(carrier | No AMI) = p_{11} + p_{10}$
 $H_0 : p_1 = p_0$
 $H_A : p_1 ≠ p_0$

P The information for testing these hypotheses is contained in the **discordant pairs** (0,1) and (1,0).

no AM

AMI

2 x 2 Tables

Epidemiological Applications: McNemar's Test for Paired Binary Data

Under the null hypothesis we expect equal numbers of (0,1) pairs and (1,0) pairs. We can evaluate this hypothesis using or **McNemar's Test** for Paired Binary Data. The **McNemar's chi-squared statistic** is

$$X^2 = rac{\left(|n_{10} - n_{01}| - 1
ight)^2}{n_{10} - n_{01}} \sim \chi^2(1)$$

The **odds ratio** comparing the odds of carrier in those with AMI to odds of carrier in those w/o AMI is estimated by: $\widehat{OR} = \frac{n_{01}}{n_{10}}$

PROBABILITY AND INFERENTIAL STATISTICS IVERSITY of WASHINGTON

Confidence intervals can be obtained as described in Breslow and Day (1981), section 5.2, or in Armitage and Berry (1987), chapter 16.

Break #1

Pause the video, take a break, stretch, then review relevant exercises from worksheet.

Afterwards, continue on!

Image Credit: indg0.com

Effect Modification Stratified Tables

Often, **a third variable** influences the relationship between the two primary measures (e.g., disease and exposure).

Example (right): Effect of seat belt use on car accident fatality

Effect Modification Stratified Tables

But, suppose we also consider *impact speed*.

How does this affect your inference?

? This is an example of effect modification or interaction.

 Effects are different in subgroups of a third variable, and the overall effect is intermediate.

		< 40	mph	> 40	mph	
		Seat Belt		Seat	Belt	
		Worn	Not Worn	Worn	Not Worn	
ver	Dead	3	2	7	18	
Driv	Alive	27	18	13	12	Session 8
	TOTAL	30	20	20	30 IFEF UNIVERSI	RENTIAL STATISTICS
Fa	tality Rate	3/30 (10%)	2/20 (10%)	7/20 (35%)	18/30 (60%)	

Effect Modification Dependence on the effect measure used

Effect modification depends on the effect measure used!

<u>Table</u> Rate of fractures over 5 years by age and calcium level in drinking water.

> There's evidence of effect modification on the risk ratio scale.

> There's no evidence of effect modification on the risk difference scale.

Suppose we are interested in the relationship between lung cancer incidence and heavy drinking (defined as ≥ 2 drinks per day)

We conduct a **prospective cohort study** where drinking status is determined at baseline and the cohort is followed for 10 years to determine cancer endpoints.

We also measure **smoking status** at baseline.

Session 8 PROBABILITY AND INFERENTIAL STATISTICS IIVERSITY of WASHINGTON

1) Pooled data, not controlling for smoking

Heavy

Session 8 PROBABILITY AND INFERENTIAL STATISTICS NIVERSITY of WASHINGTON

- A higher proportion of heavy drinkers are smokers (800/1700 vs 200/2300)
- A higher proportion of lung cancer cases are smokers (30/1000 vs 30/3000)
- The comparison of heavy drinkers to not-heavy drinkers is really a comparison of smokers to nonsmokers

2) Stratify by smoking status at baseline

Smokers						Nonsmokers				
_		Heavy l Yes	Drinker No	TOTAL			Heavy Yes	Drinker No	TOTAL	
Lung Cancel Status	Yes	24	6	30	Cancel tus	Yes	9	21	Session 30 PROBABILITY AN	
	No	776	194	970	ung (Sta	No	891	2079	ENTIAL STATISTIC Y 0 2970 HINGTO	
	OTAL	800	200	1000		TOTAL	900	2100	3000	
OR = 1						OR	= 1			

A confounder is associated with both the disease and exposure and is not in the causal path between disease and exposure

An apparent association between E and D is completely explained by C. **C is a confounder.**

- The implicit assumption is that we want to know if E "causes" D
- A simple, common example from genetics is the linked gene: we discover a gene which appears to be associated with disease ... does it cause the disease or is it merely linked to the true causal gene?

Session 8 PROBABILITY AND INFERENTIAL STATISTICS UNIVERSITY of WASHINGTON

Break #2

Pause the video, take a break, stretch, then review relevant exercises from worksheet.

Afterwards, continue on!

Image Credit: indg0.com

Adjusting the OR via Stratification

Basic idea

- Compute separate OR for each stratum
- Assess homogeneity of OR's across strata Is there EM?
- Pool OR's: used weighted average *Adjust for confounding*
- Global test of pooled OR = 1 Is there association, after adjustment
- Different methods of pooling, testing have been proposed. *We will focus on Mantel-Haenszel methods*

Session 8 PROBABILITY AND INFERENTIAL STATISTICS UNIVERSITY of WASHINGTON

A 1985 study identified a group of **509 cancer cases and 489 controls** by mail questionnaire. The main purpose of the study was to look at the **effect of passive smoking on cancer risk**.

In the study **passive smoking** was defined as exposure to the cigarette smoke of a spouse who smoked at least one cigarette/day for at least 6 months.

One **potential confounding variable was smoking by the test subjects themselves** since personal smoking is related to both cancer risk and having a spouse that smokes.

Therefore, it was important to control for **personal smoking** before looking at the relationship between passive smoking and cancer risk.

Rosner §13.5 Mantel-Haenszel Methods

1) Pooled data, not controlling for personal smoking

1) Pooled data, not controlling for *personal smoking*

Passive Smoking

. cci 281 228 210 279

For information on how to complete these calculations in R:

https://a-little-book-of-r-for-biomedical-statistics.readthedocs.io/en/latest/src/biomedicalstats.html

Rosner §13.5 Mantel-Haenszel Methods

2) Stratified by personal smoking

For information on how to complete these calculations in R:

https://a-little-book-of-r-for-biomedical-statistics.readthedocs.io/en/latest/src/biomedicalstats.html

Rosner §13.5 Mantel-Haenszel Methods

2) Stratified by personal smoking

Personal Smoking: Smokers

Personal Smoking: Nonsmokers

. cci 161 117 130 124

Proportion				
	Exposed	Unexposed	Total	Exposed
Cases	161	117	278	0.5791
Controls	130	124	254	0.5118
Total	 291 	241	532 	0.5470
	Point	estimate	[95% Conf.	Interval]
Odds ratio	' 1.3	312558	.9184614	1.875813
Attr. frac. ex.	.2381286		0887774	.4668978
Attr. frac. pop	1	L37909	1	
-		$r_{1}(1) =$	2.43 Pr>chi	2 = 0.1192

. cci 120 111 80 155

				rropor cron		
	Exposed	Unexposed	Total	Exposed		
Cases	120	111	231	0.5195		
Controls	I 80	155	235	0.3404		
Total	+ 200	266	+ 466 	0.4292		
	Point	estimate	[95% Conf. Interval]			
Odds ratio Attr. frac. ex.	 2.0 .52	94595 25806	1.41754 .2945527	3.097165 .6771241		
Attr. frac. pop	.27	14705 _{UNIVE}	RSITY of WA	SHINGTON		
	' c	hi2(1) =	15.24 Pr>chi	2 = 0.0001		

For information on how to complete these calculations in R:

https://a-little-book-of-r-for-biomedical-statistics.readthedocs.io/en/latest/src/biomedicalstats.html

Proportion

Stratified Contingency Tables Mantel-Haenszel Methods

- **Q:** How can we combine the information from both stratum-specific tables to obtain an overall test of significance that takes account of the stratification?
- A: Mantel-Haenszel Methods assesses association between disease and exposure after controlling for one or more confounding variables.

Stratified Contingency Tables Mantel-Haenszel Methods

(1) Test of effect modification (heterogeneity, interaction) $H_0: OR_1 = OR_2 = ... = OR_K$ $H_A:$ not all stratum-specific ORs are equal

(2) Estimate the common odds ratio

The Mantel-Haenszel estimate of the odds ratio assumes there is a common odds ratio:

 $OR_{pool} = OR_1 = OR_2 = \dots = OR_K$

To estimate the common odds ratio we take a weighted average of the stratum-specific odds ratios:

MH estimate: $\widehat{OR}_{pool} = \sum_{i=1}^{K} w_i \cdot \widehat{OR}_i$

(3) Test of common odds ratio

 H_0 : common odds ratio is 1.0 H_A : common odds ratio ≠ 1.0

MPLE	Rosner §13.5	5	case	passi	ve num	ber	+ smoke	Enter	ring the	
X	Mantal-Haonszal Mathads	1.	1		1	120	0	stratum-s	pecific da	ta
ш	Maillei-Haeliszei Methous	2.	1		0	111	0			
		3.	0		1	80	0 .			
		4.	0		0	155	0			
		5.	1		1	161	1			
		6.	1		0	117	1			
		7.	0		1	130	1			
		8.	0		0	124	1			
	Calculating the pooled OR and testing whether	Person	al Smol	cing	OR	L 	[95% Conf.	Interval] M	I-H Weight	
	it is different from 1			0	2.0945	95	1.41754	3.097165	19.05579	(exact)
				1	1.3125	58	.9184614	1.875813	28.59023	(exact)
			C	cude l	1.6374	06	1.265013	2.119599		(exact)
		М-	H comb	ined	1.6253	29	1.263955	2.090024	Y of WASH	INGTON
		Test o	f homog	geneity	(M-H)	c	hi2(1) =	3.27 Pr>chi2	= 0.0706	
		Test o	f homog	geneity	(B-D)	C	hi2(1) =	3.27 Pr>chi2	= 0.0704	
					Test tha	t com	bined OR =	1:		
						1	Mantel-Haen	szel chi2(1) =	14.42	7/1
								Pr>chi2 =	0.0001	24

Break #3

Pause the video, take a break, stretch, then review relevant exercises from worksheet.

Afterwards, continue on!

