Permutation Tests \& False Detection Rate

Session 10

Module 1 Probability \& Statistical Inference

The Summer Institutes
DEPARTMENT OF BIOSTATISTICS SCHOOL OF PUBLIC HEALTH
UNIVERSITY of WASHINGTON

Permutation Tests

> Computer-intensive methods for hypothesis testing
> Used when distribution of the test statistic (under the null hypothesis) is unknown
> Permutation tests maintain the Type I error level without any large sample approximations / assumptions

Session 10

HPV Vaccine Trial

- 200 uninfected women are randomly assigned 1:1 to HPV vaccine or placebo (i.e., 100 to each group)
- After 1 year subjects are tested for HPV infection (yes/no)

Scientific Question

Is the risk of infection the same or different in the two groups?

Restate scientific question as statistical hypotheses:

$$
\begin{aligned}
& H_{0}: p_{v}=p_{p} \\
& H_{A}: p_{v}<p_{p} \\
& \text { where }
\end{aligned}
$$

$p_{v}=$ probability of infection in the vaccine group
$p_{p}=$ probability of infection in the placebo group

HPV Vaccine Trial

Scientific Question

Is the risk of infection the same or different in the two groups?

	Vaccine	Placebo
HPV+	20	40
60		
	60	
	140	

The overall infection rate is 30%, but we observe

- 20\% for vaccine
- 40% for placebo

What if we repeated the experiment ... would we see similar results? Could a difference this large be due to chance alone?

Scientific Question

Is the risk of infection the same or different in the two groups?

We need a way of summarizing the difference in infection probabilities between vaccine and placebo groups.

Summarize the differences between the groups in a single number.

$$
\text { Example } \Rightarrow p_{v}-p_{p}
$$

One particular value (say, 0) of the summary corresponds to the null hypothesis being exactly true.
o We expect values near 0 if the null hypothesis is true. We expect values far from 0 if the null hypothesis is false.
But how close is close? How far is far?

HPV Vaccine Trial

Scientific Question

Is the risk of infection the same or different in the two groups?

We need to figure out what distribution of values we would see for our summary statistic if the experiment were repeated many times and the null hypothesis were true.

Imagine the following experiment:

1. make up a deck of 200 cards
2. mark the word "HPV+" on 60 of them
3. shuffle and deal two groups of 100
4. form a 2×2 table from the results
5. calculate your summary statistic
6. repeat \#s 3-5 many times
7. plot the results

This experiment should give us an idea of what we expect to see if the null hypothesis is true.

Session 10 PROBABILITY AND

HPV Vaccine Trial

Scientific Question

Is the risk of infection the same or different in the two groups?

Summarize the results by reporting what proportion of the simulated results are as "extreme" or more so than the observed result (p-value).

Here is the distribution of differences $p_{v}-p_{p}$ that we might expect to see, assuming the null hypothesis is true.

- only 3/2000 simulated differences were more extreme than the observed difference of -0.2
- $p=0.0015$

s

Scientific Question

Is the risk of infection the same or different in the two groups?

Summary We have answered our scientific question

 by using a permutation test.1. Restate the scientific question as statistical hypotheses
2. Choose (any) reasonable summary statistic that quantifies deviations from the null hypothesis
3. Resample data assuming the null hypothesis is true and compute the summary statistic for each resampled data set.
4. Compare the observed value of the summary statistic to the null distribution generated in Step 3.

Summary: Permutation Tests

> Useful when we can do resampling under the null hypothesis
> Fewer assumptions than e.g.t-test (i.e., no assumption about skewness or Normality of underlying distribution)
> If the sample size is small, you can enumerate all possible permutations (permutation test)
> If sample size is large, generate a random sample of permutations (randomization test)
> Permutation samples are drawn without replacement
> Many standard nonparametric methods (e.g., Wilcoxon Rank Sum Test) are permutation tests based on ranks.
> Good Reference: Manly (2007). Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman \& Hall/CRC.

Break \#1

Pause the video, take a break, stretch, then continue on!

False Discovery Rate

For some studies, answering the scientific question of interest may require testing hundred, thousands, or millions of hypotheses. This is especially true of genetics.
> Hedenfalk et al (2001) screened 3226 genes using microarrays to find differential expression between BRCA-1 and BRCA-2 mutation positive tumors.

Issue If a traditional hypothesis testing approach is taken and we conduct 3226 tests at the 0.05 level, then we expect (up to) 161 false positive findings. Unfortunately, they are not labeled as such!

Traditional Solution (Bonferroni correction) If we conduct each test at an $\alpha=0.05 / 3226=0.000015$ level then the probability of 1 or more false positive findings will be ~ 0.05. But, \ldots with such a stringent a level we are likely to miss many true positive results.

Hedenfalk et al (2001)

False Discovery Rate

Screened 3226 genes using microarrays to find differential expression between BRCA-1 and BRCA-2 mutation positive tumors.

Session 10 PROBABILITY AND
> false positive rate $=\mathrm{F} / \mathrm{m}_{0}=$ type I error rate $=\mathrm{a}$
> false discovery rate $=F / S=q$

Idea

Control the false discovery rate (q-value) instead of the false positive rate (related to the p-value)

Hedenfalk et al (2001)
Screened 32263170 genes using microarrays to find differential expression between BRCA-1 and BRCA-2 mutation positive tumors.

- Order the 3170 p-values: $\mathbf{p}_{\mathbf{i}}, \mathbf{i}=\mathbf{1} \ldots 3170$
(56 genes were excluded from this analysis)
- Pick a p-value cutoff, say α : reject H_{o} for all $p_{i}<\alpha$.

What is the false discovery rate (FDR) associated with this choice of α ?

- FDR = F / S
- $S=\#\left\{p_{i}<\alpha\right\}$
- $F=\alpha^{*} m_{0}$
- FDR $=q$-value $=\alpha * m_{0} / \#\left\{p_{i}<\alpha\right\}$
- I know S , I know a, what is m_{0} ?

Session 10
PROBABILITY AND
INFERENTIAL STATISTICS
UNIVERSITY of WASHINGTON

Hedenfalk et al (2001)
Screened 32263170 genes using microarrays to find differential expression between BRCA-1 and BRCA-2 mutation positive tumors.

$$
m_{0}(\lambda)=\frac{\#\left\{p_{i}>\lambda ; i=1 \ldots m\right\}}{(1-\lambda)}
$$

Distribution of 3170 p-values from Hedenfalk et al.

Height of the line gives estimated proportion of true null hypotheses.
Distribution of 3170 p-values when all null hypotheses are true

Hedenfalk et al (2001)

False Discovery Rate

Screened 32263170 genes using microarrays to find differential expression between BRCA-1 and BRCA-2 mutation positive tumors.

> false positive rate $=\mathrm{F} / \mathrm{m}_{0}=$ type I error rate $=\mathrm{a}$ (we set alpha)
> false discovery rate $=F / S=q \rightarrow F=q$ * S

Idea

Control the false discovery rate (q-value) instead of the false positive rate (related to the p-value)

UNIVERSITY of WASHINGTON

Hedenfalk et al (2001)

False Discovery Rate

Screened 32263170 genes using microarrays to find differential expression between BRCA-1 and BRCA-2 mutation positive tumors.
$>q(\alpha)=\alpha * m_{0}(\lambda) / \#\left\{p_{i}<\alpha\right\}$
[technically $q(\alpha)=\min _{t \geq a} q(t)$]
> Package qualue in R
Example : Analysis of data from Hedenfalk et al (using $m_{0}(0.5)=2143$)

q false discovery rate	a false positive rate	$\#\left\{p_{i}<\alpha\right\}$ expected \# of positives	expected \# of false positives
0.01	0.0000126	5	0
0.05	0.00373	160	8
0.10	0.0148	317	32

