Probability

Session 1

Module 1 Probability \& Statistical Inference

The Summer Institutes
DEPARTMENT OF BIOSTATISTICS SCHOOL OF PUBLIC HEALTH University of Washington

Liber de Iudo aleae (Book on Games of Chance)
by Gerolamo Cardano

- Written 1526 (published 1663)
- First systematic treatment of probability

Probability

A measure of uncertainty associated with the occurrence of events or outcomes.

Classical: $\mathrm{P}(\mathrm{E})=\mathrm{m} / \mathrm{N}$
If an event can occur in N mutually exclusive, equally likely ways, and if \mathbf{m} of these possess characteristic \mathbf{E}, then the probability of \mathbf{E} is equal to \mathbf{m} / \mathbf{N}

Example

What is the probability of rolling a total of 7 on two dice?

```
E = two dice sum to 7
N=36
m=6
P(E) = m / N = 6/36 = 1/6
```


$N=36$

$\mathrm{m}=6$
$P(E)=m / N=6 / 36=1 / 6$

Probability

A measure of uncertainty associated with the occurrence of events or outcomes.

Example

Around 1900, the English statistician Karl Pearson
heroically tossed a coin 24,000
times and recorded 12,012
heads, giving a proportion of 0.5005 .

Relative Frequency: $\operatorname{Pr}(E) \approx m / n$
If a process or an experiment is repeated a large number of times \mathbf{N}, and if the characteristic \mathbf{E}, occurs m times, then the relative frequency, \mathbf{m} / \mathbf{N}, of \mathbf{E} will be approximately equal to the probability of \mathbf{E}.

Probability

A measure of uncertainty associated with the occurrence of events or outcomes.

Personal Probability

What is the probability of life on Mars?

Sample Space

The sample space consists of the possi An event is an outcome or set of outcor

For a coin flip the sample space is (H, T).
THE SAMPLE SPACE OF THE THROW OF A SINGLE DIE IS A LITTLE BIGGER.

AND FOR A PAIR OF DICE, THE SAMPLE SPACE LOOKS LIKE THIS (WE MAKE ONE DIE WHITE AND ONE BLACK TO TELL THEM APART):

Basic Properties of Probability

Two events A and B are said to be mutually exclusive (disjoint) if only one or the other, but not both, can occur in a particular experiment.

Given an experiment with n mutually exclusive events, $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots ., \mathrm{E}_{n}$, the probability of any event is non-negative and less than 1:

$$
0 \leq P\left(E_{i}\right) \leq 1
$$

The sum of the probabilities of an exhaustive collection (i.e., at least one must occur) of mutually exclusive outcomes is $\mathbf{1}$:

$$
\sum_{i=1}^{n} P\left(E_{i}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+\cdots+P\left(E_{n}\right)=1
$$

The probability of all events other than an event A is denoted by

Notation for Joint Probabilities

Consider that A and B are any two events.

To indicate the probability that event A or event B or both occurred, we write:

$$
P(A \text { or } B) \text { or } P(A \cup B)
$$

To indicate the probability that both A and B occurred, we write:

$$
P(A \text { and } B) \text { or } P(A B) \text { or } P(A \cap B)
$$

Notation for Joint Probabilities

Consider that A and B are any two events.

To indicate the conditional probability for the probability of A among the subset of cases in which B is known to have occurred, we write:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

S, sample space, is the entire box
$A \cap B$

General Probability Rules

Addition Rule

Consider that A and B are any two events. The probability that event A or event B occurs (but not both) is:

$$
P(A \text { or } B)=P(A)+P(B)-P(A B)
$$

Example Of the students at Anytown High school, 40\% have had the mumps, 70\% have had measles and 32% have had both. What is the probability that a randomly chosen student has had at least one of the above diseases?

Note: This rule works even if A and B are mutually exclusive. If they are disjoint, then $P(A B)=0$, and the last term drops out.

General Probability Rules Independence

Two events A and B are said to be independent if and only if:

$$
P(A \mid B)=P(A) \text { or } P(B \mid A)=P(B) \text { or } P(A B)=P(A) P(B)
$$

Note: If any one holds then all three hold
Example Of the students at Anytown High school, 40\% have had the mumps, 70\% have had measles and 32\% have had both.

Are the two events independent?

No, because P (mumps and measles $)=0.32$ while $\mathrm{P}($ mumps $) \mathrm{P}$ (measles) $=0.28$

Note: This rule demonstrates that when events are independent, the probability of A and B occurring is given by product of their individual probabilities.

Time for a paws?

Work through questions
1-4

General Probability Rules

Multiplication Rule

Two events A and B are likewise independent if:

$$
P(A B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

Under independence,
$P(B \mid A)=P(B)$

Example Of the students at Anytown High school, 40\% have had the mumps, 70\% have had measles. The probability of having measles given you have mumps is 80%. What's the probability of having both?
$\mathrm{P}($ measles and mumps $)=\mathrm{P}($ measles \mid mumps $) \mathrm{P}($ mumps $)=0.80 * 0.40=0.32$

General Probability Rules

Total Probability

If A_{1}, \ldots, A_{n} are mutually exclusive, exhaustive events, then:

$$
P(B)=\sum_{i=1}^{n} P\left(B \cap A_{i}\right)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
$$

Session 1

General Probability Rules

DOA AG B A

Bayes' rule combines the multiplication rule with the total probability rule:

$$
P\left(A_{j} \mid B\right)=\frac{A_{j} \cap B}{P(B)}=\frac{P\left(B \mid A_{j}\right) P\left(A_{j}\right)}{P(B)}=\frac{P\left(B \mid A_{j}\right) P\left(A_{j}\right)}{\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)}
$$

In the situation where A and B have two levels each, e.g., A and $A c, B$ and B^{c}, then the formula becomes:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)}
$$

u An Application of Bayes' Rule Screening

Suppose we have a random sample of 1100 people from a population...

$$
\begin{aligned}
& A=\text { disease pos. } \\
& B=\text { test pos. }
\end{aligned}
$$

Prevalence $=P(A)=100 / 1100=0.091$
Sensitivity $=P(B \mid A)=90 / 100=0.9$
Specificity $=P\left(B^{c} \mid A^{c}\right)=970 / 1000=0.97$
$P V P=P(A \mid B)=90 / 120=0.75$
(predictive value of a positive test)
PVN $=$ P(Ac | $\left.\mathrm{BC}^{c}\right)=970 / 980=0.99$
(predictive value of a negative test)

Disease Status

	Positive	Positive	Negative	120
		90	30	
	Negative	10	970	980
		100	- 1000	1100

