Session 2: Descriptive Statistics/Probability I Exercises

1. Categorize the following variables into nominal, ordinal, discrete, or continuous:
2. Viral load
3. Age measured in years
4. Price of your lunch
5. Country of origin
6. Calculate:

$$
\sum_{j=10}^{12} j ?
$$

3. Calculate:

$$
\sum_{j=1}^{3} j^{2}
$$

4. What is the mean of $-5,10$, and 0 ?
5.

a. What are the mean and median birth weights of babies born to mothers living with HIV: $1400 \mathrm{~g}, 1500 \mathrm{~g}$, $1200 \mathrm{~g}, 1500 \mathrm{~g}$?
b. Is the mean or median a better summary of the central tendency of birth weights?
c. Suppose the sample of birth weights of babies born to mothers living with HIV is: $1200 \mathrm{~g}, 1400 \mathrm{~g}, 1500 \mathrm{~g}, 1500 \mathrm{~g}, 5000 \mathrm{~g}$. Would your answer to b. change? Why or why not?
d. Suppose the mothers were given nutritional supplements during pregnancy and their babies' birth weights in a) increased by 100 g each. What is the mean birth weight?
6. a. What are the variance and standard deviation of the following birth weights: $1200 \mathrm{~g}, 1400 \mathrm{~g}, 1600 \mathrm{~g}$?
b. What is the variance and standard deviation if 100 g is added to each birth weight?

Questions 7, 8, 9 :
Suppose a new student has joined your lab and is learning how to culture cells. Their reference letter says that 25% of the new student's experiments fail. They only have time to create 3 cultures.

Recall,
$P(X=k)=\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}$
where, e.g., $4!=4 \times 3 \times 2 \times 1=24$
7. What is the probability that exactly 1 experiment fails?
8. What is the probability that at least 1 experiment fails?
9. What is the probability that all experiments succeed?
10. A couple intends to have 5 children and both are carriers of myotonic dystrophy, a dominant trait. Therefore, the probability that a child has the trait is 0.75 . What is the probability that at least 1 child will have the trait?

11: Calculate the mean and variance of a binomially distributed random variable with n trials and success probability p .

