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For example, let’s consider a cross between 
two parents that are heterozygous carriers 
for a recessive trait:

Multinomial Distribution
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This distribution generalizes beyond 2 
outcomes of the binomial distribution.
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We can then use the multinomial distribution to calculate the probability of observing 
various outcomes in the offspring generation. 
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Only one of Yi1, Yi2, Yi3 can be 
equal to 1, so Yi1 + Yi2+ Yi3 = 1. 

Multinomial Distribution
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For any given offspring, the 3 possible outcomes can be represented by:

Yi3 = 1 if ith offspring is affected (aa),
= 0 otherwise

Yi1 = 1 if ith offspring is unaffected (AA),
= 0 otherwise

Yi2 = 1 if ith offspring is a carrier (Aa),
= 0 otherwise
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For the binomial distribution with 2 outcomes, there are 2n unique outcomes in n trials. With 
n=3 offspring, there are 23 = 8 unique outcomes.

For the multinomial distribution with 3 outcomes, the number of unique outcomes in n trials 
is 3n. With n=3 offspring, there are 33=27 unique outcomes.
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To calculate probabilities of interest, we can use combinations. For the multinomial 
distribution, the combinations are calculated as:

where kj (j=1, 2, …, J) correspond to 
the totals for the different outcomes

Multinomial distribution
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Let’s consider a scenario where: n = 2 offspring
J = 3 possible outcomes (unaffected, carrier, affected)

Offspring 1 Offspring 2 Outcome
AA AA 2  unaffected, 0 carrier, 0 affected
AA Aa 1  unaffected, 1 carrier, 0 affected
Aa AA 1  unaffected, 1 carrier, 0 affected
AA aa 1  unaffected, 0 carrier, 1 affected
aa AA 1  unaffected, 0 carrier, 1 affected
Aa Aa 0  unaffected, 2 carrier, 0 affected
aa Aa 0  unaffected, 1 carrier, 1 affected
Aa aa 0  unaffected, 1 carrier, 1 affected
aa aa 0  unaffected, 0 carrier, 2 affected

The possible outcomes are:

Number of unique outcomes
3n = 32 = 9
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For a defined number of offspring, what is the probability of a specific outcome? E.g., for 
n=2, what is the probability of observing two unaffected individuals? Or two affected? Or…?

Multinomial distribution
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Offspring 1 Offspring 2 Outcome   # ways
p1 p1 k1=2,k2=0,k3=0
p1 p2 k1=1,k2=1,k3=0
p2 p1 k1=1,k2=1,k3=0
p1 p3 k1=1,k2=0,k3=1
p3 p1 k1=1,k2=0,k3=1
p2 p2 k1=0,k2=2,k3=0
p3 p2 k1=0,k2=1,k3=1
p2 p3 k1=0,k2=1,k3=1
p3 p3 k1=0,k2=0,k3=2

1
2

2
1
2
1

k1=number of unaffected 
k2=number of carriers
k3=number of affected

First, write the outcomes in terms of k’s: 

The probability of a specified outcome is going to be:
[prob of the possible outcome] x [number of ways for that outcome] 

Formula for # ways
n!

k1!k2!k3!

Probability for each 
possible outcome
Pr[Y1=k1, Y2=k2, Y3=k3] =

p1k1p2k2p3k3
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The probability that a multinomial random variable with n trials and success probabilities 
p1, p2, …, pJ will yield exactly k1, k2,…kJ successes is:

Multinomial distribution
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Defines what we are asking, e.g., 
for n=2, what is the probability of 
observing 1 unaffected (k1=1), 1 
carrier (k2=1), and 0 affected 
(k3=0)

Recall:
k1=number of unaffected 
k2=number of carriers
k3=number of affected

These again are the k values, 
which are given based on what 
we are asking

The p probabilities define the 
”baseline” probability of success 
for each of the J outcomes 

For heterozygous cross:

p1 = P(AA) = 0.25
p2 = P(Aa) = 0.5
p3 = P(aa) = 0.25

=

Probability of a specific scenario # ways Probability of the outcome
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The probability that a multinomial random variable with n trials and success probabilities 
p1, p2, …, pJ will yield exactly k1, k2,…kJ successes is:

Multinomial distribution
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Assumptions:

o J possible outcomes; only one can be a success, 1, in a given trial.

o The probability of success for each possible outcome, pj, is the same for each 
trial.

o The outcome of one trial has no influence on other trials (independent trials).

o Interest is in the (sum) total number of successes over all the trials.
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What is the probability that one of n=3 offspring will be unaffected (AA), one will be 
affected (aa) and one will be a carrier (Aa)?

Multinomial distribution
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Our k values for this scenario are:
k1 = number of unaffected = 1 
k2 = number of carriers = 1
k3 = number of affected = 1

For heterozygous cross:

p1 = P(AA) = 0.25
p2 = P(Aa) = 0.5
p3 = P(aa) = 0.25
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Calculating the mean and variance

The marginal outcomes of the multinomial distribution are binomial. 

We can obtain the means for each outcome, e.g, Yj = kj, the jth outcome, as follows:

Multinomial distribution
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Mean:

Variance:
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Multinomial distribution summary

o Multinomial random variables are discrete

o Parameters are  n, p1, p2, …, pJ

o Each outcome Yj = kj is the sum of n independent 
Bernoulli outcomes

o Extends binomial distribution

o Seen in contingency tables, polytomous regression

Multinomial distribution
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questions 
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Continuous distributions
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For measurements like height or weight, it does not make sense to talk about the 
probability of any single value. Instead, we talk about the probability for an interval.

P[weight = 70.000kg] ≈ 0

P[69.0kg < weight < 71.0kg] = 0.08

For discrete random variables, a probability mass function gives the probability of 
each possible value. 

For continuous random variables, we require a probability density function to tell us 
about the probability of obtaining a value within an interval.

Continuous distributions
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With discrete probability distributions, we can 
determine the probability of a single outcome: 

Continuous distributions
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Plot representing 
probability mass function 
for a discrete RV

For any interval, the area under the curve 
represents the probability of obtaining a value 
in that interval.

With continuous probability distributions, we 
determine the probability across a range of outcomes:

Plot representing 
probability density 
function for a cont RV
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Continuous distributions
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Probability density function

o Given by f(x)
o Gives probability that X falls within an interval: 

f(x) = P(value 1 < X < value 2)
o Probability represented by area under curve
o Total area under curve is 1:

P(X< 80) = 0.40
area under curve

f(x)

Weight (kg)

Cumulative distribution function

o Given by F(x)
o Gives cumulative probability that X is less 

than some value x:
o F(x) = P(X ≤ x)
o y-axis ceiling is 1

F(x)

Weight (kg)

P(X<80) = 0.40
y-axis value

The PDF and CDF represent the same information.
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Normal distribution
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The normal distribution is a well-known probability model for continuous data. It is 
unimodal with a “bell-shaped curve”.

Random variable values range from -∞ to + ∞.

Symmetric about mean: mean = median = mode

Common examples include human height, birth weight, blood pressure.

PDF of the Normal 
distribution
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The NOR distribution is defined by its mean and variance. Note the appearance of μ
and σ in the probability density function for the NOR distribution:

Normal distribution
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Thus, the normal distribution has two parameters:

μ = the mean of X

σ = the standard deviation of X

“X is normally distributed with mean μ and variance σ2”

X ~ N(μ , σ2)
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The standard normal distribution

Normal distribution
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The standard normal is a special case of the NOR!
o AKA “z” distribution
o Z ~ N(0, 1): μ = 0 and σ2 = 1
o There is only ONE standard normal distribution!

Under the STD NOR, 95% of 
the area lies between ~2 
standard deviations of the 
mean. Useful!
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Using z notation, the probability density function of Z, the random 
variable of the standard normal distribution is:

The cumulative distribution function of Z is:

Any computing software will give the values of f(z) and Φ(x).

Standard Normal distribution
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Calculating probabilities for the standard normal distribution
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Online calculators for standard Normal distribution probabilities

Suppose we wish to solve a probability statement for the standard Normal 
variable. For example, what is the probability that Z takes a value less than 0.05?

P(Z ≤ 0.5) = 0.6915

Standard Normal distribution
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P(Z ≤ 0.5) = ?
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P(Z < x) = b

P(Z < y) = c

P(x < Z < y ) = c - b

1-aa

z

Standard Normal distribution
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Properties

If the probability of (Z < some value z) is equal to a, 
then the probability that (Z > z) is equal to 1 - a.

P(Z < z) = a

P(Z > z) = 1- a

If the probability of (Z < some value x) is equal 
to b, and the probability that (Z > y) is equal to c, 
then the probability that (Z lies between x and y) 
is equal to c – b. 

b
c

x y

Note that this is true 
of all distributions!
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Standard Normal distribution
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Properties

Because the standard Normal 
distribution is symmetrical around 0, 
the probability that (Z < -y) is equal to 
the probability that (Z > y), shown here 
as d. 

Note that this is NOT 
true of all distributions!

P(Z < -y) = P(Z > y) = d
d

-y 0 y

d


