Session 3: Probability Distributions II
 Exercise Solutions

For questions 1 and 2, recall that, for offspring genotypes from a heterozygous cross:
Carrier $=$ Aa with $\operatorname{Pr}(A a)=1 / 2$
Unaffected $=A A$ with $\operatorname{Pr}(A A)=1 / 4$
Affected $=$ aa with $\operatorname{Pr}(a a)=1 / 4$
Consider a scenario with $\mathrm{n}=3$ offspring.

Question 1

What is the probability that all three offspring will be carriers?

$$
\begin{aligned}
P\left(Y_{1}=0, Y_{2}=3, Y_{3}=0\right) & =\frac{3!}{0!3!0!} p_{1}^{0} p_{2}^{3} p_{3}^{0} \\
& =\frac{3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1}(0.25)^{0}(0.5)^{3}(0.25)^{0} \\
& =0.125
\end{aligned}
$$

R code:
dmultinom $(x=c(0,3,0), \operatorname{prob}=c(0.25,0.5,0.25))$

Question 2

What is the probability that two offspring will be affected and one will be a carrier?

$$
\begin{aligned}
P\left(Y_{1}=0, Y_{2}=1, Y_{3}=2\right) & =\frac{3!}{0!1!2!} p_{1}^{0} p_{2}^{1} p_{3}^{2} \\
& =\frac{3 \cdot 2 \cdot 1}{2 \cdot 1}(0.25)^{0}(0.5)^{1}(0.25)^{2} \\
& =0.09375
\end{aligned}
$$

R code:
dmultinom $(x=c(0,1,2), \operatorname{prob}=c(0.25,0.5,0.25))$

Exercises

For the following questions, calculate the specified probabilities for the standard Normal random variable Z ~ N(0,1). You can use an online standard Normal CDF calculator.

Question 3

$P(Z \leq 1.65)=0.9505$
R code:
pnorm(1.65, mean $=0, \operatorname{sd}=1)$

Question 4

$P(Z \geq 0.5)=0.3085$
R code:
1 - pnorm(0.5, mean $=0, \operatorname{sd}=1)$

Question 5

$P(-1.96 \leq Z \leq 1.96)=0.975-0.025=0.95$
R code:
pnorm(1.96, mean $=0, \operatorname{sd}=1)-\operatorname{pnorm}(-1.96, \operatorname{mean}=0, \operatorname{sd}=1)$

