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Probability/statistical models depend on parameters

Binomial depends on probability of success π.

Normal depends on mean μ, standard deviation σ.

Parameters are properties of the “population” and are typically 
unknown.

The process of taking a sample of data to make inferences about these 
parameters is referred to as estimation.

There are a number of different estimation methods … we will study 
two estimation methods: 

1. Maximum likelihood (ML) 

2. Bayes
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Maximum Likelihood
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Fisher (1922) invented this general method.

Problem Unknown model parameters θ

Set-up Write the probability of the data X in terms of the model 
  parameter: P(X|θ)

Solution Estimate θ as the value that makes the data X look most 
  likely to occur. This estimate is denoted by    .

🔑 The estimator     is called the maximum likelihood estimator (MLE). 
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Maximum Likelihood Estimate
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Suppose a man is known to have transmitted allele A1 to his child at a locus 
that has only two alleles: A1 and A2. 
What is the maximum likelihood estimate of the man’s genotype?

Solution Let X represent the data (paternal allele in the child) and let θ 
represent the parameter (man’s genotype):

 X = A1

          θ = {A1A1,  A1A2,  A2A2}

The probability function is based on P(X | θ) ….

P(X = A1 | θ = A1A1) = 1       

P(X = A1 | θ = A1A2) = 0.5         

P(X = A1 | θ = A2A2) = 0

Therefore, the MLE is    = A1A1
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Suppose we have a sample of 20 gametes (N) in which the number of 
recombinants (Z) and nonrecombinants (N-Z) for two loci can be counted. 
Use these data to estimate the recombination fraction (π) between the two 
loci. 

Solution The probability of the data can be modeled using a binomial 
distribution. The probability distribution function is:

where Z is the variable and π is fixed.

The likelihood function is the same function:

except now π is the variable and Z is fixed.

Maximum Likelihood

5
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• We can use calculus to find the maximum of the (log) likelihood function.

• Not surprisingly, the likelihood in this example is maximized at the observed 
proportion, 3/20.

• Sometimes the MLE has a simple closed form. 
In more complex problems, numerical optimization is used.

○ Computers can find these maximum values!

Maximum Likelihood
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Recall:
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Maximum Likelihood

General Notation

L(θ) = likelihood as a function of the parameter θ

ℓ(θ) = ln(L(θ)), the log likelihood

> Usually more convenient to work with analytically and numerically

S(θ) = dℓ(θ)/dθ, the score

> Set to zero and solve for θ to calculate the MLE

I(θ) = -d2ℓ(θ)/dθ2, the information

> Inverse gives variance of 

Var(   ) = E[I(θ)]-1 (in most cases)

7
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Recall Bayes theorem: 
(written in terms of data X and parameter θ)

Notice the change in perspective - θ is now treated as a random variable 
instead of a fixed number. 

> P(X|θ) is the likelihood function, as before.
> P(θ) is called the prior distribution of θ.
> P(θ | X) is called the posterior distribution of θ and is used for estimation

Based on P(θ | X) we can define a number of possible estimators of θ. A 
commonly used estimate is the maximum a posteriori (MAP) estimate:

We can also use P(θ | X) to define “credible” intervals for θ.

Bayes Estimation

8
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Comments
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> The Bayesian procedure provides a convenient way of combining 
external information or previous data (through the prior 
distribution) with the current data (through the likelihood) to 
create a new estimate. 

> As N increases, the data (through the likelihood) overwhelms the 
prior and the Bayes estimator typically converges to the MLE.

> Controversy arises when P(θ) is used to incorporate subjective 
beliefs or opinions.

> If the prior distribution P(θ) is simply that θ is uniformly distributed 
over all possible values, this is called an uninformative prior, and 
the MAP is the same as the MLE. 
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Suppose a man is known to have transmitted allele A1 to his child at a locus that has 
only two alleles: A1 and A2. 
What is the maximum likelihood estimate of the man’s genotype?

Solution Let X represent the data (paternal allele in the child) and let θ represent the 
parameter (man’s genotype):

 X = A1

          θ = {A1A1,  A1A2,  A2A2}

The probability function is based on P(X | θ) ….

P(X = A1 | θ = A1A1) = 1       

P(X = A1 | θ = A1A2) = 0.5         

P(X = A1 | θ = A2A2) = 0

Therefore, the MLE is    = A1A1

Bayes Estimation
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(copied from earlier)
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Suppose that we know that the frequency of the A1 allele in the general 
population is only 1%. Assuming Hardy-Weinberg Equilibrium we have

P(θ = A1A1) = 0.01 * 0.01 = 0.0001       

P(θ = A1A2 or A2A1) = 2 * 0.01 * (1-0.01) = 0.0198

P(θ = A2A2) = (1-0.01) * (1-0.01) = 0.9801

Also

This leads to the posterior distribution 

P( θ = A1A1 | X = A1 ) = 0.01       

P( θ = A1A2 | X = A1 ) = 0.99       

P( θ = A2A2 | X = A1 ) = 0

Bayes Estimation

11

(copied from earlier)

Therefore the Bayesian 
MAP estimator is 

θ = A1A2
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Maximum likelihood is a method of estimating parameters from 
data

> ML requires you to write a probability model for the data

> MLEs may be found analytically or numerically

> (Inverse of the negative of the) second derivative of the log-likelihood 
gives variance of estimates

Bayesian procedures allow us to incorporate additional 
information about the parameters in the form of prior data, 
external information, or personal beliefs.
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End of 
Day 1

Image Credit: indg0.com
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