Contingency Tables

Session 7

Module 1 Probability & Statistical Inference

The Summer Institutes

DEPARTMENT OF BIOSTATISTICS SCHOOL OF PUBLIC HEALTH

UNIVERSITY of WASHINGTON

Overview

1. Defining Categorical Variables

- Contingency (two-way) tables
- χ² Tests

2. Comparing Two Categorical Variables

3. 2 x 2 Tables

- Sampling designs
- Testing for association
- Estimation of effects

PROBABILITY AND INFERENTIAL STATISTICS UNIVERSITY of WASHINGTON

Factor

A **factor** is a type of variable that can take one of a small number of possible values. The possible values are called the **levels** of the factor. *Also known as a categorical variable or discrete variable.*

Examples

Gender with three levels:

1 = Male, 2 = Female, 3 = Non-binary

Disease status with three levels:

1 = Progression, 2 = Stable, 3 = Improved

Age with four levels:

1 = 20-29 yrs, 2 = 30-39 yrs, 3 = 40-49 yrs, 4 = 50-59 yrs

Session 1
PROBABILITY AND
INFERENTIAL STATISTICS
UNIVERSITY of WASHINGTON

Factors and Contingency Tables

One-way tables summarize the proportion of observations within each level of <u>one</u> factor.

Contingency tables, aka **two-way tables**, summarize the proportion of observations within each combination of levels from <u>two</u> factors.

- Also called an **R x C** table
- Often used to assess whether two factors are related
- Can test whether the factors are related using a χ^2 test

Examining two-way tables of Factor A vs Factor B at each level of a third Factor C WASHINGTON shows how the A/B association may be explained or modified by C (Session 8).

PROBABILITY AND FERENTIAL STATISTICS

Categorical Data: R x C table Doll and Hill (1952)

Retrospective assessment of smoking frequency

The table displays the daily average number of cigarettes for lung cancer patients and control patients.

⚠ Note the equal numbers of cases and controls.

	None	<5 cigarettes	5-14 cigarettes	15-24 cigarettes	25-49 cigarettes	50+ cigarettes	Observed data Session 7
Cases	7	55	489	475	293	38	1357 PROBABILITY AND NETWORK PROBABILITY AND UNIVERSITY of WASHINGTON
(Cancer)	0.5%	4.1%	36.0%	35.0%	21.6%	2.8%	
Controls	61	129	570	431	154	12	1357
(No Cancer)	4.5%	9.5%	42.0%	31.8%	11.3%	0.9%	
	68	184	1059	906	447	50	2714

Categorical Data: χ^2 test

Doll and Hill (1952)

Scientific Question

Is the distribution of smoking frequencies for those with cancer different from the distribution for those without cancer?

Restate scientific question as statistical hypotheses:

H₀: distribution of smoking same in both groups

H_A: distribution of smoking not the same

What does H₀ predict we would observe if all we knew were the marginal totals?

	None	< 5 cigarettes	5-14 cigarettes	15-24 cigarettes	25-49 cigarettes	50+ cigarettes	Expected values? Session 7
Cases (Cancer)	34	92	529.5	453	223.5	25	1357 PROBABILITY AND UNIVERSITY of WASHINGTON
Controls (No Cancer)	34	92	529.5	453	223.5	25	1357
	68	184	1059	906	447	50	2714

Categorical Data: χ^2 test

Doll and Hill (1952)

Scientific Question

Is the distribution of smoking frequencies for those with cancer different from the distribution for those without cancer?

Each group has the same proportion in each cell as the overall **marginal proportion.** The "equalness" is just because the sample sizes were the same.

We can test H₀ by summarizing the difference between the <u>observed</u> and <u>expected</u> cell counts

	None	<5 cigarettes	5-14 cigarettes	15-24 cigarettes	25-49 cigarettes	50+ cigarettes	Expected values Session 7
Cases (Cancer)	34	92	529.5	453	223.5	25	1357 PROBABILITY AND NAME OF THE PROBABILITY AND PROBABILITY A
Controls (No Cancer)	34	92	529.5	453	223.5	25	1357
	68	184	1059	906	447	50	2714

Categorical Data x² Test Statistic

Summing the differences between the observed and expected counts provides an overall assessment of H_0 .

$$X^2 = \sum_{i=1}^R \sum_{j=1}^C rac{(O_{ij} - E_{ij})^2}{E_{ij}} \ \sim \ \chi^2((R-1)(C-1))$$

X² is known as the **Pearson's Chi-square Statistic**

- $_{\odot}$ Large values of X² suggests the data are not consistent with H₀
- \circ Small values of X² suggests the data are consistent with H₀
- \circ The χ^2 distribution **approximates** the distribution of X^2 when H_0 true
- Computer intensive "exact" tests also possible

Session 1

PROBABILITY AND INFERENTIAL STATISTICS INIVERSITY of WASHINGTON

Categorical Data: χ^2 test

Doll and Hill (1952)

$$X^2 = \sum_{i=1}^r \sum_{j=1}^c rac{(O_{ij} - E_{ij})^2}{E_{ij}} = ~?$$

21.4+21.4+14.9+14.9+3.1+3.1+1.1+1.1+21.6+21.6+6.8+6.8 = 137.8

$$\frac{(7-34)^2}{34} = 21.4$$

$$\frac{(61-34)^2}{34}=21.4$$

The contributions to the X² statistic are...

	None	< 5 cigarettes	5-14 cigarettes	15-24 cigarettes	25-49 cigarettes	50+ cigarettes
Cases (Cancer)	$\frac{(7-34)^2}{34} = 21.4$	$\frac{(55-92)^2}{92} = 14.9$	3.1	1.1	21.6 ^{ER} UNIVERSI	PROBABILITY AND EN 64.8 STATISTICS TY of WASHINGTON
Controls (No Cancer)	$\frac{\left(61\text{-}34\right)^2}{34}=21.4$	14.9	3.1	1.1	21.6	6.8

Categorical Data: χ² test

Doll and Hill (1952)

$$X^2 = \sum_{i=1}^r \sum_{j=1}^c rac{(O_{ij} - E_{ij})^2}{E_{ij}} =$$
137.8

Degrees of freedom = (r-1)(c-1)

 X^2 distributions vary by their degrees of freedom

Is this significant?

H₀: distribution of smoking same in both groups H_A: distribution of smoking not the same

Sufficiently large values of X^2 will reject H_0 .

Df =
$$(r-1)(c-1)$$

Df = $(2-1)(6-1)$
Df = 5

PROBABILITY AND
INFERENTIAL STATISTICS
NIVERSITY of WASHINGTON

pchisq(137.8, df = 5, lower.tail=FALSE) p-value = $P(X^2 > 137.8 \mid H_0) < 0.0001$

Conclusion Reject H_0 at $\alpha = 0.05$

Categorical Data: χ² Test

Summary: conducting χ^2 a test

1. Compute the expected cell counts under null hypothesis of no association:

$$E_{ij} = N_i M_j / T$$

2. Compute the chi-square statistic:

$$X^2 = \sum_{i=1}^R \sum_{j=1}^C rac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

- 3. Compare X^2 to χ^2_{df} , where $df = (R-1) \times (C-1)$.
- Interpret p-value.

Factor Levels

Epidemiological Applications

We can write the chi-square statistic for a 2 x 2 table as:

$$X^2 = rac{N(ad-bc)^2}{n_1 \cdot n_2 \cdot m_1 \cdot m_2}$$

Then, we can compare our observed X^2 statistic to a χ^2 distribution with Df=1.

Disease Status

	D	Not D	TOTAL
Е	a	b	(a+b)=n ₁
Not E	С	d	(c+d)=n ₂
TOTAL	(a+c)=m ₁	$(b+d)=m_2$	Т

Session 7DBABILITY AND

UNIVERSITY of WASHINGTON

Epidemiological Applications: Pauling (1971)

Patients are randomized to either receive Vitamin C or placebo. Patients are followed-up to ascertain the development of a cold.

Question 1 Is treatment with Vitamin C associated with a reduced probability of getting a cold?

Question 2 If Vitamin C is associated with reducing colds, then what is the magnitude of the effect?

Disease Status

a		Cold	no Cold	TOTAL
osure atus	Vit C	17	122	139
Exp	Placebo	31	109	140
	TOTAL	48	231	279

Session 7
PROBABILITY AND
INFERENTIAL STATISTICS
INIVERSITY of WASHINGTON

Epidemiological Applications: Pauling (1971)

Scientific Q1

Is treatment with Vitamin C associated with a reduced probability of getting a cold?

$$X^{2} = \frac{279(17 \cdot 109 - 31 \cdot 122)^{2}}{139 \cdot 140 \cdot 48 \cdot 231}$$
$$= 4.81$$

pchisq(4.81, df = 1, lower.tail=FALSE) p-value = $P(X^2 > 4.81 \mid H_0) = 0.028$

Conclusion Reject H_0 at $\alpha = 0.05$

Restate scientific question as statistical hypotheses:

H₀: probability of disease <u>does not</u> depend on treatment

H_A: probability of disease <u>does</u> depend on treatment

Disease Status

Φ		Cold	no Cold	TOTAL
xposure Status	Vit C	17 (12%)	122 (88%)	PROBABILITY AND RENT 1.39 STATISTICS
Щ «	Placebo	31 (22%)	109 (78%)	140
	TOTAL	48	231	279

Epidemiological Applications: Risk Ratio

Scientific Q2

If Vitamin C is associated with reducing colds, what is the magnitude of the effect?

In the Pauling (1971) example, they fixed the number of E and not E, then evaluated the disease status after a <u>fixed period of time</u> (same for everyone).

This is a **prospective cohort study**. Given this design we can estimate the **risk ratio (RR)** as: $RR = \frac{P(D|E)}{P(D|\bar{E})} = \frac{p_1}{p_2}$

Using the natural log of RR, we can use a Normal approximation to calculate a confidence interval!

$$\ln\left(\widehat{RR}\right) = \ln\left(\frac{\widehat{p}_1}{\widehat{p}_2}\right) = \ln\left(\frac{a/n_1}{c/n_2}\right)$$

$$\ln\Bigl(\widehat{RR}\Bigr) \sim N\left[\ln\Bigl(rac{\widehat{p}_1}{\widehat{p}_2}\Bigr), rac{1-p_1}{p_1n_1} + rac{1-p_2}{p_2n_2}
ight].$$

To calculate **95% CI**, determine:

$$\ln\Bigl(\widehat{RR}\Bigr)\pm 1.96\sqrt{rac{b}{a(a+b)}+rac{d}{c(c+d)}}$$

Then exponentiate the endpoints.

Paws

Work through questions 1-2

Epidemiological Applications: Keller (AJPH, 1965)

Disease Status

Patients with (cases) and without (controls) oral cancer were surveyed regarding their smoking frequency. *This table collapses over the smoking frequency categories*.

Exposure Status

Smoker Non-Smoker

TOTAL

 Case
 Control

 484
 385

 27
 109

 511
 475

869 117 986

TOTAL

Question 1 Is oral cancer associated with smoking?

Question 2 If smoking is associated with oral cancer, then what is the magnitude of the risk?

PROBABILITY AND INFERENTIAL STATISTICS UNIVERSITY of WASHINGTON

Keller (AJPH, 1965)

Since we fixed the number of **cases** and **controls** then ascertained exposure status, this study design is a **case-control study**.

Based on this we are able to directly estimate:

$$P(E \mid D)$$
 and $P(E \mid \overline{D})$ \longleftarrow Probability of exposure, given disease status

But we want...

Probability of disease, given <u>exposure</u> status

...to get Risk Ratio

However, the **risk ratio** of disease given exposure is **not estimable from these data alone**, since the number of diseased and disease-free subjects is fixed.

$$P(E \mid D) \neq P(D \mid E)$$

Odds of exposure (conditional on having the disease)

$$\frac{P(E \mid D)}{P(E \mid \overline{D})} \neq \frac{P(D \mid E)}{P(D \mid \overline{E})}$$

$$\frac{P(E \mid D)/(1 - P(E \mid D))}{P(E \mid \overline{D})/(1 - P(E \mid \overline{D}))} = \frac{P(D \mid E)/(1 - P(D \mid E))}{P(D \mid \overline{E})/(1 - P(D \mid \overline{E}))}$$

Disease odds ratio

Odds Ratio

Instead of the risk ratio we can estimate the **exposure odds ratio** which (surprisingly) is equivalent to the **disease odds ratio**:

Odds of exposure (conditional on having the disease)

(population) risk ratio.

$$\frac{P(E \mid D)/(1 - P(E \mid D))}{P(E \mid \overline{D})/(1 - P(E \mid \overline{D}))} = \frac{P(D \mid E)/(1 - P(D \mid E))}{P(D \mid \overline{E})/(1 - P(D \mid \overline{E}))}$$

exposure odds ratio

disease odds ratio

$$1 - P(D \mid E) \approx 1$$
 $1 - P(D \mid \overline{E}) \approx 1$

And for rare diseases $\frac{1-P(D\,|\,E)\approx 1}{1-P(D\,|\,E)\approx 1}$ so the disease odds ratio approximates the risk ratio:

 $rac{P(D\,|\,E)/(1-P(D\,|\,E))}{P(D\,|\,\overline{E})/(1-P(D\,|\,\overline{E}))}pprox rac{P(D\,|\,E)}{P(D\,|\,\overline{E})}$ For rare diseases (i.e., prevalence <5%), the (sample) odds ratio ightharpoonup discussion in the discussion in th estimates the

erisk ratio

Odds Ratio

Disease Status

D Not D TOTAL

		D	
Status	E	a	
St	Not E	С	

E a b $(a+b)=n_1$ E c d $(c+d)=n_2$

T

TOTAL $(\underline{a+c})=m_1$ $(\underline{b+d})=m_2$

Like the risk ratio, the odds ratio ranges from $[0, \infty]$.

$$OR = rac{p_1(1-p_1)}{p_2(1-p_2)}$$

Population odds ratio

$$\widehat{OR} = \frac{a \cdot d}{b \cdot c}$$

Exposure

Sample odds ratio

The **log odds ratio** has $(-\infty, +\infty)$ as its range and the Normal distribution approximates its sampling distribution. Confidence intervals are based upon:

$$\ln\left(\widehat{OR}\right) \sim N\left[\ln(OR), \frac{1}{n_1p_1} + \frac{1}{n_1(1-p_1)} + \frac{1}{n_2p_2} + \frac{1}{n_2(1-p_2)}\right]_{\text{IVERSITY of WASHINGTON}}^{\text{PROBABILITY AND}}$$

The **95% CI** for the log odds ratio is given by:

$$\ln\!\left(rac{ad}{bc}
ight)\pm1.96\sqrt{rac{1}{a}+rac{1}{b}+rac{1}{c}+rac{1}{d}}$$

Exponentiate the endpoints to get the CI for the odds ratio on its original scale.

Epidemiological Applications: Sex-Linked Traits

Sex

Suppose we collect a random sample of Drosophila fruit flies and cross-classify by eye color and sex.

Question 1 Is eye color associated with sex?

Question 2 If eye color is associated with sex, then what is the magnitude of the effect?

_		Male	Female	TOTAL
Color	Red	165	300	465
Eye	White	176	81	257
	TOTAL	341	381	722

Session 7

PROBABILITY AND
INFERENTIAL STATISTICS
UNIVERSITY of WASHINGTON

Epidemiological Applications: Sex-Linked Traits

Sex

This is a **cross-sectional study** since only the total for the entire table is fixed in advance. The row totals or column totals are not fixed in advance.

- Sample from the entire population, not by disease status or exposure status
- Use chi-squared test to test for association
- Use RR or OR to summarize association
- Cases of disease are **prevalent** cases (compared to incident cases in a prospective study).

_		Male	Female	TOTAL
Color	Red	165	300	465
Eye	White	176	81	257
	TOTAL	341	381	722

Session 7
PROBABILITY AND
INFERENTIAL STATISTICS
JNIVERSITY of WASHINGTON

