Contingency Tables

Session 7

Module 1 Probability \& Statistical Inference

The Summer Institutes
DEPARTMENT OF BIOSTATISTICS SCHOOL OF PUBLIC HEALTH
university of Washing ion

Overview

1. Defining Categorical Variables

- Contingency (two-way) tables
- χ^{2} Tests

2. Comparing Two Categorical Variables
3. 2×2 Tables

- Sampling designs
- Testing for association
- Estimation of effects

Factor

A factor is a type of variable that can take one of a small number of possible values. The possible values are called the levels of the factor. Also known as a categorical variable or discrete variable.

Examples

Gender with three levels:

$$
1 \text { = Male, } 2 \text { = Female, } 3 \text { = Non-binary }
$$

Disease status with three levels:

$$
1 \text { = Progression, } 2 \text { = Stable, } 3 \text { = Improved }
$$

Age with four levels:
$1=20-29 \mathrm{yrs}, 2=30-39 \mathrm{yrs}, 3=40-49 \mathrm{yrs}, 4=50-59 \mathrm{yrs}$

Factors and Contingency Tables

One-way tables summarize the proportion of observations within each level of one factor.

Contingency tables, aka two-way tables, summarize the proportion of observations within each combination of levels from two factors.

Also called an $\mathbf{R} \mathbf{x} \mathbf{C}$ table
Often used to assess whether two factors are related
Can test whether the factors are related using a χ^{2} test
Examining two-way tables of Factor A vs Factor B at each level of a third Factor C shows how the A/B association may be explained or modified by C (Session 8).

Categorical Data: R x C table齐 Doll and Hill (1952)

Retrospective assessment of smoking frequency

The table displays the daily average number of cigarettes for lung cancer patients and control patients.
! Note the equal numbers of cases and controls.

	None	$\stackrel{<5}{\text { cigarettes }}$	$5-14$ cigarettes	$\begin{gathered} \text { 15-24 } \\ \text { cigarettes } \end{gathered}$	$\begin{gathered} \text { 25-49 } \\ \text { cigarettes } \end{gathered}$	50+ cigarettes	Observed data	
Cases (Cancer)	$\begin{gathered} 7 \\ 0.5 \% \end{gathered}$	$\begin{gathered} 55 \\ 4.1 \% \end{gathered}$	$\begin{gathered} 489 \\ 36.0 \% \end{gathered}$	$\begin{gathered} 475 \\ 35.0 \% \end{gathered}$	$\begin{gathered} 293 \\ 21.6 \% \end{gathered}$	$\begin{gathered} 38 \\ 2.8 \% \end{gathered}$	1357	
Controls (No Cancer)	$\begin{gathered} 61 \\ 4.5 \% \end{gathered}$	$\begin{gathered} 129 \\ 9.5 \% \end{gathered}$	$\begin{gathered} 570 \\ 42.0 \% \end{gathered}$	$\begin{gathered} 431 \\ 31.8 \% \end{gathered}$	$\begin{gathered} 154 \\ 11.3 \% \end{gathered}$	$\begin{gathered} 12 \\ 0.9 \% \end{gathered}$	1357	
	68	184	1059	906	447	50	2714	

Categorical Data: χ^{2} test Doll and Hill (1952)

Scientific Question Is the distribution of smoking frequencies for those with cancer different from the distribution for those without cancer?

Restate scientific question as statistical hypotheses:
H_{0} : distribution of smoking same in both groups
H_{A} : distribution of smoking not the same
What does H_{0} predict we would observe if all we knew were the marginal totals?

Categorical Data: χ^{2} test Doll and Hill (1952)

Scientific Question

 Is the distribution of smoking frequencies for those with cancer different from the distribution for those without cancer?Each group has the same proportion in each cell as the overall marginal proportion. The "equalness" is just because the sample sizes were the same.

We can test H_{0} by summarizing the difference between the observed and expected cell counts

	None	$\begin{gathered} <5 \\ \text { cigarettes } \end{gathered}$	$\begin{gathered} 5-14 \\ \text { cigarettes } \end{gathered}$	$\begin{gathered} 15-24 \\ \text { cigarettes } \end{gathered}$	$\begin{aligned} & \text { 25-49 } \\ & \text { cigarettes } \end{aligned}$	50+ cigarettes	Expected values	\int session 7
Cases (Cancer)	34	92	529.5	453	223.5	25	1357	OBABILITY AND TIAL STATISTICS f WASHINGTON
Controls (No Cancer)	34	92	529.5	453	223.5	25	1357	
	68	184	1059	906	447	50	2714	

Categorical Data

χ^{2} Test Statistic

Summing the differences between the observed and expected counts provides an overall assessment of H_{0}.

$$
X^{2}=\sum_{i=1}^{R} \sum_{j=1}^{C} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}} \sim \chi^{2}((R-1)(C-1))
$$

X^{2} is known as the Pearson's Chi-square Statistic

- Large values of X^{2} suggests the data are not consistent with H_{0}
- Small values of X^{2} suggests the data are consistent with H_{0}
- The χ^{2} distribution approximates the distribution of X^{2} when H_{0} true
- Computer intensive "exact" tests also possible

Categorical Data: χ^{2} test

```
Doll and Hill (1952)
```

$$
X^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}=? \quad \frac{(1-\mathrm{J})}{34}=21.4,
$$

The contributions to the X^{2} statistic are...

	None	$\stackrel{<5}{\text { cigarettes }}$	$\underset{\text { cigarettes }}{5-14}$	$\underset{\text { cigarettes }}{\text { ci5-24 }}$	$\xrightarrow[\text { cigarettes }]{25-49}$	$\stackrel{50+}{\text { cigarettes }}$
$\begin{array}{r} \text { Cases } \\ \text { (Cancer) } \end{array}$	$\frac{(7-34)^{2}}{34}=21.4$	$\frac{(55-92)^{2}}{92}=14.9$	3.1	1.1	21.6	6.8
Controls (No Cancer)	$\frac{(61-34)^{2}}{34}=21.4$	14.9	3.1	1.1	21.6	6.8

Categorical Data: χ^{2} test
 Doll and Hill (1952)

$X^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}=137.8$
Degrees of freedom $=(r-1)(c-1)$
X^{2} distributions vary by their degrees of freedom

Is this significant?

H_{0} : distribution of smoking same in both groups H_{A} : distribution of smoking not the same

Sufficiently large values of X^{2} will reject H_{0}.

$$
\begin{aligned}
& \text { Df }=(r-1)(c-1) \\
& D f=(2-1)(6-1) \\
& D f=5
\end{aligned}
$$

 INFERENTIAL STATISTICS UNIVERSITY of WASHINGTON
pchisq(137.8, df = 5, lower.tail=FALSE)
p-value $=P\left(X^{2}>137.8 \mid H_{0}\right)<0.0001$

Categorical Data: χ^{2} Test

Summary: conducting χ^{2} a test

1. Compute the expected cell counts under null hypothesis of no association:

$$
E_{i j}=N_{i} M_{j} / T
$$

2. Compute the chi-square statistic:

$$
X^{2}=\sum_{i=1}^{R} \sum_{j=1}^{C} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}
$$

3. Compare X^{2} to $\chi^{2}{ }_{d f}$, where $d f=(R-1) \times(C-1)$.
4. Interpret p-value.

Factor Levels

One Two Three ... C TOTAL

2×2 Tables

Epidemiological Applications

Disease Status

We can write the chi-square statistic for a 2×2 table as:

$$
X^{2}=\frac{N(a d-b c)^{2}}{n_{1} \cdot n_{2} \cdot m_{1} \cdot m_{2}}
$$

	D	Not D	TOTAL
E	a	b	(a+b) n_{1}
Not E	c	d	$(\mathrm{c}+\mathrm{d})=\mathrm{n}_{2}$
TOTAL	c) $=\mathrm{m}_{1}$	$(\mathrm{b}+\mathrm{d})=\mathrm{m}_{2}$	T

Then, we can compare our observed X^{2} statistic to a χ^{2} distribution with $\mathrm{Df}=1$.

2×2 Tables

宏 Epidemiological Applications: Pauling (1971)

Disease Status
Patients are randomized to either receive Vitamin C or placebo. Patients are followedup to ascertain the development of a cold.

Question 1 Is treatment with Vitamin C associated with a reduced probability of getting a cold?

Question 2 If Vitamin C is associated with reducing colds, then what is the magnitude of the effect?

2×2 Tables

宏 Epidemiological Applications: Pauling (1971)

Scientific Q1

Is treatment with Vitamin C associated with a reduced probability of getting a cold?

Restate scientific question as statistical hypotheses:
H_{0} : probability of disease does not depend on treatment
H_{A} : probability of disease does depend on treatment

Disease Status

	Cold no Cold			TOTAL139
	Vit C	$\begin{gathered} 17 \\ (12 \%) \end{gathered}$	$\begin{gathered} 122 \\ (88 \%) \end{gathered}$	
	Placebo	$\begin{gathered} 31 \\ (22 \%) \end{gathered}$	$\begin{gathered} 109 \\ (78 \%) \end{gathered}$	140
	TOTAL	48	231	279

Epidemiological Applications: Risk Ratio

Scientific Q2

If Vitamin C is associated with reducing colds, what is the magnitude of the effect?

In the Pauling (1971) example, they fixed the number of E and $n o t E$, then evaluated the disease status after a fixed period of time (same for everyone).
This is a prospective cohort study.
Given this design we can estimate the risk ratio (RR) as: $R R=\frac{P(D \mid E)}{P(D \mid \bar{E})}=\frac{p_{1}}{p_{2}}$ The range of $R R$ is $[0, \infty)$. The range of $\ln (R R)$ is $(-\infty,+\infty)$.

$$
\bar{E}=E^{C}
$$

Using the natural log of $R R$, we can use a Normal approximation to calculate a confidence interval!

$$
\begin{aligned}
& \ln (\widehat{R R})=\ln \left(\frac{\widehat{p}_{1}}{\widehat{p}_{2}}\right)=\ln \left(\frac{a / n_{1}}{c / n_{2}}\right) \\
& \ln (\widehat{R R}) \sim N\left[\ln \left(\frac{\widehat{p}_{1}}{\widehat{p}_{2}}\right), \frac{1-p_{1}}{p_{1} n_{1}}+\frac{1-p_{2}}{p_{2} n_{2}}\right]
\end{aligned}
$$

To calculate $\mathbf{9 5 \%} \mathbf{C I}$, determine:

$$
\ln (\widehat{R R}) \pm 1.96 \sqrt{\frac{b}{a(a+b)}+\frac{d}{c(c+d)}}
$$

Then exponentiate the endpoints.

Paws

Work through questions 1-2

2×2 Tables

济 Epidemiological Applications: Keller (AJPH, 1965)

Disease Status

Patients with (cases) and without (controls) oral cancer were surveyed regarding their smoking frequency. This table collapses over the smoking frequency categories.

	Smoker	Case	Control	TOTAL
		484	385	869
	Non-Smoker	27	109	117
	TOTAL	511	475	986

Question 1 Is oral cancer associated with smoking?

Question 2 If smoking is associated with oral cancer, then what is the magnitude of the risk?

Keller (AJPH, 1965)

Since we fixed the number of cases and controls then ascertained exposure status, this study design is a case-control study.

Based on this we are able to directly estimate:

$$
P(E \mid D) \text { and } P(E \mid \bar{D}) \longleftarrow \begin{aligned}
& \text { Probability of exposure, } \\
& \text { given disease status }
\end{aligned}
$$

But we want...
Probability of disease,
given exposure status
...to get Risk Ratio

However, the risk ratio of disease given exposure is not estimable from these data alone, since the number of diseased and disease-free subjects is fixed.

$$
P(E \mid D) \neq P(D \mid E)
$$

Odds of exposure (conditional on having the disease)

$$
\frac{P(E \mid D)}{P(E \mid \bar{D})} \neq \frac{P(D \mid E)}{P(D \mid \bar{E})}
$$

$$
\frac{P(E \mid D) /(1-P(E \mid D))}{P(E \mid \bar{D}) /(1-P(E \mid \bar{D}))}=\frac{P(D \mid E) /(1-P(D \mid E))}{P(D \mid \bar{E}) /(1-P(D \mid \bar{E}))}
$$

Odds Ratio

Instead of the risk ratio we can estimate the exposure odds ratio which (surprisingly) is equivalent to the disease odds ratio:

$$
\begin{array}{r}
\begin{array}{r}
\begin{array}{l}
\text { Odds of exposure } \\
\text { (conditional on having } \\
\text { the disease) }
\end{array}
\end{array} \rightarrow \frac{P(E \mid D) /(1-P(E \mid D))}{P(E \mid \bar{D}) /(1-P(E \mid \bar{D}))}=\frac{P(D \mid E) /(1-P(D \mid E))}{P(D \mid \bar{E}) /(1-P(D \mid \bar{E}))} \\
\text { (2) exposure odds ratio }
\end{array}
$$

And for rare diseases $\begin{aligned} & 1-P(D \mid E) \approx 1 \\ & 1-P(D \mid \bar{E}) \approx 1\end{aligned}$ so the disease odds ratio approximates the risk ratio:

$$
1-P(D \mid \bar{E}) \approx 1
$$

For rare diseases

 (i.e., prevalence <5\%), the (sample) odds ratio estimates the (population) risk ratio.$$
\begin{array}{ll}
\frac{P(D \mid E) /(1-P(D \mid E))}{P(D \mid \bar{E}) /(1-P(D \mid \bar{E}))} & \approx \frac{P(D \mid E)}{P(D \mid \bar{E})} \\
: \text { disease odds ratio } & \text { risk ratio }
\end{array}
$$

INFERENTIAL STATISTICS
IVERSITY of WASHINGTON

(a)d

Like the risk ratio, the odds ratio ranges from $[0, \infty]$.
TOTAL $\quad(a+c)=m_{1} \quad(b+d)=m_{2} \quad$ T

$$
O R=\frac{p_{1}\left(1-p_{1}\right)}{p_{2}\left(1-p_{2}\right)}
$$

Population odds ratio

$$
\widehat{O R}=\frac{a \cdot d}{b \cdot c}
$$

Sample odds ratio

The log odds ratio has $(-\infty,+\infty)$ as its range and the Normal distribution approximates its sampling distribution. Confidence intervals are based upon:

$$
\ln (\widehat{O R}) \sim N\left[\ln (O R), \frac{1}{n_{1} p_{1}}+\frac{1}{n_{1}\left(1-p_{1}\right)}+\frac{1}{n_{2} p_{2}}+\frac{1}{n_{2}\left(1-p_{2}\right)}\right]
$$

PROBABILITY AND

The $\mathbf{9 5 \%} \mathbf{C l}$ for the log odds ratio is given by:

$$
\ln \left(\frac{a d}{b c}\right) \pm 1.96 \sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}}
$$

Exponentiate the endpoints to get the CI for the odds ratio on its original scale.

2×2 Tables

Epidemiological Applications: Sex-Linked Traits

Sex

Suppose we collect a random sample of Drosophila fruit flies and cross-classify by eye color and sex.

Question 1 Is eye color associated with sex?

Question 2 If eye color is associated with sex, then what is the magnitude of the effect?

	Male	Female	TOTAL
Red	165	300	465
White	176	81	257
TOTAL	341	381	722

2×2 Tables

Epidemiological Applications: Sex-Linked Traits
Sex

This is a cross-sectional study since only the total for the entire table is fixed in advance. The row totals or column totals are not fixed in advance.

- Sample from the entire population, not by disease status or exposure status
- Use chi-squared test to test for association
- Use RR or OR to summarize association
- Cases of disease are prevalent cases (compared to incident cases in a prospective study).

	Male	Female	TOTAL
Red	165	300	465
White	176	81	257
TOTAL	341	381	722

