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Infectious disease caused by Variola virus
Transmission via inhalation of airborne virus
Symptoms include fever and severe rash
Overall case fatality around 30%

Control via “ring-vaccination” (= isolation and
local vaccination)

Declared eradicated in 1980 by WHO
Concerns over use as bioterrorism weapon



Smallpox outbreak

Abakiliki: town in South-Eastern Nigeria

Mass smallpox and measles immunization
(Feb 1967)

Smallpox outbreak April — June 1967

32 cases, almost all members of FTC (Faith
Tabernacle Church) who had refused
vaccination

Outbreak described in WHO report (Thompson
and Foege, 1968)



Smallpox data
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Smallpox data

Also know, for each of 9 compounds*
Number of FTC and non-FTC individuals

Vaccination status of individuals (with a few
exceptions)

* “compound” = housing built around a courtyard,
houses several families
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Smallpox data

Cases by compound, weeks

4
3
2
1 I
A i ]
2 3 4 5 6 7 8 9 10 11 12 13

1

m Compound 1 mOther compounds



" J
Smallpox model

SEIR-type model

Each stage* assumed to have a known
distribution (gamma with known parameters)

Susceptible Latent Fever Rash Recovered

* 1.e. Latent, Fever and Rash periods DATA



Smallpox model

- Control measures introduced at time {o
. After this time, cases isolated swiftly

Susceptible Latent Fever Rash Recovered

* |.e. Latent, Fever and Rash periods
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Smallpox model
Model also has population structure:

9 compounds (251 people)
located inside town (32,000 people)



Smallpox model

m Three infection rate* parameters:

Wit
Wit
Wit

nin-compound, same faith A,
nin FTC A

nin population A,

m Also: less infectious in Fever period (factor b)

m *same meaning as B in SIR model



Smallpox model

m All-or-nothing vaccine model.
P(vaccine works) = v
m for each vaccinated individual, independently




Inference problem

m Model has 6 parameters (A,, As, Ay, b, 1o, V)

m Data consist of population structure, vaccination
status, and rash times for each case

m As usual, the likelihood is Iintractable

m Proceed using data augmentation (as for SIR
model in lectures)



Inference problem

Augment with event times for each case:

.

Susceptible Latent Fever| Rash Recovered

Data = time of rash onset



Inference problem

m Augmented likelihood is similar to SIR model:
L = infection process part
X latent/fever/rash/isolation part
X vaccination status part

s MCMC algorithm updates the model parameters
and the unknown event times



Results

Scatterplot matrix for the model parameters
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Results

Posterior Density for Ry
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Results

Estimated Transmission Pathway

Who infects
whom
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Results

Infection times



Model adequacy

m \We use forward simulation to check the
model fit

m The model parameters used in the
simulation come from the posterior
distribution, I.e. from the MCMC output



Model adequacy

Observed final size
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Model adequacy

Time course of
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and whichyield awider range of results than previous analyses. We also carry out model assessment using
simulation-based methods. Our findings suggest that the outbreak was largely driven by the interaction
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Stochastic epidemic model the end of the epidemic. We also obtain quantitative estimates of key quantities including reproduction
Abakaliki numbers.
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MRSA: Data

m The data are taken from two Intensive
Care Unit wards in a Thal hospital over a
3-month period.

m The pathogen of interest is Methiclillin
Resistant Staphylococcus Aureus
(MRSA).

m Data tell us about MRSA colonisation
status of patients.



MRSA: Data

m Patients underwent screening tests for
Methicillin Resistant Staphylococcus
Aureus (MRSA).

m For some patients, MRSA isolates were
seguenced.



MRSA: Data

Individual-level data for each patient:

Admission and discharge time

Dates and outcomes of any screening
tests

Dally prescribing data (antibiotics etc.)
Some sequenced isolates
Other clinical information
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MRSA: Data

Ward type Pediatric Surgery
# patient episodes 170 114

# patients 169 08

# episodes with = 1 +ve swab 20 29

Total # +ve swabs 51 89

Total # +ve swabs sequenced 43 40

Mean stay (days) 4.6 7.8



MRSA: Data

Population
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MRSA: Model

Model for indirect transmission on ward:

m Each patient independently has probability
p of being colonised on admission

m Positive patients are identified by diagnhostic
test with probability z (sensitivity)
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MRSA: Model

Model for indirect transmission on ward:

m Simple S| model for transmission whilst on
the ward

m Here, | = “Colonised”, meaning has
detectable levels of the pathogen

m No recovery in this model
m Keep track of who-colonises-whom



MRSA: Model

Model for genetic distances:

m For each newly-colonised patient we
sample a genetic distance to all other
previously-colonised patients

m The distribution of each sample depends on
the relationship between patients in the
transmission tree



MRSA: Model

— Transmission link
Q Previously colonised patient

‘ Newly colonised patient
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MRSA: Model

d(7,1)

—"

d(7,3)

Generate genetic distances from e
patient 7 to each other patient

Genetic distances are drawn
from distributions that depend on
transmission relationship



MRSA: Model

d(7,1)

@@ N

For example,
d(7,1) ~ Poisson(B)

(7 and 1 not directly connected)
d(7,3) ~ Poisson (d(3,5)+d(5,6)+d(6,7))

(7 and 3 connected in a transmission chain)



MRSA: Model
Typically, genetic distance d(i,J)) depends on

« Whether 1 and | are directly connected
« If connected, number of links In chain
« If connected, distances along chain



MRSA: Inference problem

« Once again, likelihood is intractable

« Data augmentation: include the colonisation
times and also who-colonises-whom

« This leads to a tractable augmented
likelihood
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MRSA: Inference problem

« For MCMC algorithm, the challenging part
IS moving around the space of possible
transmission trees, I.e. updating who-
colonises-whom



MRSA: Results

ICU 2: Inferred transmission network
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MRSA: Model adequacy

Can look at epidemiological aspects
such as number of patients with a
positive swab

Blue = data
Red = mean of simulations
Green = 95% probability intervals

Mumiber of patents with a poaiive swab




MRSA: Model adequacy

Can look at genetic aspects, e.g. are
predicted genetic distances close to
those observed?

Blue = data within 95% prediction
Pink = data outside 95% prediction
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RECONSTRUCTING TRANMSMISSION TREES FOR
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SAMPLED GENETIC DATA'
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Whole genome sequencing of pathogens from multiple hosts in an epi-
demic offers the potential o investigate who infected whom with unparal-
leled resolution, potentially vielding imporant insights into disease dynam-
ics and the impact of control measures. We considered disease outbreaks in
a sefting with dense genomic sampling. and formulated stochastic epidemic
models o investigate person-to-person transmission. based on observed ge-
nomic and epidemiclogical data. We constructed models in which the genatic
distance between sampled genotypes depends on the epidemiological rela-
tionship between the hosts. A data-angmented Markow chain Monte Carlo al-
gorithm was used to sample over the transmission trees, providing a posterior
probability for any given transmission route. We investigated the predictive
performance of our methodology wsing simulated data, demonstrating high
sensitivity and specificity. particularly for rapidly mutating pathogens with
low transmissibility. We then analyzed data collected during an outbreak of
methicillin-resistant Staphwococcus gurews in a hozpital. identifying proba-
ble transmizsion routes and estimating epidemiological parameters. Cur ap-
proach overcomes limitations of previous methods, providing a framework
with the Aexibility to allow for unobserved infection times, multiple indepen-



Concluding comments

MCMC methods covered in module
extended to more complex models

he approach provides plenty of useful
iInformation, not just estimates of model
parameters




