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Hardy-Weinberg Law

For a random mating population, expect that genotype frequen-

cies are products of allele frequencies.

For a locus with two alleles, A, a:

PAA = (pA)2

PAa = 2pApa

Paa = (pa)
2

These are also the results of setting the inbreeding coefficient f

to zero.

For a locus with several alleles Ai:

PAiAi
= (pAi

)2

PAiAj
= 2pAi

pAj
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Why would HWE not hold?

• Natural selection.

• LD with trait in trait-only sample.

• Population Structure/Admixture.

• Problems with data.

• etc.
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Problems with Data

A SNP with genotype counts 40,0,60 for AA,Aa, aa is likely to

cause HWE rejection. What about 4,0,6?

Typing systems may report heterozygotes as homozygotes, as

was the likely explanation for

“To justify applying the classical formulas of population genetics

in the Castro case, the Hispanic population must be in Hardy-

Weinberg equilibrium. In fact, Lifecodes’ own data show that it

is not. ... Applying this test to the Hispanic sample, one finds

spectacular deviations from Hardy-Weinberg equilibrium: 17 per

cent observed homozygotes at D2S44 and 13 per cent observed

homozygotes at D17S79 compared with only 4 per cent expected

at each locus, indicating, perhaps not surprisingly, the presence

of genetically distinct subgroups within the Hispanic sample.”

Lander ES. 1989. DNA fingerprinting on trial. Nature 339:501-

505.
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Population Structure

If a population consists of a number of subpopulations, each in

HWE but with different allele frequencies, there will be a depar-

ture from HWE at the population level. This is the Wahlund

effect.

Suppose there are two equal-sized subpopulations, each in HWE

but with different allele frequencies, then

Subpopn 1 Subpopn 2 Total Popn

pA 0.6 0.4 0.5
pa 0.4 0.6 0.5

PAA 0.36 0.16 0.26 > (0.5)2

PAa 0.48 0.48 0.48 < 2(0.5)(0.5)

Paa 0.16 0.36 0.26 > (0.5)2
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Population Admixture: Departures from HWE

A population might represent the recent admixture of two parental
populations. With the same two populations as before but now

with 1/4 of marriages within population 1, 1/2 of marriages

between populations 1 and 2, and 1/4 of marriages within pop-

ulation 2. If children with one or two parents in population 1 are

considered as belonging to population 1, there is an excess of

heterozygosity in the offspring population.

If the proportions of marriages within populations 1 and 2 are

both 25% and the proportion between populations 1 and 2 is

50%, the next generation has

Population 1 Population 2

PAA 0.09 + 0.12 = 0.21 0.04
PAa 0.12 + 0.26 = 0.38 0.12
Paa 0.04 + 0.12 = 0.16 0.09

0.75 0.25

Population 2 is in HWE, but Population 1 has 51% heterozygotes

instead of the expected 49.8%.
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Inference about HWE

If f̂ is the MLE of the within-population inbreeding coefficient

f , it has a normal distribution for large sample sizes n. It can be

transformed into a standard normal variable z by

z =
f̂ − f

√

Var(f̂)

If the true value f is zero, then Var(f̂) = 1/n, and X2 = z2 has

a chi-square distribution with one degree of freedom:

X2 =







f̂ − 0
√

1/n







2

= nf̂2 ∼ χ2(1)

The HWE hypothesis is rejected at the 5% significance level if

X2 > 3.84.
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Aside: Inference about HWE

Departures from HWE can be described by the within-population

inbreeding coefficient f . This has an MLE that can be written

as

f̂ = 1 −
P̃AB

2p̃Ap̃B
=

4nAAnBB − n2
AB

(2nAA + nAB)(2nBB + nAB)

and we can use “Delta method” to find

E(f̂) = f

Var(f̂) ≈
1

2npApB
(1 − f)[2pApB(1 − f)(1 − 2f) + f(2 − f)]

If f̂ is assumed to be normally distributed then, (f̂−f)/
√

Var(f̂) ∼

N(0,1). When H0 is true, the square of this quantity has a chi-

square distribution.
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Aside: Inference about HWE

Since Var(f̂) = 1/n when f = 0:

X2 =







f̂ − f
√

Var(f̂)







2

=
f̂2

1/n

= nf̂2

is appropriate for testing H0 : f = 0. When H0 is true, X2 ∼ χ2
(1)

.

Reject HWE if X2 > 3.84.
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Significance level of HWE test
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The area under the chi-square curve to the right of X2 = 3.84

is the probability of rejecting HWE when HWE is true. This is

the significance level of the test.
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Goodness-of-fit Test

An alternative, but equivalent, test is the goodness-of-fit test.

Genotype Observed Expected (Obs.−Exp.)2

Exp.

AA nAA np̃2
A np̃2

af̂2

Aa nAa 2np̃Ap̃a 2np̃Ap̃af̂2

aa naa np̃2
a np̃2

Af̂2

The test statistic is

X2 =
∑ (Obs. − Exp)2

Exp.
= nf̂2
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Goodness-of-fit Test

Does a sample of 6 AA, 3 Aa, 1 aa support Hardy-Weinberg?

First need to estimate allele frequencies:

p̃A = P̃AA +
1

2
P̃Aa = 0.75

p̃a = P̃aa +
1

2
P̃Aa = 0.25

Then form “expected” counts:

nAA = n(p̃A)2 = 5.625

nAa = 2np̃Ap̃a = 3.750

naa = n(p̃a)
2 = 0.625
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Goodness-of-fit Test

Perform the chi-square test:

Genotype Observed Expected (Obs. − Exp.)2/Exp.

AA 6 5.625 0.025

Aa 3 3.750 0.150

aa 1 0.625 0.225

Total 10 10 0.400

Note that f̂ = 1 − 0.3/(2 × 0.75 × 0.25) = 0.2 and X2 = nf̂2.
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Sample size determination

Although Fisher’s exact test (below) is generally preferred for

small samples, the normal or chi-square test has the advantage

of simplifying power calculations.

When the Hardy-Weinberg hypothesis is not true, the test statis-

tic nf̂2 has a non-central chi-square distribution with one degree

of freedom (df) and non-centrality parameter λ = nf2. To reach

90% power with a 5% significance level, for example, it is nec-

essary that λ ≥ 10.51.

> pchisq(3.84,1,0)

[1] 0.9499565

> pchisq(3.84,1,10.51)

[1] 0.09986489
> qchisq(0.95,1,0)

[1] 3.841459

> qchisq(0.10,1,10.51)

[1] 3.843019
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Power of HWE test
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The area under the non-central chi-square curve to the right

of X2 = 3.84 is the probability of rejecting HWE when HWE

is false. This is the power of the test. In this plot, the non-

centrality parameter is λ = 10.5.
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Sample size determination

To achieve 90% power to reject HWE at the 5% significance

level when the true inbreeding coefficient is f , need sample size

n to make nf2 ≥ 10.51.

For f = 0.01, need n ≥ 10.51/(0.01)2 = 105,100.

For f = 0.05, need n ≥ 10.51/(0.05)2 = 4,204.

For f = 0.10, need n ≥ 10.51/(0.10)2 = 1,051.
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Significance Levels and p-values

The significance level α of a test is the probability of a false

rejection. It is specified by the user, and along with the null

hypothesis, it determines the rejection region. The specified, or

“nominal” value may not be achieved for an actual test.

Once the test has been conducted on a data set, the probability

of the observed test statistic, or a more extreme value, if the

null hypothesis is true is the p-value. The chi-square and normal

tests shown above give approximate p-values because they use a

continuous distribution for discrete data.

An alternative class of tests, “exact tests,” use a discrete distri-

bution for discrete data and provide accurate p-values. It may

be difficult to construct an exact test with a particular nominal

significance level.
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