
ALLELIC INDEPENDENCE



Testing for Allelic Independence

What is the probability a person has a particular DNA profile?

What is the probability a person has a particular profile if it has

already been seen once?

The first question is a little easier to think about, but difficult

to answer in practice: it is very unlikely that a profile will be

seen in any sample of profiles. Even for one STR locus with 10

alleles, there are 55 different genotypes and most of those will

not occur in a sample of a few hundred profiles.

For locus D3S1358 in the African American population, the FBI

frequency database shows that 31 of the 55 genotype counts are

zero. Estimating the population frequencies for these 31 types

as zero doesn’t seem sensible.
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D3S1358 Genotype Counts

Observed <12 12 13 14 15 16 17 18 19 >19

<12 0
12 0 0
13 0 0 0
14 0 0 0 2
15 0 0 1 19 15
16 1 1 1 15 39 19
17 0 0 2 10 26 24 9
18 1 0 1 2 6 10 3 0
19 0 0 0 1 0 0 1 0 0

>19 0 0 0 0 1 0 0 0 0 0

The number in row i and column j is the observed count of

indivuals with alleles i and j.
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Hardy-Weinberg Law

A solution to the problem is to assume that the Hardy-Weinberg

Law holds. For a random mating population, expect that geno-

type frequencies are products of allele frequencies.

For a locus with two alleles, A, a:

PAA = (pA)2

PAa = 2pApa

Paa = (pa)
2

For a locus with several alleles Ai:

PAiAi
= (pAi

)2

PAiAj
= 2pAi

pAj
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D3S1358 Hardy-Weinberg Calculations

The allele counts for D3S1358 in the African-American sample

are:

Total

Allele <12 12 13 14 15 16 17 18 19 >19
Count 2 1 5 51 122 129 84 23 2 1 420

If the Hardy-Weinberg Law holds, then we would expect to see

np̃2
13 = 210 × (5/420)2 = 0.03 individuals of type 13,13 in a

sample of 210 individuals.

Also, we would expect to see 2np̃13p̃14 = 420×(5/420)×(51/420) =

0.61 individuals of type 13,14 in a sample of 210 individuals.

Other values are shown on the next slide.
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D3S1358 Observed and Expected Counts

<12 12 13 14 15 16 17 18 19 >19
<12 Obs. 0

Exp. 0.0
12 Obs. 0 0

Exp. 0.0 0.0
13 Obs. 0 0 0

Exp. 0.0 0.0 0.0
14 Obs. 0 0 0 2

Exp. 0.2 0.1 0.6 3.1
15 Obs. 0 0 1 19 15

Exp. 0.6 0.3 1.5 14.8 17.7
16 Obs. 1 1 1 15 39 19

Exp. 0.6 0.3 1.5 15.7 37.5 19.8
17 Obs. 0 0 2 10 26 24 9

Exp. 0.4 0.2 1.0 10.2 24.4 25.8 8.4
18 Obs. 1 0 1 2 6 10 3 0

Exp. 0.1 0.1 0.3 2.8 6.7 7.1 4.6 0.6
19 Obs. 0 0 0 1 0 0 1 0 0

Exp. 0.0 0.0 0.0 0.2 0.6 0.6 0.4 0.1 0.0
>19 Obs. 0 0 0 0 1 0 0 0 0 0

Exp. 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0
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Testing for Hardy-Weinberg Equilibrium

A test of the Hardy-Weinberg Law will somehow decide if the

observed and expected numbers are sufficiently similar that we

can proceed as though the law can be used.

In one of the first applications of Hardy-Weinberg testing in a

US forensic setting:

“To justify applying the classical formulas of population

genetics in the Castro case the Hispanic population must

be in Hardy-Weinberg equilibrium. Applying this test

to the Hispanic sample, one finds spectacular deviations

from Hardy-Weinberg equilibrium.”

Lander ES. 1989. DNA fingerprinting on trial. Nature 339: 501-505.
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VNTR “Coalescence”

Forensic DNA profiling initially used minisatellites, or VNTR loci,

with large numbers of alleles. Heterozygotes would be scored as

homozygotes if the two alleles were so similar in length that they

coalesced into one band on an autoradiogram. Small alleles often

not detected at all, and this is a likely cause of Lander’s finding

(Devlin et al, Science 249:1416-1420.) .

Considerable debate in early 1990s on alternative “binning” strate-

gies for reducing the number of alleles (Science 253:1037-1041,

1991).

Typing has moved to microsatellites with fewer and more easily

distinguished alleles, but testing for Hardy-Weinberg equilibrium

continues. There are still reasons why the law may not hold.
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Population Structure can Cause Departure from

HWE

If a population consists of a number of subpopulations, each in

HWE but with different allele frequencies, there will be a depar-

ture from HWE at the population level. This is the Wahlund

effect.

Suppose there are two equal-sized subpopulations, each in HWE

but with different allele frequencies, then

Subpopn 1 Subpopn 2 Total Popn

pA 0.6 0.4 0.5
pa 0.4 0.6 0.5

PAA 0.36 0.16 0.26 > (0.5)2

PAa 0.48 0.48 0.48 < 2(0.5)(0.5)

Paa 0.16 0.36 0.26 > (0.5)2
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Population Structure

Effect of population structure taken into account with the “theta-

correction.” Matching probabilities allow for a variance in allele

frequencies among subpopulations.

Pr(AA|AA) =
[3θ + (1 − θ)pA][2θ + (1 − θ)pA]

(1 + θ)(1 + 2θ)

where pA is the average allele frequency over all subpopulations.

We will come back to this expression.
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Population Admixture

A population might represent the recent admixture of two parental

populations. With the same two populations as before but now

with 1/4 of marriages within population 1, 1/2 of marriages

between populations 1 and 2, and 1/4 of marriages within pop-

ulation 2. If children with one or two parents in population 1 are

considered as belonging to population 1, there is an excess of

heterozygosity in the offspring population.

If the proportions of marriages within populations 1 and 2 are

both 25% and the proportion between populations 1 and 2 is

50%, the next generation has

Population 1 Population 2

PAA 0.09 + 0.12 = 0.21 0.04
PAa 0.12 + 0.26 = 0.38 0.12
Paa 0.04 + 0.12 = 0.16 0.09

0.75 0.25
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Exact HWE Test

The preferred test for HWE is an “exact” one. The test uses

the conditional probability of the genotypic counts (nAA, nAa, naa)

given the allelic counts (nA, na) and given HWE:

Pr(nAA, nAa, naa|nA, na,HWE) =
n!

nAA!nAa!naa!

2nAanA!na!

(2n)!

Reject the Hardy-Weinberg hypothesis if this probability is un-

usually small.
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Exact HWE Test Example

Reject the HWE hypothesis if the probability of the genotypic

array, conditional on the allelic array, is among the smallest prob-

abilities for all the possible sets of genotypic counts for those

allele counts.

As an example, consider (nAA = 1, nAa = 0, naa = 49). The allele

counts are (nA = 2, na = 98) and there are only two possible

genotype arrays:

AA Aa aa Pr(nAA, nAa, naa|nA, na,HWE)

1 0 49 50!
1!0!49!

202!98!
100! = 1

99

0 2 48 50!
0!2!48!

222!98!
100! = 98

99
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Exact HWE Test

The probability of the data on the previous slide, conditional on

the allele frequencies and on HWE, is 1/99 = 0.01. This is less

than the conventional 5% significance level.

In general, the p-value is the (conditional) probability of the data

plus the probabilities of all the less-probable datasets. The prob-

abilities are all calculated assuming HWE is true.
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Permutation Test

For large sample sizes and many alleles per locus, there are too

many genotypic arrays for a complete enumeration and a deter-

mination of which are the least probable 5% arrays.

A large number of the possible arrays is generated by permuting

the alleles among genotypes, and calculating the proportion of

these permuted genotypic arrays that have a smaller conditional

probability than the original data. If this proportion is small, the

Hardy-Weinberg hypothesis is rejected.
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Permutation Test

Mark a set of five index cards to represent five genotypes:

Card 1: A A

Card 2: A A

Card 3: A A

Card 4: a a

Card 5: a a

Tear the cards in half to give a deck of 10 cards, each with

one allele. Shuffle the deck and deal into 5 pairs, to give five

genotypes.
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Permutation Test

The permuted set of genotypes fall into one of four types:

AA Aa aa Number of times

3 0 2

2 2 1

1 4 0
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Permutation Test

Check the following theoretical values for the proportions of each

of the three types, from the expression:

n!

nAA!nAa!naa!
×

2nAanA!na!

(2n)!

AA Aa aa Conditional Probability

3 0 2 1
21 = 0.048

2 2 1 12
21 = 0.571

1 4 0 8
21 = 0.381

These should match the proportions found by repeating shuf-

flings of the deck of 10 allele cards.
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Permutation Test for D3S1358

For an STR locus, where {ng} are the genotype counts and

n =
∑

g ng is the sample size, and {na} are the alleles counts with

2n =
∑

a na, the exact test statistic is

Pr({ng}|{na},HWE) =
n!2H ∏

a na!
∏

g ng!(2n)!

where H is the count of heterozygotes.

This probability for the African American genotypic counts at

D3S1358 is 0.6163 × 10−13, which is a very small number. But

it is not unusually small if HWE holds: a proportion 0.81 of 1000

permutations have an even smaller probability. We do not reject

the HWE hypothesis in this case.
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HWE in NIST Database

Recent work by Graffelman looked more closely at NIST database.

Graffelman J, Weir BS. FSI:Genetics 58:102680 (2022)

Work prompted in part by NGS sequencing of STR alleles that

revealed more alleles than length-based alleles. For TH01 there

are 10 SB alleles but 8 LB alleles:

SB allele LB allele

(AATG)5 5
(AATG)6 6
(AATG)7 7
(AATG)7-rs1051822965
(AATG)8 8
(AATG)9 9
ATTC(AATG)8
(AATG)6ATG(AATG)3 9.3
(AATG)10 10
(AATG)11 11
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Deleting Alleles

If a locus is in Hardy-Weinberg equilibrium, then deleting an

allele and all the genotypes with that allele preserves HWE. For

example, if the alleles are (A,B,C) and these are reduced to A,B:

Genotype Count Frequency Genotype Count Frequency

AA 36 0.36 AA 36 4/9
AB 36 0.36 AB 36 4/9
BB 9 0.09 BB 9 1/9
AC 12 0.12
BC 6 0.06
CC 1 0.01

Total 100 1.00 Total 81 1.00

A 120 0.60 A 108 2/3
B 60 0.30 B 54 1/3
C 20 0.10

Total 200 1.00 Total 162 1.00
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Combining Alleles

If a locus is in Hardy-Weinberg equilibrium, then combining two
or more alleles and all the genotypes with those allele preserves
HWE. For example, if the alleles are (A,B,C) and these are re-
duced to combine to D=A+C, B:

Genotype Count Frequency Genotype Count Frequency

AA 36 0.36 DD 36 49/100=0.49
AB 36 0.36 DB 36 42/100=0.42
BB 9 0.09 BB 9 9/100=0.09
AC 12 0.12 DD 12
BC 6 0.06 DB 6
CC 1 0.01 DD 1

Total 100 1.00 Total 100 1.00

A 120 0.60 D 140 0.7
B 60 0.30 B 60 0.3
C 20 0.10

Total 200 1.00 Total 200 1.00
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NIST Data
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NIST TH01

Each allele is removed in turn and HWE tested for the remain-

ing data. Data across all four goups was combined. Allele 9.3

appears to be the reason for HWE departures.

SB allele p-value LB allele p-value

None 0.0001 None 0.0003
(AATG)5 0.0001 5 0.0001
(AATG)6 0.0001 6 0.0000
(AATG)7 0.0036 7 0.0035
(AATG)7-rs1051822965 0.0004
(AATG)8 0.0001 8 0.0001
(AATG)9 0.0047 9 00030
ATTC(AATG)8 0.0001
(AATG)6ATG(AATG)3 0.2338 9.3 0.1958
(AATG)10 0.0001 10 0.0004
(AATG)11 0.0002 11 0.0002
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TH01 Allele Frequencies

Both alleles 9 and 9.3 differ over groups. Their combination

differs less, and combining those alleles makes TH01 conform to

HWE.
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Multiple Testing

When multiple tests are performed, each at significance level α,

a proportion α of the tests are expected to cause rejection even

if all the hypotheses are true.

Bonferroni correction makes the overall (experimentwise) signif-

icance level equal to α by adjusting the level for each individual

test to α′. If α is the probability that at least one of the L tests

causes rejection, it is also 1 minus the probability that none of

the tests causes rejection:

α = 1 − (1 − α′)L

≈ Lα′

provided the L tests are independent.

If L = 106, the “genome-wide significance level” is 5 × 10−8 in

order for α = 0.05.
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All NIST Loci

Testing for HWE at all 29 STR loci in all four groups gives

a multiple testing problem: the usual Bonferroni procedure of

requiring p-values to be less than 0.05/(29x4)=0.0004 is very

conservative and may obscure real HWE departures. Better to

test with combined data but conducting permutations separately

within each group still shows all 29 loci to conform to HWE

overall.

Locus SE33 for Hispanics and African Americans, and locus

D22S1045 for Asians, do show apparent departure from HWE

because of unexpected homozygotes for rare alleles. This sug-

gests some of these homozygotes may actually be heterozy-

gotes. There have been reports of heterozygote imbalance for

D22S1045.

Probability Slide 27



Linkage Disequilibrium

This term is generally reserved for association between pairs of

alleles – one at each of two loci. In the present context, it

may simply mean some lack of independence of profile or match

probabilities at different loci.

Unlinked loci are expected to be almost independent.

However, if two profiles match at several loci this may be because

they are from the same, or related, people and so are likely to

match at additional loci.
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Linkage Disequilibrium

We have examined a set of 2849 20-locus profiles constructed by

merging the NIST 1036 set with 1813 FBI profiles, after checking

for duplicates. For each set of 2-,3- or 4 loci we compared the

proportion of matching pairs of the four million or so pairs of

multilocus profiles with the products of the corresponding one-

locus matching proportions. This figure shows that the product

over loci clearly does less well with more loci.

Two loci Three Loci Four Loci

Multi-locus match proportions (Y-axis) vs products of single-locus

proportions (X-axis).
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