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Predicted Values
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Identity by Descent

The degree of dependence between a pair of alleles was described

by correlation by Wright (1922) and by the probability of identity

by descent (ibd) by Malécot (1948).

Two alleles are ibd if they have both descended from the same

allele in a reference population. Distinct pairs of alleles in that

reference population are not ibd. Therefore ibd is a relative, not

an absolute, concept.

Wright S. 1922. Coefficients of inbreeding and relationship. Am Naturalist

56:330-338.

Malécot G. 1948. The Mathematics of Heredity. Translated by Yermanos

DM (1960). Freeman, San Francisco.
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Evolutionary Replication

The concept of ibd rests on descent from a reference population

to the present generation, and this process is subject to genetic

sampling variation. The probability of ibd for two alleles is an

average over all possible evolutionary replicates of the history of

those alleles from reference to present.

This means that the population sampled to provide observed

genotypes is itself just one realization of an evolutionary process.

The allele proportions p in that population are (evolutionary)

sample values of underlying probabilities π.
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Classical Model
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(Usually assumed infinite and in equilibrium)
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Kinship vs Inbreeding

The coancestry of individuals j, j′ in a population is the proba-

bility an allele from j is ibd to an allele from j′. Write this as

θjj′.

The inbreeding of individual j in a population is the probability

the two alleles in that individual are ibd. Write this as Fj.

Two alleles drawn from individual j are equally likely to be the

same allele or different alleles:

θjj =
1

2

(

1 + Fj
)
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Predicted Values: Path Counting

J
↙ ↘

... ...
↘ ↓ ↓ ↙

j’ j”
↘ ↙

j

If there are n individuals (including j′, j′′, J) in the path linking

the parents of j through J, then the inbreeding Fj of j, or the

coancestry θj′j′′ of j′ and j′′, is

Fj = θj′j′′ =

(

1

2

)n
(1 + FJ)

This expression is summed over all paths to each common an-

cestor J for individuals j′, j′′.
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Parent-Child

j
↘

j′

The common ancestor of parent j and child j′ is j. The path

linking j, j′ to their common ancestor is jj′ and this has n = 2

individuals. Therefore

θjj′ =

(

1

2

)2

=
1

4
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Full sibs
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The common ancestors of full sibs j and j′ are J and J ′. The

paths linking j, j′ to their common ancestors are jJj′ and jJ ′j′

and these each have n = 3 individuals. Therefore

θjj′ =

(

1

2

)3

+

(

1

2

)3

=
1

4
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Average Coancestries

The average over all pairs of distinct individuals, j 6= j′, of the

coancestries θjj′ in a set of individuals is written as θS. These

are probabilities for pairs of individuals.

When there is random mating and Hardy-Weinberg equilibrium in

a population, any pair of distinct alleles in a population (within

or between individuals) is equivalent and then the average ibd

probability for all these pairs is written as θW , where W means

within populations. These are probabilities for pairs of alleles.
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Predicted Values: Systems of Mating

With random mating (random union of gametes), the average in-

breeding coefficient in any generation is the same as the average

coancestry coefficient in that generation: it is sufficient to work

with only the average coancestry θW . With discrete generations

t, and constant population size of N individuals, two alleles in

generation (t+1) have probability 1/2N of descending from one

allele in generation t and probability (1 − 1/2N) of descending

from distinct alleles in that generation:

θW(t+ 1) =
1

2N
+

(

1 −
1

2N

)

θW (t)

If θW (0) = 0, this transition equation leads to

θW(t) = 1 −

(

2N − 1

2N

)t
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Within-population Inbreeding: FIS

For a population, the inbreeding coefficient for individual j, rela-

tive to the identity of pairs of alleles between individuals in that

population, is

fj =
Fj − θS

1 − θS

The average over individuals within this population is the population-

specific f , and it compares within-individual ibd to between-

individual ibd in the same population. It is the quantity being

addressed by Hardy-Weinberg testing in the population.
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Within-population Kinship

For a population, the coancestry of individuals j, j′ relative to

the coancestry for all pairs of individuals in that population is

ψjj′ =
θjj′ − θS

1 − θS
New

and these average zero over all pairs of individuals in the popu-

lation.

The average coancestry for individual j with all other individuals

in the set is

Ψj =
1

n− 1

n
∑

j′ 6=j

θjj′

and the average relative kinship is

ψj =
1

n− 1

n
∑

j′ 6=j

θjj′ − θS

1 − θS

InbreedRelated Slide 13



κ-coefficients

If individuals j and j′ are both not inbred, their two maternal

alleles may be ibd or not ibd, and their two paternal alleles may

be ibd or not.

The probabilities of two individuals having 0, 1 or 2 pairs of ibd

alleles are generally written as κ0, κ1, κ2 and the coancestry for

pairs of non-inbred individuals is θ = 1
2κ2 + 1

4κ1.
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Parent-Child

j’(ab)

j(cd)

@
@

@
@

@
@

@
@

@@R

�
�

�
�

�
�

�
�

��	

c d

Pr(c ≡ a) = 0.5, Pr(c ≡ b) = 0.5, κ1 = 1

where “≡” means ibd.
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Full sibs
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a b c d

0.5 0.5
Probability b ≡ d b 6≡ d

0.5 a ≡ c 0.25 0.25
0.5 a 6≡ c 0.25 0.25

κ0 = 0.25, κ1 = 0.50, κ2 = 0.25
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Non-inbred Relatives

Relationship κ2 κ1 κ0 θ = 1
2κ2 + 1

4κ1

Identical twins 1 0 0 1
2

Full sibs 1
4

1
2

1
4

1
4

Parent-child 0 1 0 1
4

Double first cousins 1
16

3
8

9
16

1
8

Half sibs∗ 0 1
2

1
2

1
8

First cousins 0 1
4

3
4

1
16

Unrelated 0 0 1 0
∗ Also grandparent-grandchild and avuncular (e.g. uncle-niece).
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Predicted vs Actual Kinship
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For half-sibs, for example, the predicted kinship, is (1/2)3 = 1/8.

However, alleles b, c are equally likely to be ibd or not ibd (ibd if

they are both copies of e or f) so the actual coancestry is either

0.25 (with probability 1/2) or 0 (with probability 1/2). The

actual coancestry of j, j′ has an expected value (the average over

evolutionary replicates of j, j′) of 1/8 and a standard deviation of

1/8. Over the whole genome, the standard deviation is 0.013.

The estimate from observed marker genotypes will be of the

actual (“gold standard”) coancestry.

Hill and Weir, Genet Res 2011
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Numerical Variation in Actual Kinship

Figure 5 of Hill and Weir, 2011.

Hill and Weir, Genet Res 2011
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Empirical Variation in Actual Kinship

Figure 6 of Hill and Weir, 2011.

Hill and Weir, Genet Res 2011
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The Problem

We can predict various inbreeding and relatedness parameters if

we know the pedigree or the system of mating for the individuals.

The actual degree of inbreeding or relatedness can differ from

predicted value.

How can we use genetic profiles to estimate the actual related-

ness status?
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Key Result

Two alleles are ibd if they have descended from the same allele

in a reference population.

If θ is the probability two alleles are ibd, then the probability the

alleles are both of type A is

Pr(AA) = θπA + (1 − θ)π2
A

where πA is the probability an allele is of type A. Suggests a

translation of ibd state to an observable state.

Problem: the reference population is not observable and πA is

unknown.
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Inbreeding Coefficient

If the two alleles are those for individual j, the ibd probability is

Fj. From the previous slide

Pr(Aa)j = 2πA(1 − πA)(1 − Fj)

Define H̃j by H̃j = 1 for Aa and H̃j = 0 for AA or aa:

E(H̃j) = 2πA(1 − πA)(1 − Fj)

This relation suggests a moment estimator of Fj in terms of

sample allele frequencies p̃A:

F̂j = 1 −
H̃j

2p̃A(1 − p̃A)

This was given by Li and Horvitz (1953).
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Problem with Simple Estimator

The simple estimator is sometimes written as

1 − F̂j =
HObs

HExp

which uses observed and ‘expected’ heterozygosities.

The problem is with the expected value:

E[2p̃A(1 − p̃A)] = 2πA(1 − πA)

[

(1 − θS) +
1

2n
(1 + FS − 2θS)

]

where FS is the average inbreeding coefficient of n individuals

in the sample providing p̃A, and θS is the average coancestry

coefficient for all pairs of individuals.

InbreedRelated Slide 24



Aside: Derivation of Expected Heterozygosity

The sample frequency for allele A is the average of allelic indicators xjk for
allele k, k = 1,2 in individual j, j = 1,2, . . . n. The indicators equal 1 for alleles
of type A and 0 otherwise. They have expectations

E(xjk) = πA

E(xjkxj ′k′) =







πA j = j ′, k = k′

FjπA + (1 − Fj)π2
A j = j ′, k 6= k′

θjj ′πA + (1 − θjj ′)π2
A j 6= j ′

The sample allele frequency, its mean and variance follow from

p̃A =
1

2n

n
∑

j=1

2
∑

k=1

xjk

E(p̃A) = πA
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Aside: Derivation of Expected Heterozygosity

p̃2A =
1

4n2











n
∑

j=1

2
∑

k=1

x2
jk +

n
∑

j=1

2
∑

k=1

2
∑

k′=1
k 6=k′

xjkxjk′ +

n
∑

j=1

n
∑

j ′=1

j 6=j ′

2
∑

k=1

2
∑

k′=1

xjkxj ′k′











E(p̃2A) =
1

4n2



















2nπA + 2

n
∑

j=1

[FjπA + (1 − Fj)π
2
A] + 4

n
∑

j=1

n
∑

j ′=1

j 6=j ′

[θjj ′πA + (1 − θjj ′)π
2
A]



















=
1

4n2

{

2nπA + 2n[π2
A + πA(1 − πA)FS] + 4n(n − 1)[π2

A + πA(1 − πA)θS]
}

= π2
A + πA(1 − πA)

[

θS +
1

2n
(1 + FS − 2θS)

]

E[p̃A(1 − p̃A)] = πA(1 − πA)

[

(1 − θS) +
1

2n
(1 + FS − 2θS)

]
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Coancestry Coefficient

The ibd probability for a random allele from j and one from j′ is

the coancestry coefficient θjj′. If these two alleles are different,

estimation could proceed as for the inbreeding coefficient, but

with the same issue of having to estimate 2πA(1 − πA).

Define H̃jj′ for the proportion of pairs of alleles, one from j and

one from j′ that are different (between-individual “heterozygos-

ity”).

E(H̃jj′) = 2πA(1 − πA)(1 − θjj′)

Averaging over all pairs of individuals, H̃S =
∑

j 6=j′ H̃jj′:

E(H̃S) = 2πA(1 − πA)(1 − θS)
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Within-population Inbreeding and Coancestry

Estimates of inbreeding and coancestry relative to average coances-

try are

f̂j = 1 −
H̃j

H̃S
, ψ̂jj′ = 1 −

H̃jj′

H̃S

E(f̂j) =
Fj − θS

1 − θS
, E(ψ̂jj′) =

θjj′ − θS

1 − θS

E(1 − f̂j) =
1 − Fj

1 − θS
, E(1 − ψ̂jj′) =

1 − θjj′

1 − θS

The unknown π’s did not have to be estimated: sample allele fre-

quencies p̃A not used. In practice, numerators and denominators

are summed over loci.

Note that fj is individual-specific value of Wright’s FIS, and

ψjj′ is its analog for two individuals. With data from only one

population, FS = FIT and θS = FST are not estimable.
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Multiple SNPs

Single-SNP estimates for one individual would not be useful: the

f̂j values are 1 for homozygotes and negative for heterozygotes.

Averaging over individuals would reflect the proportion of SNPs

that are homozygous, but would still have high variances.

Averaging over L SNPs l, l = 1,2 . . . L, could be with an average

of ratios:

f̂j = 1 −
1

L

n
∑

l=1

H̃jl

2p̃l(1 − p̃l)

but this is unstable because the denominator can be zero or close

to zero.

Using the ratio of averages gives an unbiased estimator for a

large number of SNPs (Ochoa and Storey, 2021):

f̂j = 1 −

∑L
l=1 H̃jl

∑L
l=1[2p̃l(1 − p̃l)]
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Allele sharing Estimators

The inbreeding and kinship estimators f̂ and ψ̂ use the observed

identity in state of pairs of alleles:

f̂ASj = 1 −

∑

l H̃jl
∑

l H̃Sl

ψ̂ASjj′
= 1 −

∑

l H̃jj′l
∑

l H̃Sl

ψ̂ASj = 1 −

∑

l
1

n−1

∑n
j′=1,j′ 6=j H̃jj′l

∑

l H̃Sl
For a large number of SNPs, but for all sample sizes,

E(f̂ASj) = fj =
Fj − θS

1 − θS

E(ψ̂ASjj′
) = ψjj′ =

θjj′ − θS

1 − θS

E(ψ̂ASj) = ψj =
Ψj − θS

1 − θS
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Alternative Notation

Using “heterozygosity” for pairs of individuals is somewhat of

an abuse of terminology. Looking forward to the Population

Structure section suggests we work instead with allele sharing

measures: Aj for the two alleles carried by individual j, Ajj for

two alleles drawn randomly from individual j and Ajj′ for two

alleles, one drawn randomly from individual j and one from indi-

vidual j′. The proportions of allele pairs that are the same type

(they are shared, or they match) are:

Ãj
AA 1

j Aa 0
aa 1

j′

Ãjj′ AA Aa aa

AA 1 0.5 0
j Aa 0.5 0.5 0.5

aa 0 0.5 1
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Alternative Notation

In terms of allele dosages:

Ãj = (Xj − 1)2 , E(Ãj) = A+ (1 − A)Fj

Ãjj′ =
1

2
[1 + (Xj − 1)(Xj′ − 1)] , E(Ãjj′) = A+ (1 − A)θjj′

Ãjj =
1

2
[1 + (Xj − 1)2] , E(Ãjj) = A+ (1 − A)θjj

ÃS =
1

n(n− 1)

n
∑

j=1

n
∑

j′=1

j 6=j′

Ãjj′ , E(ÃS) = A+ (1 − A)θS

where

A = 1 − 2π(1 − π) , θjj =
1

2
(1 + Fj)

and, for large sample sizes,

1 − ÃS = 2p̃(1 − p̃)
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Allelic Matching Proportions for Individuals

Averaging over pairs of individuals:

ÃS =
1

n(n− 1)

n
∑

j=1

n
∑

j′=1

j 6=j′

Ãjj′

E(ÃS) = A+ (1 −A)θS

The allele sharing kinship estimators and their expected values

are

ψ̂ASjj′
=

∑

l(Ãjj′l − ÃS)
∑

l(1 − ÃS)
, E(ψ̂ASjj′

) = ψjj′ =
θjj′ − θS

1 − θS
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1000 Genomes Data

Estimates of within-population individual-specific average kinships vs esti-

mates of within-population individual-specific inbreeding coefficients for 1000

Genomes data. Y-axis: ψ̂j; X-axis: f̂j. Left: All populations; Right: Exclud-

ing AMR and AFR. Gold: AFR (not ACB or ASW); Orange: AFR (ACB and

ASW); Red: AMR; Purple: SAS; Blue: EUR; Green: EAS.
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1000 Genomes Data
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Many estimators of inbreeding assume no coancestry in a sam-

ple, and many estimators of coancestry assume no inbreeding.

Inbreeding and coancestry should be considered together.
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1000 Genomes Data

Local Population Reference Whole World Reference

Chromosome 22 data from 1000 Genomes.

Continents (left to right): AFR, AMR, EAS, EUR, SAS
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Allele Frequencies

These allele-sharing estimates avoid the need to estimate allele

probabilities.

Could regard sample allele frequencies as estimates of allele prob-

abilities: often gives similar estimates of inbreeding and coances-

try coefficients to the allele-sharing estimates. But, there can

be changes of rank as the scope of the study changes.

Could estimate allele probabilities jointly with ibd probabilities.

Iterative methods update allele probabilities and ibd probabilities

in turn. Difficult to count ibd alleles at each stage: which alleles

should be considered – just within individuals, plus between pairs

of individuals, ....
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Alternative Estimators

Other estimators use sample allele frequencies and sample allele

dosages: the number of copies of one of the two alleles carried

by an individual at a locus. If Xjl is the dosage for the allele at

SNP l for individual j, the ratio of averages form of the standard

estimator (e.g. in GCTA package) is

f̂w
Stdj

=

∑

l(Xjl − 2p̃l)
2

∑

l 2p̃l(1 − p̃l)

although it is common to see the average of ratios form

f̂u
Stdj

=
1

L

L
∑

l=1

(Xjl − 2p̃l)
2

2p̃l(1 − p̃l)

An alternative form (Yang et al, 2011) is

f̂w
Unij

=

∑

l[X
2
jl − (1 + 2p̃l)Xjl + 2p̃2l ]

∑

l 2p̃l(1 − p̃l)
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Expectations of Alternative Estimators

For all sample sizes:

E(H̃S) = (1 − θS)
∑

l

[2πl(1 − πl)]

For large sample sizes:

E[
∑

l

2p̃l(1 − p̃l)] = (1 − θS)
∑

l

[2πl(1 − πl)]

so

E(f̂w
Unij

) =
fj − Ψj + θS

1 − θS
= fj − 2ψj

E(f̂w
Stdj

) =
fj − 4Ψj + 3θS

1 − θS
= fj − 4ψj

The ranks of f̂w
Unij

and f̂w
Stdj

may be different from the ranks of

fj, ψj i.e. of Fj,Ψj.
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Expectations of Alternative Kinship Estimators

For kinship:

ψ̂w
Stdjj′

=

∑

l(Xjl − 2p̃l)(Xjj′l − 2p̃l)
∑

l 2p̃l(1 − p̃l)

and this has an expected value, for large sample sizes, of

E(ψ̂w
Stdjj′

) =
θjj′ − ψj − ψjj′ + θS

1 − θS

= ψjj′ − ψj − ψj′

Unlike ψ̂ASjj′
, the standard kjnship estimates are not expected to

have the same ranks as the θjj′’s.
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1000 Genomes Data

Top row: Whole world reference. Bottom row: Continental group reference.

Allele sharing estimates Standard estimates

Chromosome 22 data from 1000 Genomes.

Continents (left to right): AFR, SAS, EUR, EAS, AMR

Populations (l to r):AFR: ACB, ASW, ESN, GWD, LWK, MSL, YRI;
SAS: BEB, GIH, ITU, PJL, STU; EUR: CEU, FIN, GBR, IBS, TSI;
EAS: CDX, CHB, CHS, JPT; AMR: KHV, CLM, MXL, PEL, PUR
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Alternative Estimators: Runs of Homozygosity

Estimators so far use single SNP statistics and average over

SNPs.

Runs of homozygosity, with a large number of SNPs, are likely

to represent regions of identity by descent. The inbreeding co-

efficient can be estimated as the proportion of windows of SNPs

that are completely homozygous.

Requires judgment in deciding window length, degree of window

overlap, allowance for some heterozygotes, and (possibly) minor

allele frequency McQuillan et al. 2006. Am J Hum Genet; Joshi

et al. 2015. Nature
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1000 Genomes Data

ROH/PLINK estimates vs SNP by SNP estimates for 1000 Genomes data,

with the World as a reference set. Left: F̂ROH vs f̂AS; Right: FROH vs f̂uUni.

Solid line X = Y . Gold: AFR (not ACB or ASW); Orange: AFR (ACB and

ASW); Red: AMR; Purple: SAS; Blue: EUR; Green: EAS.
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Higher-Order IBD

The following section is unpublished.
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Nine ibd States Si

Full set of nine ibd states Si need to be considered for natu-

ral populations with mixed mating systems and for quantitative

genetic analyses of non-additive gene action.

Solid lines join pairs of ibd alleles: top row shows alleles a, b for

individual X, bottom row shows alleles c, d for individual Y .
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Genotype Probabilities for Two Individuals

X, Y ∆1 ∆2 ∆3 ∆5 ∆4 ∆6 ∆7 ∆8 ∆9

G1 : AA,AA πA π2
A π2

A π2
A π3

A π3
A π2

A π3
A π4

A
G2 : aa, aa πa π2

a π2
a π2

a π3
a π3

a π2
a π3

a π4
a

G3 : Aa,Aa 2πAπa πAπa 4π2
Aπ

2
a

G4 : AA,Aa πAπa 2π2
Aπa π2

Aπa 2π3
Aπa

G5 : aa, Aa πAπa 2πAπ2
a πAπ2

a 2πAπ3
a

G6 : Aa,AA πAπa 2π2
Aπa π2

Aπa 2π3
Aπa

G7 : Aa, aa πAπa 2πAπ
2
a πAπ

2
a 2πAπ

3
a

G8 : AA, aa πAπa πAπ2
a π2

Aπa π2
Aπ

2
a

G9 : aa, AA πAπa π2
Aπa πAπ

2
a π2

Aπ
2
a

πA, πa are allele probabilities. Two dependencies among genotype-

pair probabilities:

G1 +G2 +G3 +G4 +G5 +G6 +G7 +G8 +G9 = 1

G4 + 2G8 +G7 = G6 + 2G9 +G5
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Probabilities for Unordered Individuals

X&Y ∆1 ∆2 ∆3 + ∆5 ∆4 + ∆6 ∆7 ∆8 ∆9

G1 : AA&AA πA π2
A π2

A π3
A π2

A π3
A π4

A
G2 : aa&aa πa π2

a π2
a π3

a π2
a π3

a π4
a

G3 : Aa&Aa 2πAπa πAπa 4π2
Aπ

2
a

G4 +G6 : AA&Aa πAπa 2π2
Aπa 2π2

Aπa 4π3
Aπa

G5 +G7 : aa&Aa πAπa 2πAπ
2
a 2πAπ

2
a 4πAπ

3
a

G8 +G9 : AA&aa 2πAπa πAπa 2π2
Aπ

2
a

No distinction now between ∆3 and ∆5 or between ∆4 and ∆6.
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Summary ibd Measures

The 9 ∆’s can be summarized with 8 linear functions of them

that refer to pairs, trios, two-pairs and quadruples of alleles:

Summary Jacquard/Cockerham
FX = ∆1 + ∆2 + ∆3 + ∆4 ∆4 = FX − 2γẌY − ∆Ẍ.Ÿ + 2δẌŸ
FY = ∆1 + ∆2 + ∆5 + ∆6 ∆6 = FY − 2γXŸ − ∆Ẍ.Ÿ + 2δẌŸ
θXY = ∆1 + 1

2
(∆3 + ∆5 + ∆7) + 1

4
∆8 ∆8 = 4θXY − 4γẌY − 4γXŸ − 4∆Ẍ+Ÿ + 8δẌŸ

γẌY = ∆1 + 1
2
∆3 ∆3 = 2(γẌY − δẌŸ )

γXŸ = ∆1 + 1
2
∆5 ∆5 = 2(γXŸ − δẌŸ )

∆Ẍ.Ÿ = ∆1 + ∆2 ∆2 = ∆Ẍ.Ÿ − δẌŸ
∆Ẍ+Ÿ = ∆1 + 1

2
∆7 ∆7 = 2(∆Ẍ+Ÿ − δẌŸ )

δẌŸ = ∆1 ∆1 = δẌŸ
∆9 = 1 − FX − FY − 4θXY + 4γẌY + 4γXŸ

+∆Ẍ.Ÿ + 2∆Ẍ+Ÿ − 6δẌŸ
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Unordered Individuals Summary Measures

Summary
1
2
(FX + FY ) = ∆1 + ∆2 + 1

2
(∆3 + ∆5) + 1

2
(∆4 + ∆6)

θXY = ∆1 + 1
2
(∆3 + ∆5) + 1

2
∆7 + 1

4
∆8

1
2
(γẌY + γXŸ ) = ∆1 + 1

2
(∆3 + ∆5)

∆Ẍ.Ÿ = ∆1 + ∆2

∆Ẍ+Ÿ = ∆1 + 1
2
∆7

δẌŸ = ∆1

Jacquard/Cockerham
(∆4 + ∆6) = (FX + FY ) − 2(γẌY + γXŸ )− 2∆Ẍ.Ÿ + 4δẌŸ
∆8 = 4θXY − 4(γẌY + γXŸ ) − 4∆Ẍ+Ÿ + 8δẌŸ
(∆3 + ∆5) = 2(γẌY + γXŸ ) − 4δẌŸ )
∆2 = ∆Ẍ.Ÿ − δẌŸ
∆7 = 2(∆Ẍ+Ÿ − δẌŸ )
∆1 = δẌŸ
∆9 = 1 − (FX + FY )− 4θXY + 4(γẌY + γXŸ ) + ∆Ẍ.Ÿ + 2∆Ẍ+Ÿ − 6δẌŸ
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Application of Summary Measures

For traits with dominance, the covariance of genetic effects

GX , GY for inbred and related individuals X,Y is

Cov(GX , GY ) = 2θXY σ
2
A + 2∆Ẍ+Ÿ σ

2
D

+ 2(γẌY + γXŸ )C1 + δẌŸC2 + (∆Ẍ.Ÿ − FXFY )C3

The additive and dominance variance components are σ2
A, σ

2
D and

C1 is the covariance between additive and homozygous domi-

nance deviations, C2 is the variance of homozygous dominance

effects, and C3 is the squared sum of homozygous dominance

effects.

For additive traits

Cov(GX , GY ) = 2θXY σ
2
A , Var(GX) = (1 + FX)σ2

A
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Predicted Values of Summary Measures

The summary measures for a pedigree can be calculated by trac-

ing alleles back to the founders.

For a random mating population at drift/mutation equilibrium:

θ = 1
1+4Nµ any pair of alleles

γ = 2θ2

1+θ any three alleles

δ = 6θ3

(1+θ)(1+2θ)
any four alleles

∆ = θ2(1+5θ)
(1+θ)(1+2θ)

any two pairs of alleles

We have little knowledge about actual values of these quantities.
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Estimation of Summary Measures

By analogy to the two-allele case, consider the ibs states for two

genotypes.

Genotypes ibs alleles
AA,AA and aa,aa All four alleles ibs
AA,aa and aa,AA ibs within both indivs, no ibs between indivs
Aa,Aa no ibs within indiv, two ibs pairs between indivs
AA,Aa; aa,Aa ibs within first indiv, one ibs pair between indivs
Aa,AA; Aa,aa ibs within second indiv, one ibs pair between indivs

The five states are consistent with the claim of there being five

identifiable ibd states for loci with two alleles:

Csűrös M. 2014. Non-identifiability of identity coefficients at

biallelic loci. Theoretical Population Biology 92:22-29.

Combine last two rows if individuals not ordered.
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Estimation of Summary Measures

∆Ẍ.Ÿ+
X, Y 1 FX FY θXY γẌY γXŸ 2∆Ẍ+Ÿ δẌŸ
G1 p4 p3q p3q 4p3q 2p2q − 4p3q 2p2q − 4p3q x y
G2 q4 pq3 pq3 4pq3 2pq2 − 4pq3 2pq2 − 4pq3 x y
G3 4p2q2 −4p2q2 −4p2q2 4pq − 16p2q2 −4pq+ 16p2q2 −4pq+ 16p2q2 4x 4y
G4 2p3q 2p2q2 −2p3q 4p2q − 8p3q 2pq − 8p2q2 −4p2q+ 8p3q −2x −2y
G5 2pq3 2p2q2 −2pq3 4pq2 − 8pq3 2pq − 8p2q2 −4pq2 + 8pq3 −2x −2y
G6 2p3q −2p3q 2p2q2 4p2q − 8p3q −4p2q+ 8p3q 2pq − 8p2q2 −2x −2y
G7 2pq3 −2pq3 2p2q2 4pq2 − 8pq3 −4pq2 + 8pq3 2pq − 8p2q2 −2x −2y
G8 p2q2 pq3 p3q −4p2q2 −2pq2 + 4p2q2 −2p2q+ 4p2q2 x y
G9 p2q2 p3q pq3 −4p2q2 −2p2q+ 4p2q2 −2pq2 + 4p2q2 x y
p = πA, q = πa, x = p2q2, y = pq − 6p2q2

Would like to estimate Jacquard or Summary probabilities from

the observed proportions G̃i of SNPs that fall in genotype-pair

categories i = 1,2, . . . ,9. From genotypic data for loci with two

alleles, ∆Ẍ.Ÿ cannot be distinguished from ∆Ẍ+Ÿ .
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Without Inbreeding

For two non-inbred individuals only κ2 = ∆7, κ1 = ∆8, κ0 = ∆9

are not zero. Simple moment estimators use the number Ni of

SNPs for which two individuals share i pairs in alleles ibs. If

H =
∑L
l=1 2πl(1 − πl),K =

∑L
l=1 2π2

l (1 − πl)
2:

ET(N0) =
1

2
(2∆2 + ∆4 + ∆6)H + ∆9K

ET(N1) = (∆3 + ∆4 + ∆5 + ∆6 + ∆8 + 2∆9)H − 4∆9K

ET(N2) = L−
1

2
(2∆2 + 2∆3 + 3∆4 + 2∆5 + 3∆6 + 2∆8 + 4∆9)H + 3∆9K

It is usual to replace πl for the SNP l reference allele by p̃l, set

∆i = 0, i ≤ 6 and and solve for the κ’s:

κ̂0 =
N0

K̃
, κ̂1 =

N1 + 4N0

H̃
−

2N0

K̃
, κ̂2 = 1 −

N1 + 4N0

H̃
+
N0

K̃

θ̂ =
1

2
κ̂2 +

1

4
κ̂1 =

1

2
−
N1 + 4N0

4H̃
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Without Inbreeding

Problem 1: The expected values of H̃ and K̃, for large sample

sizes, are

E(H̃) = (1 − θS)H

E(K̃) = (1 − 6θS + 8γS + 3∆S − 6δS)K − (θS − 2γS + δS)H

where θS, γS, δS,∆S are the ibd probabilities for random pairs,

triples, quadruples and two-pairs of alleles from distinct individ-

uals in the sampled population.

Even if there is no inbreeding, θ̂ is biased for either θ or ψ:

E(θ̂) =
θ − 1

2θS

1 − θS

Problem 2: There is inbreeding.
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Three Alleles in Two Individuals

For two alleles, two in individual X and one taken randomly from

individual Y , there are four states of identity by descent:

Three ibd γẌY
Two ibd within X FX − γẌY
Two ibd between X,Y 2(θXY − γẌY )

No ibd γ0ẌY
= 1 − FX − 2θXY + 2γẌY

The probabilities of all six sets of allelic states are

At least two ibd alleles No ibd alleles
∆1 + 1

2
∆3 ∆2 + 1

2
∆3 + ∆4 ∆5 + ∆7 + 1

2
∆8 ∆6 + 1

2
∆8 + ∆9

X,Y γẌY (FX − γẌY ) 2(θXY − γẌY ) (1 − FX − 2θXY + 2γẌY )
AA,A πA π2

A π2
A π3

A
AA,a πAπa π2

Aπa
Aa,A πAπa 2π2

Aπa
Aa, a πAπa 2πAπ

2
a

aa,A πAπa πAπ
2
a

aa, a πa π2
a π2

a π3
a

Aa, a−Aa,A −2πAπa(πA − πa)
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Three Alleles in Two Individuals

The observed value for (Aa, a− Aa,A) is (G̃7 − G̃6) and

E(G̃7 − G̃6) = 2πA(1 − πA)(1 − 2πA)(1 − FX − 2θXY + 2γẌY )

Csűrös (2014) assumed that

E[2p̃A(1 − p̃A)(1 − 2p̃A)] = 2πA(1 − πA)(1 − 2πA)

in order to estimate (1 − FX − 2θXY + 2γẌY ). He also assumed

that FX , θXY could be estimated and therefore he thought that

γẌY was estimable.

However,

E[2p̃A(1 − p̃A)(1 − 2p̃A)] = 2πA(1 − πA)(1 − 2πA)(1 − 3θS + 2γS)

where γS is the ibd probability for any three alleles, one from

each of three individuals in the sample.
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Three Alleles in Two Individuals

The unknown allele probabilities do not enter into the expecta-

tion of the ratio T̃3ẌY
= (G̃7 − G̃6)/[2p̃A(1 − p̃A)(1 − 2p̃A)]:

E(T̃3ẌY
) =

1 − FX − 2θXY + 2γẌY
1 − 3θS + 2γS

=
γ0ẌY
γ0S

The numerator is the probability of no identity by descent among

the two alleles of X and a random allele of Y . The denominator

is the probability of no identity by descent from any three alleles,

one from each of three individuals, in the sample.

For large sample sizes, the denominator is the same as the av-

erage of the numerator for all sets of three alleles from three

distinct individuals.
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Ignoring order for Individuals

Ignoring the order of two individuals, by adding in the observed

value (G̃5− G̃4) of (a,Aa−A,Aa, ) and averaging with (G̃7− G̃6):

T̃3 =
(G̃7 − G̃6) + (G̃5 − G̃4)

4p̃A(1 − p̃A)(1 − 2p̃A)

E(T̃3) =
1 − 1

2(FX + FY ) − 2θXY + (γẌY + γXŸ )

1 − 3θS + 2γS

The numerator is the probability of no identity by descent among

the two alleles of one individual and a random allele of the other.

The denominator is the probability of no identity by descent

from any three alleles, one from each of three individuals, in the

sample.

This estimator, but not its expectation, was given by Csűrös

(2014).
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Two Alleles in Two Individuals

This is analogous to the case for two alleles. There are two ibd

states for a pair of alleles within or between individuals:

ibd within X FX ibd between X, Y θXY
no ibd withinX F0X

= 1 − FX No ibd between X, Y θ0XY
= 1 − θXY

There are three sets of allelic states:

X FX 1 − FX X,Y θXY 1 − θXY
AA πA π2

A A,A πA π2
A

Aa 2πAπa A, a 2πAπa
aa πa π2

a a, a πa π2
a
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Two Alleles in Two Individuals

The observed values for Aa or A, a are H̃X and H̃XY , with large-

sample expectations

E(H̃X) = 2πA(1 − πA)F0X , E(H̃XY ) = 2πA(1 − πA)θ0XY
E[2p̃A(1 − p̃A)] = 2πA(1 − πA)θ0S , E[2p̃A(1 − p̃A)] = 2πA(1 − πA)θ0S

Large-sample estimators for the estimable functions do not de-

pend on unknown allele probabilities:

T̃2X =
H̃X

2p̃A(1 − p̃A)
, T̃2XY =

H̃XY
2p̃A(1 − p̃A)

E(T̃2X) =
F0X

θ0S
, E(T̃2XY ) =

θ0XY
θ0S
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Ignoring Order for Two Individuals

Values of a combined two-allele estimator T̃2 might be compared

with values of the combined three-allele estimator T̃3.

T̃2 =
1
2(H̃X + H̃Y ) + 2H̃XY

2p̃A(1 − p̃A)

The expected value of this is a linear function of [(FX+FY )/2+

2θXY ] whereas T̃3 has an expected value that is a linear function

of [(FX + FY )/2 + 2θXY − (γẌY + γXŸ )].

There will be evidence for non-zero three-allele ibd probabilities

if T̃3 is not linearly related to T̃2.
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1000 Genomes Data
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