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Probability Theory

We wish to attach probabilities to different kinds of events (or

hypotheses or propositions):

• Event A: the next card is an Ace.

• Event R: it will rain tomorrow.

• Event C: the suspect left the crime stain.
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Probabilities

Assign probabilities to events: Pr(A) or pA or even p means “the

probability that event A is true.” All probabilities are conditional

on some information I, so should write Pr(A|I) for “the proba-

bility that A is true given that I is known.”

No matter how probabilities are defined, they need to follow some

mathematical laws in order to lead to consistent theories.
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First Law of Probability

0 ≤ Pr(A|I) ≤ 1

Pr(A|A, I) = 1

If A is the event that a die shows an even face (2, 4, or 6), what

is I? What is Pr(A|I)?
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Second Law of Probability

If A, B are mutually exclusive given I

Pr(A or B|I) = Pr(A|I) + Pr(B|I)

so Pr(Ā|I) = 1 −Pr(A|I)

(Ā means not-A).

If A is the event that a die shows an even face, and B is the

event that the die shows a 1, verify the Second Law.
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Third Law of Probability

Pr(A and B|I) = Pr(A|B, I) × Pr(B|I)

If A is event that die shows an even face, and B is the event that

the die shows a 1, verify the Third Law.

Will generally omit the I from now on.
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Independent Events

Events A and B are independent if knowledge of one does not

affect probability of the other:

Pr(A|B) = Pr(A)

Pr(B|A) = Pr(B)

Therefore, for independent events

Pr(A and B) = Pr(A)Pr(B)

This may be written as

Pr(AB) = Pr(A)Pr(B)
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Law of Total Probability

Because B and B̄ are mutually exclusive and exhaustive:

Pr(A) = Pr(A|B)Pr(B) + Pr(A|B̄)Pr(B̄)

If A is the event that die shows a 3, B is the event that the die

shows an even face, and B̄ the event that the die shows an odd

face, verify the Law of Total Probability.
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Odds

The odds O(A) of an event A are the probability of the event

being true divided by the probability of the event not being true:

O(A) =
Pr(A)

Pr(Ā)

This can be rearranged to give

Pr(A) =
O(A)

1 + O(A)

Odds of 10 to 1 are equivalent to a probability of 10/11.
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Bayes’ Theorem

The third law of probability can be used twice to reverse the

order of conditioning:

Pr(B|A) =
Pr(B and A)

Pr(A)

=
Pr(A|B) Pr(B)

Pr(A)
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Odds Form of Bayes’ Theorem

From the third law of probability

Pr(B|A) = Pr(A|B)Pr(B)/Pr(A)

Pr(B̄|A) = Pr(A|B̄)Pr(B̄)/Pr(A)

Taking the ratio of these two equations:

Pr(B|A)

Pr(B̄|A)
=

Pr(A|B)

Pr(A|B̄)
×

Pr(B)

Pr(B̄)

Posterior odds = likelihood ratio × prior odds.
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Birthday Problem

Forensic scientists in Arizona looked at the 65,493 profiles in the

Arizona database and reported that two profiles matched at 9

loci out of 13. They reported a “match probability” for those 9

loci of 1 in 754 million. Are the numbers 65,493 and 754 million

inconsistent?

Troyer et al., 2001. Proc Promega 12th Int Symp Human Identification.

To begin to answer this question suppose that every possible

profile has the same profile probability P and that there are N

profiles in a database (or in a population). The probability of at

least one pair of matching profiles in the database is one minus

the probability of no matches.

Probability Slide 12



Birthday Problem

Choose profile 1. The probability that profile 2 does not match

profile 1 is (1−P ). The probability that profile 3 does not match

profiles 1 or 2 is (1−2P ), etc. So, the probability PM of at least

one matching pair is

PM = 1 − {1(1 − P )(1 − 2P ) · · · [1 − (N − 1)P ]}

≈ 1 −
N−1∏

i=0

e−iP ≈ 1 − e−N2P/2

If P = 1/365 and N = 23, then PM = 0.51. So, approximately,

in a room of 23 people there is greater than a 50% probability

that two people have the same birthday.
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Birthday Problem

If P = 1/(754 million) and N = 65,493, then PM = 0.98 so it is

highly probable there would be a match. There are other issues,

having to do with the four non-matching loci, and the possible

presence of relatives in the database.

If P = 10−16 and N = 300 million, then PM = is essentially 1. It

is almost certain that two people in the US have the same rare

DNA profile.
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Statistics

• Probability: For a given model, what do we expect to see?

• Statistics: For some given data, what can we say about the

model?

• Example: A marker has an allele A with frequency pA.

– Probability question: If pA = 0.5, and if alleles are inde-

pendent, what is the probability of AA?

– Statistics question: If a sample of 100 individuals has 23

AA’s, 48 Aa’s and 29 aa’s, what is an estimate of pA?
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LIKELIHOOD RATIOS
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Transfer Evidence

Relevant Evidence

Rule 401 of the US Federal Rules of Evidence:

“Relevant evidence” means evidence having any tendency to

make the existence of any fact that is of consequence to the

determination of the action more probable or less probable than

it would be without the evidence.
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Single Crime Scene Stain

Suppose a blood stain is found at a crime scene, and it must

have come from the offender. A suspect is identified and pro-

vides a blood sample. The crime scene sample and the suspect

have the same (DNA) “type.”

The prosecution subsequently puts to the court the proposition

(or hypothesis or explanation):

H1: The suspect left the crime stain.

The symbol H1 is just to assist in the formal analysis. It need

not be given in court.
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Transfer Evidence Notation

GS, GC are the DNA types for suspect and crime sample.

GS = GC.

I is non-DNA evidence.

Before the DNA typing, probability of H1 is conditioned on I.

After the typing, probability of H1 is conditioned on GS, GC, I.
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Updating Uncertainty

Method of updating uncertainty, or changing Pr(Hypothesis1) to

Pr(Hypothesis1|Evidence) uses Bayes’ theorem:

Pr(Hypothesis1|Evidence) =
Pr(Evidence|Hypothesis1)Pr(Hypothesis1)

Pr(Evidence)

We can’t evaluate Pr(Evidence) without additional information,

and we don’t know Pr(Hypothesis1).

Can proceed by introducing alternative to Hypothesis1.
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First Principle of Evidence Interpretation

To evaluate the uncertainty of a proposition, it is necessary to

consider at least one alternative proposition.

The simplest alternative explanation for a single stain is:

H2: Some other person left the crime stain.

Evett IW, Weir BS. 1998. “Interpreting DNA Evidence.”

Can be downloaded from:

www.biostat.washington.edu/∼bsweir/InterpretingDNAEvidence
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Updating Odds

From the odds form of Bayes’ theorem:

Pr(Hypothesis1|Evidence)

Pr(Hypothesis2|Evidence)
=

Pr(Evidence|Hypothesis1)

Pr(Evidence|Hypothesis2)
×

Pr(Hypothesis1)

Pr(Hypothesis2)

i.e. Posterior odds = LR × Prior odds

where

LR =
Pr(Evidence|Hypothesis1)

Pr(Evidence|Hypothesis2)
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Questions for a Court to Consider

The trier of fact needs to address questions of the kind

• What is the probability that the prosecution proposition is

true given the evidence,

Pr(H1|GC , GS, I)?

• What is the probability that the defense proposition is true

given the evidence,

Pr(H2|GC , GS, I)?
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Questions for Forensic Scientist to Consider

The forensic scientist must address different questions:

• What is the probability of the DNA evidence if the prosecu-

tion proposition is true,

Pr(GC , GS|H1, I)?

• What is the probability of the DNA evidence if the defense

proposition is true,

Pr(GC , GS|H2, I)?

Important to articulate H1, H2. Also important not to confuse

the difference between these two sets of questions.
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Second Principle of Evidence Interpretation

Evidence interpretation is based on questions of the kind ‘What

is the probability of the evidence given the proposition.’

This question is answered for alternative explanations, and the

ratio of the probabilities presented. It is not necessary to use the

words “likelihood ratio”. Use phrases such as:

‘The probability that the crime scene DNA type is the same as

the suspect’s DNA type is one million times higher if the suspect

left the crime sample than if someone else left the sample.’
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Third Principle of Evidence Interpretation

Evidence interpretation is conditioned not only on the alternative

propositions, but also on the framework of circumstances within

which they are to be evaluated.

The circumstances may simply be the population to which the

offender belongs so that probabilities can be calculated. Forensic

scientists must be clear in court about the nature of the non-

DNA evidence I, as it appeared to them when they made their

assessment. If the court has a different view then the scientist

must review the interpretation of the evidence.
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Example

“In the analysis of the results I carried out I considered two alter-

natives: either that the blood samples originated from Pengelly

or that the . . . blood was from another individual. I find that the

results I obtained were at least 12,450 times more likely to have

occurred if the blood had originated from Pengelly than if it had

originated from someone else.”
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Example

Question:“Can you express that in another way?”

Answer:“It could also be said that 1 in 12,450 people would have

the same profile . . . and that Pengelly was included in that num-

ber . . . very strongly suggests the premise that the two blood

stains examined came from Pengelly.”

[Testimony of M. Lawton in R. v Pengelly 1 NZLR 545 (CA),

quoted by

Robertson B, Vignaux GA, Berger CEH. 2016.Interpreting Evi-

dence (Second Edition). Wiley.
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Likelihood Ratio

LR =
Pr(GC , GS|H1, I)

Pr(GC , GS|H2, I)

Apply laws of probability to change this into

LR =
Pr(GC|GS , H1, I)Pr(GS|H1, I)

Pr(GC|GS , H2, I)Pr(GS|H2, I)
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Likelihood Ratio

Whether or not the suspect left the crime sample (i.e. whether or

not H1 or H2 is true) provides no information about his genotype:

Pr(GS|H1, I) = Pr(GS|H2, I) = Pr(GS|I)

so that

LR =
Pr(GC |GS, H1, I)

Pr(GC |GS, H2, I)

This is the form that allows the consideration of relatives and/or

population structure, as well as drop-out and drop-in.
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Likelihood Ratio

LR =
Pr(GC |GS, H1, I)

Pr(GC |GS, H2, I)

When GC = GS, and when they are for the same person (H1 is

true):

Pr(GC |GS, H1, I) = 1

so the likelihood ratio becomes

LR =
1

Pr(GC |GS, H2, I)

This is the reciprocal of the probability of the match probability,

the probability of profile GC, conditioned on having seen profile

GS in a different person (i.e. H2) and on I.
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Likelihood Ratio

LR =
1

Pr(GC |GS, H2, I)

The next step depends on the circumstances I. If these say that

knowledge of the suspect’s type does not affect our uncertainty

about the offender’s type when they are different people (i.e.

when H2 is true):

Pr(GC |GS, H2, I) = Pr(GC |H2, I)

and then likelihood ratio becomes

LR =
1

Pr(GC |H2, I)

The LR is now the reciprocal of the profile probability of profile

GC.
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Profile and Match Probabilities

Dropping mention of the other information I, the quantity Pr(GC)

is the probability that a person randomly chosen from a popula-

tion will have profile type GC. This profile probability usually very

small and, although it is interesting, it is not the most relevant

quantity.

Of relevance is the match probability, the probability of seeing

the profile in a randomly chosen person after we have already

seen that profile in a typed person (the suspect). The match

probability is bigger than the profile probability. Having seen a

profile once there is an increased chance we will see it again.

This is the genetic essence of DNA evidence.
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Likelihood Ratio

The estimated probability in the denominator of LR is determined

on the basis of judgment, informed by I. Therefore the nature of

I (as it appeared to the forensic scientist at the time of analysis)

must be explained in court along with the value of LR. If the

court has a different view of I, then the scientist will need to

review the interpretation of the DNA evidence.
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Random Samples

The circumstances I may define a population or racial group.

The probability is estimated on the basis of a sample from that

population.

When we talk about DNA types, by “selecting a person at ran-

dom” we mean choosing a person in such a way as to be as

uncertain as possible about their DNA type.
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Convenience Samples

The problem with a formal approach is that of defining the pop-

ulation: if we mean the population of a town, do we mean every

person in the town at the time the crime was committed? Do

we mean some particular area of the town? One sex? Some age

range?

It seems satisfactory instead to use a convenience sample, i.e. a

set of people from whom it is easy to collect biological material

in order to determine their DNA profiles. These people are not

a random sample of people, but they have not been selected on

the basis of their DNA profiles.
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Meaning of Likelihood Ratios

There is a personal element to interpreting DNA evidence, and

there is no “right” value for the LR. (There is a right answer

to the question of whether the suspect left the crime stain, but

that is not for the forensic scientist to decide.)

The denominator for LR is conditioned on the stain coming from

an unknown person, and “unknown” may be hard to define. A

relative? Someone in that town? Someone in the same ethnic

group? (What is an ethnic group?)
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Meaning of Frequencies

What is meant by “the frequency of the matching profile is 1 in

57 billion”?

It is an estimated probability, obtained by multiplying together

the allele frequencies, and refers to an infinite random mating

population. It has nothing to do with the size of the world’s

population.

The question is really whether we would see the profile in two

people, given that we have already seen it in one person. This

conditional probability may be very low, but has nothing to do

with the size of the population.
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ALLELIC INDEPENDENCE



Testing for Allelic Independence

What is the probability a person has a particular DNA profile?

What is the probability a person has a particular profile if it has

already been seen once?

The first question is a little easier to think about, but difficult

to answer in practice: it is very unlikely that a profile will be

seen in any sample of profiles. Even for one STR locus with 10

alleles, there are 55 different genotypes and most of those will

not occur in a sample of a few hundred profiles.

For locus D3S1358 in the African American population, the FBI

frequency database shows that 31 of the 55 genotype counts are

zero. Estimating the population frequencies for these 31 types

as zero doesn’t seem sensible.
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D3S1358 Genotype Counts

Observed <12 12 13 14 15 16 17 18 19 >19

<12 0
12 0 0
13 0 0 0
14 0 0 0 2
15 0 0 1 19 15
16 1 1 1 15 39 19
17 0 0 2 10 26 24 9
18 1 0 1 2 6 10 3 0
19 0 0 0 1 0 0 1 0 0

>19 0 0 0 0 1 0 0 0 0 0

The number in row i and column j is the observed count of

indivuals with alleles i and j.
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Hardy-Weinberg Law

A solution to the problem is to assume that the Hardy-Weinberg

Law holds. For a random mating population, expect that geno-

type frequencies are products of allele frequencies.

For a locus with two alleles, A, a:

PAA = (pA)2

PAa = 2pApa

Paa = (pa)
2

For a locus with several alleles Ai:

PAiAi
= (pAi

)2

PAiAj
= 2pAi

pAj

Probability Slide 42



D3S1358 Hardy-Weinberg Calculations

The allele counts for D3S1358 in the African-American sample

are:

Total

Allele <12 12 13 14 15 16 17 18 19 >19
Count 2 1 5 51 122 129 84 23 2 1 420

If the Hardy-Weinberg Law holds, then we would expect to see

np̃2
13 = 210 × (5/420)2 = 0.03 individuals of type 13,13 in a

sample of 210 individuals.

Also, we would expect to see 2np̃13p̃14 = 420×(5/420)×(51/420) =

0.61 individuals of type 13,14 in a sample of 210 individuals.

Other values are shown on the next slide.
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D3S1358 Observed and Expected Counts

<12 12 13 14 15 16 17 18 19 >19
<12 Obs. 0

Exp. 0.0
12 Obs. 0 0

Exp. 0.0 0.0
13 Obs. 0 0 0

Exp. 0.0 0.0 0.0
14 Obs. 0 0 0 2

Exp. 0.2 0.1 0.6 3.1
15 Obs. 0 0 1 19 15

Exp. 0.6 0.3 1.5 14.8 17.7
16 Obs. 1 1 1 15 39 19

Exp. 0.6 0.3 1.5 15.7 37.5 19.8
17 Obs. 0 0 2 10 26 24 9

Exp. 0.4 0.2 1.0 10.2 24.4 25.8 8.4
18 Obs. 1 0 1 2 6 10 3 0

Exp. 0.1 0.1 0.3 2.8 6.7 7.1 4.6 0.6
19 Obs. 0 0 0 1 0 0 1 0 0

Exp. 0.0 0.0 0.0 0.2 0.6 0.6 0.4 0.1 0.0
>19 Obs. 0 0 0 0 1 0 0 0 0 0

Exp. 0.0 0.0 0.0 0.1 0.3 0.3 0.2 0.1 0.0 0.0
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Testing for Hardy-Weinberg Equilibrium

A test of the Hardy-Weinberg Law will somehow decide if the

observed and expected numbers are sufficiently similar that we

can proceed as though the law can be used.

In one of the first applications of Hardy-Weinberg testing in a

US forensic setting:

“To justify applying the classical formulas of population

genetics in the Castro case the Hispanic population must

be in Hardy-Weinberg equilibrium. Applying this test

to the Hispanic sample, one finds spectacular deviations

from Hardy-Weinberg equilibrium.”

Lander ES. 1989. DNA fingerprinting on trial. Nature 339: 501-505.
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VNTR “Coalescence”

Forensic DNA profiling initially used minisatellites, or VNTR loci,

with large numbers of alleles. Heterozygotes would be scored as

homozygotes if the two alleles were so similar in length that they

coalesced into one band on an autoradiogram. Small alleles often

not detected at all, and this is a likely cause of Lander’s finding

(Devlin et al, Science 249:1416-1420.) .

Considerable debate in early 1990s on alternative “binning” strate-

gies for reducing the number of alleles (Science 253:1037-1041,

1991).

Typing has moved to microsatellites with fewer and more easily

distinguished alleles, but testing for Hardy-Weinberg equilibrium

continues. There are still reasons why the law may not hold.
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Population Structure can Cause Departure from

HWE

If a population consists of a number of subpopulations, each in

HWE but with different allele frequencies, there will be a depar-

ture from HWE at the population level. This is the Wahlund

effect.

Suppose there are two equal-sized subpopulations, each in HWE

but with different allele frequencies, then

Subpopn 1 Subpopn 2 Total Popn

pA 0.6 0.4 0.5
pa 0.4 0.6 0.5

PAA 0.36 0.16 0.26 > (0.5)2

PAa 0.48 0.48 0.48 < 2(0.5)(0.5)

Paa 0.16 0.36 0.26 > (0.5)2
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Population Structure

Effect of population structure taken into account with the “theta-

correction.” Matching probabilities allow for a variance in allele

frequencies among subpopulations.

Pr(AA|AA) =
[3θ + (1 − θ)pA][2θ + (1 − θ)pA]

(1 + θ)(1 + 2θ)

where pA is the average allele frequency over all subpopulations.

We will come back to this expression.
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Population Admixture

A population might represent the recent admixture of two parental

populations. With the same two populations as before but now

with 1/4 of marriages within population 1, 1/2 of marriages

between populations 1 and 2, and 1/4 of marriages within pop-

ulation 2. If children with one or two parents in population 1 are

considered as belonging to population 1, there is an excess of

heterozygosity in the offspring population.

If the proportions of marriages within populations 1 and 2 are

both 25% and the proportion between populations 1 and 2 is

50%, the next generation has

Population 1 Population 2

PAA 0.09 + 0.12 = 0.21 0.04
PAa 0.12 + 0.26 = 0.38 0.12
Paa 0.04 + 0.12 = 0.16 0.09

0.75 0.25
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Exact HWE Test

The preferred test for HWE is an “exact” one. The test uses

the conditional probability of the genotypic counts (nAA, nAa, naa)

given the allelic counts (nA, na) and given HWE:

Pr(nAA, nAa, naa|nA, na,HWE) =
n!

nAA!nAa!naa!

2nAanA!na!

(2n)!

Reject the Hardy-Weinberg hypothesis if this probability is un-

usually small.
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Exact HWE Test Example

Reject the HWE hypothesis if the probability of the genotypic

array, conditional on the allelic array, is among the smallest prob-

abilities for all the possible sets of genotypic counts for those

allele counts.

As an example, consider (nAA = 1, nAa = 0, naa = 49). The allele

counts are (nA = 2, na = 98) and there are only two possible

genotype arrays:

AA Aa aa Pr(nAA, nAa, naa|nA, na,HWE)

1 0 49 50!
1!0!49!

202!98!
100! = 1

99

0 2 48 50!
0!2!48!

222!98!
100! = 98

99
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Exact HWE Test

The probability of the data on the previous slide, conditional on

the allele frequencies and on HWE, is 1/99 = 0.01. This is less

than the conventional 5% significance level.

In general, the p-value is the (conditional) probability of the data

plus the probabilities of all the less-probable datasets. The prob-

abilities are all calculated assuming HWE is true.
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Permutation Test

For large sample sizes and many alleles per locus, there are too

many genotypic arrays for a complete enumeration and a deter-

mination of which are the least probable 5% arrays.

A large number of the possible arrays is generated by permuting

the alleles among genotypes, and calculating the proportion of

these permuted genotypic arrays that have a smaller conditional

probability than the original data. If this proportion is small, the

Hardy-Weinberg hypothesis is rejected.
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Permutation Test

Fold a piece of paper into five horizonal strips. Mark each strip

with two alleles to represent five genotypes:

Card 1: A A

Card 2: A A

Card 3: A A

Card 4: a a

Card 5: a a

Tear the cards in half to give a deck of 10 cards, each with

one allele. Shuffle the deck and deal into 5 pairs, to give five

genotypes.
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Permutation Test

The permuted set of genotypes fall into one of four types:

AA Aa aa Number of times

3 0 2

2 2 1

1 4 0
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Permutation Test

Check the following theoretical values for the proportions of each

of the three types, from the expression:

n!

nAA!nAa!naa!
×

2nAanA!na!

(2n)!

AA Aa aa Conditional Probability

3 0 2 1
21 = 0.048

2 2 1 12
21 = 0.571

1 4 0 8
21 = 0.381

These should match the proportions found by repeating shuf-

flings of the deck of 10 allele cards.
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Permutation Test for D3S1358

For an STR locus, where {ng} are the genotype counts and

n =
∑

g ng is the sample size, and {na} are the alleles counts with

2n =
∑

a na, the exact test statistic is

Pr({ng}|{na},HWE) =
n!2H ∏

a na!
∏

g ng!(2n)!

where H is the count of heterozygotes.

This probability for the African American genotypic counts at

D3S1358 is 0.6163 × 10−13, which is a very small number. But

it is not unusually small if HWE holds: a proportion 0.81 of 1000

permutations have an even smaller probability. We do not reject

the HWE hypothesis in this case.
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Linkage Disequilibrium

This term is generally reserved for association between pairs of

alleles – one at each of two loci. In the present context, it

may simply mean some lack of independence of profile or match

probabilities at different loci.

Unlinked pairs of loci are expected to be almost independent,

and two-locus tests are generally not significant.

However, if two profiles match at several loci this may be because

they are from the same, or related, people and so are likely to

match at additional loci. We do not have good tests of linkage

disequilibrium across multiple loci.

Probability Slide 58



QQ Plots for Large SNP Studies
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QQ Plots for NIST 1036 Hispanics
Locus HWE EXP

F13B 0.0397 0.0172

TH01 0.0916 0.0517

F13A01 0.1050 0.0862

PentaD 0.1353 0.1207

PentaC 0.1369 0.1552

D22S1045 0.2359 0.1897

TPOX 0.2778 0.2241

D8S1179 0.3322 0.2586

D16S539 0.4475 0.2931

LPL 0.4516 0.3276

D1S1656 0.4806 0.3621

D19S433 0.5275 0.3966

D12S391 0.5516 0.4310

D21S1338 0.5547 0.4655

PentaE 0.6644 0.5000

FESFPS 0.6644 0.5345

D6S1043 0.6691 0.5690

D5S818 0.6691 0.6034

D2S441 0.7247 0.6379

D7S820 0.7269 0.6724

CSF1P0 0.7781 0.7069

FGA 0.7919 0.7414

D21S11 0.8219 0.7759

D10S1248 0.8238 0.8103

SE33 0.8784 0.8448

DSS1358 0.8950 0.8793

D18S51 0.9116 0.9138

vWA 0.9116 0.9483

vWA 0.9872 0.9828
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QQ Plots for NIST 1036 All
Locus HWE EXP

CSF1P0 0.0000 0.0172

D10S1248 0.0000 0.0517

D12S391 0.0000 0.0862

D13S317 0.0006 0.1207

D16S539 0.0047 0.1552

D18S51 0.0075 0.1897

D19S433 0.0184 0.2241

D1S1656 0.0444 0.2586

D21S11 0.0656 0.2931

D22S1045 0.0709 0.3276

D21S1338 0.0750 0.3621

D2S441 0.1281 0.3966

DSS1358 0.1556 0.4310

D5S818 0.1863 0.4655

D6S1043 0.2078 0.5000

D7S820 0.2200 0.5345

D8S1179 0.2675 0.5690

F13A01 0.2913 0.6034

F13B 0.3272 0.6379

FESFPS 0.3813 0.6724

FGA 0.4241 0.7069

LPL 0.4431 0.7414

PentaC 0.4588 0.7759

PentaD 0.5066 0.8103

PentaE 0.5144 0.8448

SE33 0.5163 0.8793

TH01 0.6678 0.9138

TPOX 0.7522 0.9483

vWA 0.7644 0.9828
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Hardy-Weinberg Equilibrium

HWE is a basic law in population genetics, described in 1908 by

English mathematician Hardy and German physician Weinberg.

If A and B are two alleles for a gene, and if they have population

proportions pA and pB then the population proportion of the

three genotypes AA, AB and BB are p2
A, 2pApB, and p2

B.

This law assumes infinitely large populations, mating at random,

with no migration or mutation or natural selection. It is not

‘true’ but it fits very well to data from human populations.
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Response to Lander

Is HWE expected? Human populations are generally found to be in HWE.

Does a departure from HWE indicate population structure? Although

population structure can lead to departures from HWE, so can several other

factors.

Why were departures detected from HWE? It is often the case that

electrophoretic detection of RFLP alleles results in heterozygotes being clas-

sified as homozygotes. “The Lifecodes database of three VNTR loci used

for forensics was used to show that the claimed excess of homozygotes is

not necessarily real because many heterozygotes with similar allele sizes are

misclassified as homozygotes. A simple test of H-W that takes such misclas-

sifications into account was developed to test for an overall excess or dearth

of heterozygotes in the sample (the complement of homozygote dearth or

excess). The application of this test to the Lifecodes database revealed that

there was no consistent evidence of violation of H-W for the Caucasian, black,

or Hispanic populations.”

Devlin B, et al. 1990. Science 249:1416-1420.
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Hardy-Weinberg Testing

The Lifecodes data were for VNTR markers, where the repeat

units were long and there were many repeat units. It was often

difficult to distinguish alleles with different, but not very different,

numbers of repeat units. Also, sometimes short alleles ran off

the end of the gel. VNTR data are not used today.

To illustrate HWE, we will look at some FBI data for a mi-

crosatellite marker with 10 alleles. Such a marker has 10 ho-

mozygote types and 45 heterozygote types, and it is quite likely

that several genotypes will not be seen in a sample of a few

hundred individuals even though all the alleles are seen.

For example, consider these genotype counts for the D3S1358

marker published by the FBI (Budowle and Moretti, 1999) for

an African-American sample:

http://www.fbi.gov/hq/lab/fsc/backissu/july1999/budowle.htm
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Hardy-Weinberg Testing

The 55 genotype counts, arranged with allele type headings for

rows and columns:

Observed < 12 12 13 14 15 16 17 18 19 > 19

< 12 0
12 0 0
13 0 0 0
14 0 0 0 2
15 0 0 1 19 15
16 1 1 1 15 39 19
17 0 0 2 10 26 24 9
18 1 0 1 2 6 10 3 0
19 0 0 0 1 0 0 1 0 0

> 19 0 0 0 0 1 0 0 0 0 0
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Hardy-Weinberg Testing

31 of the 55 genotypes did not appear in the sample of 210

individuals. How often would one of those types occur in the

population? HWE lets us calculate that from the observed allele

frequencies.

The allele counts in the data are:

Total

Allele < 12 12 13 14 15 16 17 18 19 > 19
Count 2 1 5 51 122 129 84 23 2 1 420
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Hardy-Weinberg Testing

In these data there are 210 genotypes: 45 homozygotes and

165 heterozygotes. The number of homozygotes expected un-

der HWE is the sample size times the sum of squares of allele

frequencies:

210×

[

(

2

420

)2

+

(

1

420

)2

+

(

5

420

)2

+

(

51

420

)2

+

(

122

420

)2

+

(

129

420

)2

+

(

84

420

)2

+

(

23

420

)2

+

(

2

420

)2

+

(

1

420

)2
]

= 210×
41746

176400
= 49.7
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Hardy-Weinberg Testing

There is good agreement between observed and expected ho-

mozygote counts, as expected. A formal goodness-of-fit statis-

tical test is conducted as

Observed Expected (o−e)2

e
Homozygotes 45 49.7 0.44
Heterozygotes 165 160.3 0.14

Total 210 210.0 0.58

The test statistic X2 = 0.58 is from a chi-square distribution

with 1 degree of freedom under the null hypothesis of HWE. It

would need to be at least 3.84 to declare significance at the 5%

level. No basis for rejecting HWE in this case.

There are several other approaches to testing for HWE.
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Predicting Genotype Counts

Suppose a crime stain had the D3S1358 type 12,15 (heterozy-

gous for alleles 12 and 15). None were observed in the FBI data,

but alleles 12 and 15 were seen with sample proportions 1/420

and 122/420.

The HWE population proportion is 2× 1
420×

122
420 = 0.0014. There

is only a small probability a random person would have that type,

so if a suspect has that type then the evidence seems quite

strong.
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Predicting Profile Counts

The power of DNA profiling comes from using many loci: the FBI

developed a 13-marker (now 20) “CODIS” panel. To predict a

13-marker profile probability it is usual to multiply over markers.

It is easy to test for HWE, independence of the two alleles,

at one marker but not possible to test for linkage equilibrium,

independence for all 26 alleles in a profile.

Indirect arguments support good consistency with independence.
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FBI Database (94 Profiles) Matching Counts

Match. Number of Partially Matching Loci
loci 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 O 0 3 18 92 249 624 1077 1363 1116 849 379 112 25 4

E 0 2 19 90 293 672 1129 1403 1290 868 415 134 26 2

1 O 0 12 48 203 574 1133 1516 1596 1206 602 193 43 3
E 0 7 50 212 600 1192 1704 1768 1320 692 242 51 5

2 O 0 7 61 203 539 836 942 807 471 187 35 2
E 1 9 56 210 514 871 1040 877 511 196 45 5

3 O 0 6 33 124 215 320 259 196 92 16 1
E 1 7 36 116 243 344 334 220 94 23 3

.
4 O 1 5 17 29 54 82 67 16 6 0

E 0 3 15 40 70 81 61 29 8 1

5 O 0 1 2 6 12 14 6 5 0
E 0 1 4 9 13 11 6 2 0

6 O 0 1 0 2 2 0 0 0
E 0 0 1 1 1 1 0 0
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What are match probabilities?

[Vallone: https://www.nist.gov/document-7351]
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Will match probabilities keep decreasing?

STR panel Match probability

13-locus CODIS 2.34 × 10−15

15-locus Identifiler 5.93 × 10−18

20-locus CODIS 9.54 × 10−25

24-locus FBI core 6.28 × 10−30

[Ge et al, Investigative Genetics 3:1-14, 2012]
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Will match probabilities keep decreasing?

How do these match probabilities address the observation of

Donnelly:

“after the observation of matches at some loci, it is rel-

atively much more likely that the individuals involved are

related (precisely because matches between unrelated in-

dividuals are unusual) in which case matches observed at

subsequent loci will be less surprising. That is, knowl-

edge of matches at some loci will increase the chances

of matches at subsequent loci, in contrast to the inde-

pendence assumption.”

[Donnelly, Heredity 75:26-64. 1995]
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Are match probabilities independent over loci?

Is the problem that we keep on multiplying match probabilities

over loci under the assumption they are independent? Can we

even test that assumption for 10 or more loci?

Or is the standard “random match probability” not the appro-

priate statistic to be reporting in casework? Is it actually appro-

priate to report statements such as

The approximate incidence of this profile is 1 in 810 quin-

tillion Caucasians, 1 in 4.9 sextillion African Americans

and 1 in 410 quadrillion Hispanics.
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Empirical dependencies: 2849 20-locus profiles

The product over loci under-estimates the actual match propor-

tions to an extent that increases with more loci.

Edward Zhao, unpublished
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Match Probabilities

The match probability is usually estimated using allele frequen-

cies from a database representing some broad class of people,

such as “Caucasian” or “African American” or “Hispanic.”

The population relevant for a particular crime may be a narrower

class of people. There is population structure, quantified by the

parameter θ. If p are the allele frequencies in the database, the

match probabilities are estimated as

Pr(AA|AA) =
[3θ + (1 − θ)pA][2θ + (1 − θ)pA]

(1 + θ)(1 + 2θ)

Pr(AB|AB) =
2[θ + (1 − θ)pA][θ + (1 − θ)pB]

(1 + θ)(1 + 2θ)

Can these be multiplied over loci?
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2849 US profiles

θ = 0 θ = 0.001 θ = 0.01
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15,000 Australian Profiles
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Numbers of five-locus matches among nine-locus profiles.

Weir BS. 2004. Journal of Forensic Sciences 49:1009-1014

29



Conclusions

• Product of profile probabilities decreases at the same rate as

number of loci increases.

• Match probabilities are not profile probabilities.

• Match probabilities decrease more slowly as number of loci

increases.

• “Theta correction” may accommodate multi-locus depen-

dencies.

• Empirical studies need much larger databases.
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