INBREEDING AND RELATEDNESS

Questions of Interest

If genotypic data are available, individual inbreeding and kinship values can be estimated:

- What is the Genetic Relatedness Matrix? (association mapping)
- How do social behaviors evolve?
- How should captive breeding programs be managed? (conservation genetics)
- Are these remains from a person in this family? (disaster victim identification)

Kinship vs Inbreeding

The kinship of individuals j, j^{\prime} in population i is the probability an allele from j is ibd to an allele from j^{\prime}. This is $\theta_{j j^{\prime}}^{i}$.

The inbreeding of individual j in population i is the probability the two alleles in that individual are ibd. Write this as F_{j}^{i}.

Two alleles drawn from individual j are equally likely to be the same allele or different alleles:

$$
\theta_{j j}^{i}=\frac{1}{2}\left(1+F_{j}^{i}\right)
$$

Predicted Values: Path Counting

If there are n individuals (including X, Y, A) in the path linking the parents through A, then the inbreeding F_{I} of I, or the kinship $\theta_{X Y}$ of X and Y, is

$$
F_{I}=\theta_{X Y}=\left(\frac{1}{2}\right)^{n}\left(1+F_{A}\right)
$$

If there are several ancestors, this expression is summed over all the ancestors.

Average Kinships

The average over all pairs of distinct individuals, $j \neq j^{\prime}$, of the kinships $\theta_{j j^{\prime}}^{i}$ is written as θ_{S}^{i}. The average of this over populations is θ_{S}. These are probabilities for individuals.

When there is random mating and Hardy-Weinberg equilibrium in a population, any pair of distinct alleles in a population (within or between individuals) is equivalent and then the average ibd probability for all these pairs is written as θ_{W}^{i}, where W means within populations. The average over populations is θ_{W}. These are probabilities for distinct alleles.

The ibd probability for any allele from population i and any allele from population i^{\prime} is $\theta_{B}^{i i^{\prime}}$, where B means between populations. Averaging over all pairs of distinct populations gives θ_{B}.

Within-population Inbreeding: $F_{I S}$

For population i, the inbreeding coefficient for individual j, relative to the identity of pairs of alleles between individuals in that population, is

$$
\beta_{j}^{i}=\frac{F_{j}^{i}-\theta_{S}^{i}}{1-\theta_{S}^{i}}
$$

The average over individuals within this population is the populationspecific $F_{I S}^{i}$, and it compares within-individual ibd to betweenindividual ibd in the same population. It is the quantity f being addressed by Hardy-Weinberg testing in population i.

If the reference set of alleles is for pairs of individuals within populations, averaged over populations, then the average relative inbreeding coefficient is $\beta_{I S}=\left(F_{I}-\theta_{S}\right) /\left(1-\theta_{S}\right)$ where F_{I} is the average of F_{j}^{i} over individuals j and populations i. It is generally called $F_{I S}$.

Total Inbreeding: $F_{I T}$

For population i, the inbreeding coefficient for individual j, relative to the identity of pairs of alleles from different populations averaged over all pairs of populations, is

$$
\beta_{j}^{i}=\frac{F_{j}^{i}-\theta_{B}}{1-\theta_{B}}
$$

The average over individuals within this population is the populationspecific $F_{I T}^{i}$. The average of these over all populations is the total inbreeding coefficient $F_{I T}=\left(F_{I}-\theta_{B}\right) /\left(1-\theta_{B}\right)$.

Within-population Kinship

For population i, the kinship of individuals j, j^{\prime} relative to the kinship for all pairs of individuals in that population is

$$
\beta_{j j^{\prime}}^{i}=\frac{\theta_{j j^{\prime}}^{i}-\theta_{S}^{i}}{1-\theta_{S}^{i}}
$$

and these average zero over all pairs of individuals in the population.

If the reference set is all pairs of alleles, one from each of two populations,

$$
\beta_{j j^{\prime}}^{i}=\frac{\theta_{j j^{\prime}}^{i}-\theta_{B}}{1-\theta_{B}}
$$

The average $\beta_{S T}^{i}$ over all pairs of individuals in population i is the population-specific $F_{S T}^{i}$, and averaging this over populations gives the global $F_{S T}=\left(\theta_{S}-\theta_{B}\right) /\left(1-\theta_{B}\right)$. It is the ibd probability between individuals within populations relative to the ibd probability between populations.

Genotypic Measures

When individuals are distinguished:

$$
\begin{aligned}
\left(1-F_{I T}\right) & =\left(1-F_{I S}\right)\left(1-F_{S T}\right) \\
F_{I S} & =\frac{F_{I T}-F_{S T}}{1-F_{S T}}
\end{aligned}
$$

This classic result also holds for population-specific values

$$
\begin{aligned}
\left(1-F_{I T}^{i}\right) & =\left(1-F_{I S}^{i}\right)\left(1-F_{S T}^{i}\right) \\
F_{I S}^{i} & =\frac{F_{I T}^{i}-F_{S T}^{i}}{1-F_{S T}^{i}}
\end{aligned}
$$

