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REGRESSION METHODS

Logistic regression
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Logistic Regression: Motivation

n Many scientific questions of interest involve a 
binary outcome (e.g. disease/no disease)

n Let’s investigate if genetic factors are associated 
with presence/absence of coronary heart disease 
(CHD) 
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Logistic Regression: Motivation

n Scientific questions of interest:

n Assess the effect of rs4775401 on CHD

n Assess the effect of cholesterol on CHD

n Assess the effect of rs4775401 on CHD after accounting 
for cholesterol 
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Logistic Regression: Motivation

n Scientific question:
n Assess the effect of rs4775401 on risk of CHD

n rs4775401 - Coded as the number of minor alleles
n 0 = C/C, 1 = C/T, 2 = T/T.



Here is a contingency table for the SNP and CHD:

§ Does the prevalence of CHD differ across the 
groups?

§ Without using regression, what tool could we use 
to look for an association between rs4755401 and 
CHD?

Motivation: rs4755401 and CHD

> table(rs4775401,chd)
 chd
rs4775401   0   1
        0 154  48
        1 104  66
        2  15  13

Prevalence of CHD in C/C: 
48/(48+154) = 0.238
Prevalence of CHD in C/T: 
66/(66+104) = 0.388
Prevalence of CHD in T/T: 
13/(13+15)  = 0.464
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Here is a contingency table for the SNP and CHD:

Without using regression, what tool could we use to look for an association?

In addition to hypothesis testing, we need to summarize the strength of 
association between the two variables
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Motivation: rs4755401 and CHD

> table(rs4775401,chd)
   
      0   1
  0 154  48
  1 104  66
  2  15  13

> chisq.test(rs4775401,chd)
 
Pearson's Chi-squared test
data:  rs4775401 and chd
X-squared = 12.657, df = 2, p-value = 0.001785



Measures of association for binary outcomes

n Risk difference (RD) = P(outcome|exposed) - P(outcome|not exposed) 
 = b/(a+b) - d/(c+d)

n RD(T/T vs C/C) = 13/(13+15) – 48/(48+154) = 0.464 – 0.238 =0.226

Outcome

No Yes

Ex
po
su
re Yes a b

No c d

> table(rs4775401,chd)
   
      0   1
  0 154  48
  1 104  66
  2  15  13
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n Risk difference interpretation
n Additive difference in probability (risk) between exposed 

and unexposed
n Also called excess risk
n -1 < RD < 1
n RD = 0 ⇒ no association; risk of outcome same for 

exposed and unexposed

Outcome

No Yes

Ex
po
su
re Yes a b

No c d

Measures of association for binary outcomes
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n Relative risk (RR) = P(outcome|exposed)/P(outcome|not exposed) 
       = (b/(a+b))/(d/(c+d))

n RR(T/T vs C/C) = (13/(13+15)) / (48/(48+154)) = 0.464 / 0.238 =1.95

Outcome

No Yes

Ex
po
su
re Yes a b

No c d

Measures of association for binary outcomes

> table(rs4775401,chd)
   
      0   1
  0 154  48
  1 104  66
  2  15  13
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n Relative risk interpretation
n Multiplicative difference in probability (risk) of outcome 

among exposed compared to unexposed
n 0 < RR < ∞
n RR = 1 ⇒ no association; risk of outcome same for exposed 

and unexposed

Outcome

No Yes

Ex
po
su
re Yes a b

No c d

Measures of association for binary outcomes
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§ The odds is the ratio of the risk of having an outcome to the risk of not 
having the outcome

§  If p is the risk of an outcome, then the odds of the outcome are p/(1-p)
§ The odds ratio (OR) is the ratio of the odds of the outcome in the 

“exposed” to the odds of the outcome in the “unexposed”:
OR = [p1 /(1- p1)]/ [p0 /(1- p0)] = odds ratio

where p1=risk in exposed and p0=risk in unexposed
§  Like the relative risk, the odds ratio provides a measure of association in 

a ratio (rather than a difference) 
§  The odds ratio is the ratio of two ratios (i.e. the ratio of odds)
§  The OR approximates RR for rare events
§  The OR is more complicated to interpret than the RR (except for rare 

events), but there are some study designs (namely, case-control studies) 
where it is not possible to directly estimate the risk ratio, but one can 
always estimate the odds ratio

Measures of association for binary outcomes
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§  Say the chance of “disease” (D) if you’re “exposed” (E) = 0.25

§ Then the odds of getting D (for those who are exposed) are

§  Say the chance of “disease” if you’re “not exposed” =0.1

§ Then the odds of getting D (for those who are not exposed) are
  

§  Then the disease odds ratio (ratio of the odds of disease in the exposed to 
the odds of disease in the unexposed) is

Q:  What is the risk ratio here? 
  

0.25/0.75  = 1/3  or  1:3

0.1/0.9  = 1/9  or  1:9

(1/3)/(1/9) = 3

2.5

Measures of association for binary outcomes



n Odds = P/(1-P)
n Odds ratio (OR)   = Odds(outcome|exposed)/Odds(outcome|not exposed) 
  = ((b/(a+b))/(a/(a+b)))/((d/(c+d))/(c/(c+d)))
  = (b/a)/(d/c) = (bc)/(ad)

n OR(T/T vs C/C) = (13/15) / (48/154) = 2.78

Outcome

No Yes

Ex
po
su
re Yes a b

No c d

Measures of association for binary outcomes

> table(rs4775401,chd)
   
      0   1
  0 154  48
  1 104  66
  2  15  13

14



n Odds ratio interpretation
n Multiplicative difference in odds of outcome between 

exposed and unexposed
n 0 < OR < ∞
n OR = 1 ⇒ no association; odds of outcome same for 

exposed and unexposed

Outcome

No Yes

Ex
po
su
re Yes a b

No c d

Measures of association for binary outcomes
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Pros and cons of measures of association

n RD is appealing because it directly 
communicates absolute increase in risk
n Often more policy relevant than relative measures

n RR more directly interpretable than OR (most 
people don’t have an intuitive understanding 
of odds)

n OR estimable in case-control studies where 
RR and RD are not

n For rare outcomes, OR ≈ RR

16
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Logistic Regression: Motivation

n The chi-squared test is adequate for investigating 
the association between two categorical variables

n But what if we want to investigate the association 
between a continuous predictor like cholesterol and 
a binary outcome like CHD?

n Or what if we want to adjust for potential 
confounders?

n Logistic regression will provide us with a tool for this



Binary outcome and continuous exposure

n Objective: Estimate association between binary outcome 
and continuous exposure

n Y = binary response (0=no, 1=yes)
X = continuous exposure
p = E(Y | X) = P(Y = 1|X ) 

n One solution – fit a linear model

n This is just a standard linear model except our outcome is 
binary

n Interpretation of b1?
n Problems with this approach?
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Motivating example: CHD and cholesterol

> lm.mod1  <- lm(chd ~ chol, data = cholesterol)
> summary(lm.mod1)

Call:
lm(formula = chd ~ chol, data = cholesterol)

Residuals:
    Min      1Q  Median      3Q     Max 
-0.7067 -0.3301 -0.1289  0.3975  1.0227 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -1.4245087  0.1747852   -8.15 4.77e-15 ***
chol         0.0094718  0.0009436   10.04  < 2e-16 ***
---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4169 on 398 degrees of freedom
Multiple R-squared:  0.202, Adjusted R-squared:    0.2 
F-statistic: 100.8 on 1 and 398 DF,  p-value: < 2.2e-16

What is the interpretation of the 
cholesterol parameter estimate?
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Binary outcome and continuous exposure

w Alternative: use a transformation that maps P(Y = 1|X) to 
the real line

w Let logit(p) = log(p / (1 - p)))

w p      (0, 1) 

w p /(1 - p)      (0, ∞) 

w log(p /(1 - p))      (-∞, ∞) 

∈

∈

∈
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Logistic regression

§ logit(p) = log(p / (1 - p))) 
           … this ensures that p lies between 0 and 1

§ Regress logit(p) on X

logit[E(Y|X)] = log[P(Y=1|X)/(1– P(Y=1|X))] = β0 + β1X 

n It turns out that the slope coefficients in logistic regression 
are readily interpretable: they are just log odds ratios!
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Interpretation of logistic regression parameters

§ On the log-odds scale
 log[odds(Y=1|X = (c+1))] = β0 + β1(c+1) 
 log[odds(Y=1|X = c)] = β0 + β1c

  log[odds(Y=1|X = (c+1))] - log[odds(Y=1|X = c)] = β1
  log[odds(Y=1|X = (c+1))/odds(Y=1|X = c)] = β1
  log[OR] = β1

§ That is, for two observations that differ by one unit in X 
there is a difference of     in their log odds of Y = 1

§ Or, equivalently, the log of the ratio of the odds of Y = 
1 (i.e. the log OR) for two units that differ in X by one 
unit is 

β1

β1

Odds Ratio (OR)
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Interpretation of logistic regression parameters

§ By exponentiating we arrive at a simpler interpretation

§ So for two observations that differ in X by one unit there 
is a multiplicative difference in their odds of Y = 1 of

§ Or, equivalently, the ratio of the odds of Y = 1 (i.e., the 
odds ratio) for two observations that differ in X by one 
unit is 

exp(log(OR)) = exp(β1)
OR = exp(β1)

exp(β1)

exp(β1)
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Motivating example: CHD and cholesterol

w What do these results tell us about the 
relationship between cholesterol and CHD?

> glm.mod1 <- glm(chd ~ chol, family = "binomial")
> summary(glm.mod1)

Call:
glm(formula = chd ~ chol, family = "binomial", data = cholesterol)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.7437  -0.8219  -0.4852   0.9096   2.4536  

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept) -11.09600    1.29881  -8.543  < 2e-16 ***
chol          0.05498    0.00678   8.109 5.12e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 499.98  on 399  degrees of freedom
Residual deviance: 409.71  on 398  degrees of freedom
AIC: 413.71

Number of Fisher Scoring iterations: 4
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Motivating example: CHD and cholesterol

w Comparing two people who differ in cholesterol by 1 mg/dl, the log 
odds of CHD are higher by 0.055 for the individual with higher 
cholesterol

> glm.mod1 <- glm(chd ~ chol, family = "binomial")
> summary(glm.mod1)

Call:
glm(formula = chd ~ chol, family = "binomial", data = cholesterol)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.7437  -0.8219  -0.4852   0.9096   2.4536  

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept) -11.09600    1.29881  -8.543  < 2e-16 ***
chol          0.05498    0.00678   8.109 5.12e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 499.98  on 399  degrees of freedom
Residual deviance: 409.71  on 398  degrees of freedom
AIC: 413.71

Number of Fisher Scoring iterations: 4
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Motivating example: CHD and cholesterol

w Differences in log odds are pretty spectacularly difficult 
to interpret!

w It would be much better to exponentiate the coefficients 
and report odds ratios

w Comparing two people who differ in cholesterol by 1 
mg/dl, the odds of CHD are higher by a factor of 1.06 
(95% CI: 1.04, 1.07) for the individual with higher 
cholesterol

> exp(glm.mod1$coef)
 (Intercept)         chol 
1.517293e-05 1.056515e+00 
> exp(confint(glm.mod1))
Waiting for profiling to be done...
                   2.5 %       97.5 %
(Intercept) 1.061838e-06 0.0001744859
chol        1.043101e+00 1.0712556915
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Motivating example: CHD and cholesterol

w A 1 mg/dl difference is very small, so we might be 
interested in estimating the OR associated with a larger 
difference such as 10 mg/dl

w In this case, just as in linear regression we just need to 
multiply our coefficient by the appropriate factor

w Comparing two people whose cholesterol levels differ by 
10 mg/dl, the person with the higher cholesterol has 
1.73 times higher odds of CHD compared to the person 
with lower cholesterol.

> exp(10*glm.mod1$coef)
 (Intercept)         chol 
6.466861e-49 1.732831e+00
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Multivariable logistic regression

w Often we are interested in examining associations 
between multiple predictors simultaneously and a 
binary outcome 

w Multiple logistic regression follows same pattern as 
linear regression

w exp(bj) interpreted as the OR associated with a one 
unit change in the j’ th predictor, among individuals 
with other predictors at same levels (or holding other 
predictors constant/controlling for/adjusting for etc.)
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logit[E(Y|X)] = β0 + β1X1 + β2X2 + …. + βpXp 



Motivating example
> glm.mod2 <- glm(chd ~ chol+factor(rs4775401), family = "binomial", data = cholesterol)
> summary(glm.mod2)

Call:
glm(formula = chd ~ chol + factor(rs4775401), family = "binomial", 
    data = cholesterol)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.5528  -0.7810  -0.4585   0.8037   2.6275  

Coefficients:
                     Estimate Std. Error z value Pr(>|z|)    
(Intercept)        -11.625209   1.335335  -8.706  < 2e-16 ***
chol                 0.055443   0.006872   8.069 7.11e-16 ***
factor(rs4775401)1   0.794212   0.259257   3.063  0.00219 ** 
factor(rs4775401)2   1.138308   0.464317   2.452  0.01422 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 499.98  on 399  degrees of freedom
Residual deviance: 397.27  on 396  degrees of freedom
AIC: 405.27

Number of Fisher Scoring iterations: 4
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Motivating example

> exp(glm.mod2$coef)
       (Intercept)               chol factor(rs4775401)1 factor(rs4775401)2 
      8.937908e-06       1.057009e+00       2.212697e+00       3.121483e+00

30

§ As we have seen before, exponentiating the coefficients 
gives us odds ratios

§ A one mg/dl increase in cholesterol is associated with 
1.06 times higher odds of CHD after adjusting for 
genotype

§ We can also obtain confidence intervals for the odds 
ratios

> exp(confint(glm.mod2))

                          2.5 %       97.5 %
(Intercept)        5.776075e-07 0.0001096301
chol               1.043422e+00 1.0719733312
factor(rs4775401)1 1.336145e+00 3.6998174205
factor(rs4775401)2 1.250542e+00 7.8187264825



Hypothesis testing for logistic regression

n Maximum likelihood is the standard method of 
estimating parameters from logistic models and is 
based on finding the estimates which maximize the 
joint probability for the observed data under the 
chosen model. 

n The Wald test uses maximum likelihood estimates 
(MLE) and their standard errors to conduct hypothesis 
tests

n Test: H0: bj = 0 (no association) vs. HA: bj ≠ 0 
n Construct a z-score: 
 
 z =             ∼ N(0, 1) ⇒ Wald Testβ̂ j

SE(β̂ j )
31



Motivating example
> glm.mod2 <- glm(chd ~ chol+factor(rs4775401), family = "binomial", data = cholesterol)
> summary(glm.mod2)

Call:
glm(formula = chd ~ chol + factor(rs4775401), family = "binomial", 
    data = cholesterol)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.5528  -0.7810  -0.4585   0.8037   2.6275  

Coefficients:
                     Estimate Std. Error z value Pr(>|z|)    
(Intercept)        -11.625209   1.335335  -8.706  < 2e-16 ***
chol                 0.055443   0.006872   8.069 7.11e-16 ***
factor(rs4775401)1   0.794212   0.259257   3.063  0.00219 ** 
factor(rs4775401)2   1.138308   0.464317   2.452  0.01422 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 499.98  on 399  degrees of freedom
Residual deviance: 397.27  on 396  degrees of freedom
AIC: 405.27

Number of Fisher Scoring iterations: 4

Wald statistics and p-values for 
each parameter
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Likelihood ratio test

§ The likelihood ratio statistic is useful in comparing 
nested models. (LRT = likelihood ratio test) 

§ This allows us to test hypotheses about multiple 
parameters simultaneously such as

 H0: b1 = b2 = 0 vs 
 HA: at least one parameter not equal to 0
§ In order to use the LRT we must fit a nested hierarchy 

of models
§ For example:
 Model 1: logit pi = b0 + b1choli

Model 2: logit pi = b0 + b1choli + b2SNP1i + b3SNP2i
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Likelihood ratio test

n The LRT allows us to test the significance of the 
additional parameters in the larger model. 

n Model 1: logit pi = b0 + b1choli
     Model 2: logit pi = b0 + b1choli + b2SNP1i + b3SNP2i

n Example: Compare model 1 to model 2
 H0: b2 = b3 = 0 

 LRT = -2 [L1 − L2] ∼ c22
df = # parameters 
being tested
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Example: Likelihood ratio test

n After accounting for cholesterol, there is a statistically 
significant association between rs4775401 and CHD

> lrtest(glm.mod1,glm.mod2)
Likelihood ratio test

Model 1: chd ~ chol
Model 2: chd ~ chol + factor(rs4775401)
  #Df  LogLik Df Chisq Pr(>Chisq)   
1   2 -204.85                       
2   4 -198.63  2 12.44   0.001989 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Logistic Regression: Assumptions

1. Logit(E[Y|x])  is related linearly to x 

2. Y’s are independent of each other

36
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Summary

We have considered:

§ Measures of association for binary outcomes

§ Logistic regression

§ Interpretation
§ Estimation
§ Hypothesis testing
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REGRESSION METHODS

Generalized linear models



Generalized linear models

§ So far we have considered :
§ Continuous outcomes – linear regression/ANOVA
§ Binary outcomes – logistic regression

§ Generalized linear models (GLMs) provide a way to 
model 
§ Continuous and binary outcomes
§ Additional types of outcome variables (e.g. counts) 
§ Additional functional forms for the relationship between 

outcomes and predictors
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Generalized Linear Models

§ GLMs allow us to estimate regression models for 
outcomes arising from exponential family distributions. 
This family includes many familiar distributions including 
Normal, Binomial and Poisson. 

§ A GLM is specified based on three components:
§ Outcome distribution
§ Linear predictor
§ Link function

§ We will see that linear and logistic regression are both 
GLMs with specific choice of outcome and link function!
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Outcome distribution

§ The first step in fitting a GLM is to choose an 
appropriate distribution for your outcome

§ Examples
§ Continuous outcome – Normal
§ Binary outcome – Binomial
§ Count outcome – Poisson

41



Linear predictor

§ After specifying a distribution for the 
outcome, we specify the linear predictor,

g[E(Y)] = β0 + β1x1 + … + βpxp

§ This is just the systematic piece of our 
regression model

§ As in other regression models we have seen, 
we need to identify the set of covariates to be 
included
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Link function

§ Finally, we specify a link function, g[E(Y)]:
g[E(Y)] = β0 + β1x1 + … + βpxp 

§ This describes the functional form of the 
relationship between E(Y) and the linear predictor

§ In linear regression, we use the identity link 
function g[E(Y)] = E(Y)

§ In logistic regression, we use the logit link 
function g[(E(Y)] = log[E(Y)/(1-E(Y))]
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Generalized linear models

Distribution Link function Model

Normal Identity g[E(Y)]=E(Y) Linear 
regression

Binomial Logit g[E(Y)]=
   log[E(Y)/(1-E(Y))]

Logistic 
regression

Poisson Log g[E(Y)]=log[E(Y)] Poisson GLM

Gamma Log g[E(Y)]=log[E(Y)] Gamma GLM

A few example GLMS:
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Alternatives to logistic regression

n Odds ratio is limited by difficulty of interpretation 

n Relative risk is more interpretable

n To estimate a relative risk using regression we can 
use the log linear model: 

log[E(Y|x)] = β0 + β1x 

n This is sometimes referred to as “relative risk 
regression”

n exp(β1) is the relative risk associated with a one-
unit increase in x 
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Modified Poisson regression
§ To estimate the relative risk, we could use a binomial GLM 

with log link.
§ It turns out that estimation for this model is very challenging and 

results are sensitive to outliers in X
§ An alternative approach that performs better in practice is 

modified Poisson regression
§ This method uses a Poisson GLM with log link
§ Using a Poisson model for binary data will give incorrect 

standard errors because the variance for binary outcomes 
differs from the variance for Poisson outcomes

§ We can combine the Poisson GLM with a robust variance 
estimator to account for this violation of the model’s 
assumptions
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Modified Poisson regression

> glm.rr <- glm(chd ~ chol+factor(rs4775401), family = "poisson", data = cholesterol)
> coeftest(glm.rr, vcov = sandwich)

 z test of coefficients:

                     Estimate Std. Error  z value  Pr(>|z|)    
(Intercept)        -7.0649420  0.5860408 -12.0554 < 2.2e-16 ***
chol                0.0296341  0.0027524  10.7668 < 2.2e-16 ***
factor(rs4775401)1  0.4151094  0.1444449   2.8738  0.004055 ** 
factor(rs4775401)2  0.6384162  0.2000234   3.1917  0.001414 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Modified Poisson regression

> exp(glm.rr$coef)
       (Intercept)               chol factor(rs4775401)1 factor(rs4775401)2 
      0.0008545444       1.0300775972       1.5145364657       1.8934796543 

> exp(glm.mod2$coef)
       (Intercept)               chol factor(rs4775401)1 factor(rs4775401)2 
      8.937908e-06       1.057009e+00       2.212697e+00       3.121483e+00

w Relative risk of CHD associated with 1 mg/dl 
increase in cholesterol is 1.03.

w Compare this to the odds ratio we obtained earlier 
using logistic regression

48



Relative risk regression: Assumptions

1. log(E[Y|x]) = log(P(Y=1 |x)  is related linearly to x 
 Warning: this can lead to predicted probabilities > 1

2. Y’s are independent of each other
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Risk difference regression

w Recall, we also considered fitting a linear model to binary 
outcome data

w This allows us to estimate differences in risk associated with 
a 1 unit difference in the predictor

w By using robust standard errors, we can account for 
violation of the assumptions of normality and equal variance

50

> glm.rd <- glm(chd ~ chol+factor(rs4775401), family = "gaussian", data = cholesterol)
> coeftest(glm.rd, vcov = sandwich)

 z test of coefficients:

                      Estimate  Std. Error  z value  Pr(>|z|)    
(Intercept)        -1.48541657  0.13724141 -10.8234 < 2.2e-16 ***
chol                0.00939240  0.00076156  12.3331 < 2.2e-16 ***
factor(rs4775401)1  0.14274314  0.04231723   3.3732 0.0007431 ***
factor(rs4775401)2  0.21210838  0.08223706   2.5792 0.0099020 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Risk difference regression
§ A 1 mg/dl difference is very small, so we might be interested in 

estimating the RD associated with a larger difference such as 10 
mg/dl

§ Comparing two people with the same rs4775401 genotype whose 
cholesterol levels differ by 10 mg/dl, the risk of CHD for the person 
with the higher cholesterol is 9.4% higher (in absolute terms) 
compared to the person with lower cholesterol

n Comparing two people with the same cholesterol level, a person 
with rs4775401 C/T is estimated to have risk of CHD 14.3% higher 
(in absolute terms) than a person with rs4775401 C/C

n Comparing two people with the same cholesterol level, a person 
with rs4775401 T/T is estimated to have risk of CHD 21.2% higher 
(in absolute terms) than a person with rs4775401 C/C
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Risk difference regression: Assumptions

1. E[Y|x] = P(Y=1|x)  is related linearly to x 

Warning: this can lead to predicted probabilities > 1 or < 0

2. Y’s are independent of each other
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Summary

We have considered:

§ Logistic regression
§ Interpretation
§ Estimation

§ Generalized linear models
§ Relative risk regression
§ Risk difference regression



Lab

n Let’s work on Exercises 13-17
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Module summary

n In this module we have covered a variety of regression methods that 
can be used to analyze continuous and binary outcomes:

n Continuous outcomes
n Simple linear regression
n Multiple linear regression
n ANOVA

n Binary outcomes
n Logistic regression
n Relative risk regression
n Risk difference regression

n These methods are foundational for many statistical analyses, and we 
hope you will be able to apply them to your future research! 55



56

Everything is regression!
(Professor Scott Emerson)


