HERITABILITY ESTIMATION

Heritability

For an additive trait, heritability in a HWE population is

$$
h^{2}=\frac{\sigma_{A}^{2}}{\sigma_{A}^{2}+\sigma_{E}^{2}}
$$

Estimation of h^{2} therefore requires estimation of σ_{A}^{2} and σ_{E}^{2}. There are likelihood-based methods for doing that, assuming the trait values are normally distributed.

These notes follow a discussion given by Speed D, et al. 2012. Am J Hum Genet 91:1011

Speed et al. 2012

Instead of having replicates of the history of a single individual, use the trait values for a sample of individuals in some population. Speed et al. used \widehat{V}_{T} for the sample variance of trait values:

$$
\hat{V}_{T}=\frac{1}{n-1} \sum_{i}\left(Y_{i}-\bar{Y}\right)^{2}
$$

and \hat{V}_{R} for the residual variance once the genotypic effects have been fitted:

$$
\widehat{V}_{R}=\frac{1}{n-1} \sum_{i}\left(E_{i}-\bar{E}\right)^{2}
$$

As an estimate of heritability, Speed et al. combined these two sample variances

$$
\widehat{h^{2}}=\frac{\widehat{V}_{T}-\widehat{V}_{R}}{\widehat{V}_{T}}
$$

Speed et al. 2012

It can be shown that

$$
\begin{aligned}
\mathcal{E}\left(\hat{V}_{T}\right) & =\frac{1}{n}\left[\operatorname{tr}(\boldsymbol{G})-\frac{1}{n-1} \Sigma_{G}\right] \sigma_{A}^{2}+\sigma_{E}^{2} \\
\mathcal{E}\left(\hat{V}_{R}\right) & =\sigma_{E}^{2}
\end{aligned}
$$

so that

$$
\mathcal{E}\left(\widehat{h^{2}}\right)=\frac{\frac{1}{n}\left[\operatorname{tr}(\boldsymbol{G})-\frac{1}{n-1} \Sigma_{\boldsymbol{G}}\right] \sigma_{A}^{2}}{\frac{1}{n}\left[\operatorname{tr}(\boldsymbol{G})-\frac{1}{n-1} \Sigma_{G}\right] \sigma_{A}^{2}+\sigma_{E}^{2}}
$$

and this has a parametric value of

$$
\mathcal{E}\left(\widehat{h^{2}}\right)=\frac{\left(1+F_{W}-2 \theta_{S}\right) \sigma_{A}^{2}}{\left(1+F_{W}-2 \theta_{S}\right) \sigma_{A}^{2}+\sigma_{E}^{2}}
$$

Expectation of $\widehat{h^{2}}$

In the case of no identity by descent within or between individuals, $F_{W}=\theta_{S}=0$,

$$
\mathcal{E}\left(\widehat{h^{2}}\right)=\frac{\sigma_{A}^{2}}{\sigma_{A}^{2}+\sigma_{E}^{2}}=h^{2}
$$

In general, however, the expectation of \hat{h}^{2} is
$\mathcal{E}\left(\widehat{h^{2}}\right)=\frac{\left(1+F_{W}-2 \theta_{S}\right) \sigma_{A}^{2}}{\left(1+F_{W}-2 \theta_{S}\right)(1+f) \sigma_{A}^{2}+\sigma_{E}^{2}}=\frac{\left(1-\theta_{S}\right)(1+f) \sigma_{A}^{2}}{\left(1-\theta_{S}\right)(1+f) \sigma_{A}^{2}+\sigma_{E}^{2}}$
where $f=\left(F_{W}-\theta_{S}\right) /\left(1-\theta_{S}\right)$. We are not aware that this expression has been presented before, although

$$
\mathcal{E}\left(\widehat{h^{2}}\right)=\frac{(1+F) \sigma_{A}^{2}}{(1+F) \sigma_{A}^{2}+\sigma_{E}^{2}}
$$

is often given as though the study population has inbreeding but no kinship: $F=f, \theta_{S}=0$. It does not seem likely that a natural population could consist of inbred but unrelated individuals.

Expectation of $\widehat{h^{2}}$

For a population in Hardy-Weinberg equilibrium, $F_{W}=\theta_{S}, f=0$:

$$
\mathcal{E}\left(\widehat{h^{2}}\right)=\frac{\left(1-\theta_{S}\right) \sigma_{A}^{2}}{\left(1-\theta_{S}\right) \sigma_{A}^{2}+\sigma_{E}^{2}}
$$

and then $\widehat{h^{2}}$ will be close to unbiased if θ_{S} is low.

Use of Estimated GRM

The Speed et al. estimate uses two sample variances, and does not make explicit use of the GRM. Likelihood-based methods do use the GRM. As the parametric values $F_{i}, \theta_{i j}$ are not generally known, \boldsymbol{G} is replaced by a matrix \boldsymbol{K} of estimates. What is the resulting heritability estimate then estimating?

Use of Allele-sharing GRM

Can estimate half the GRM with $\hat{K}_{a s}$ having elements $\left\{\widehat{\beta}_{i j}\right\}$. If $\tilde{M}_{i j}$ is the allelic matching proportion, averaged over SNPs, for individuals i and j including $i=j$, the β estimates are

$$
\widehat{\beta}_{i j}=\frac{\tilde{M}_{i j}-\tilde{M}_{S}}{1-\tilde{M}_{S}}
$$

where $\tilde{M}_{i j}=\sum_{l=1}^{L}\left[1+\left(X_{i l}-1\right)\left(X_{j l}-1\right)\right] /(2 L)$ for allelic dosages $X_{i l}$ and $\tilde{M}_{S}=\sum_{i \neq j} \tilde{M}_{i j} /[n(n-1)]$. These estimates have expected values

$$
\mathcal{E}\left(\widehat{\beta}_{i j}\right)= \begin{cases}\frac{\frac{1}{2}\left(1+F_{i}\right)-\theta_{S}}{1-\theta_{S}} & i=j \\ \frac{\theta_{i j}-\theta_{S}}{1-\theta_{S}} & i \neq j\end{cases}
$$

Use of Allele-sharing GRM

As $\Sigma_{\hat{K}_{a s}}=0$ by construction, the expectation of the estimated heritability is

$$
\mathcal{E}\left(\widehat{h}^{2}\right)=\frac{\mathcal{E}\left[\frac{2}{n} \operatorname{tr}\left(\hat{K}_{a s}\right) \hat{\sigma}_{A}^{2}\right]}{\mathcal{E}\left[\frac{2}{n} \operatorname{tr}\left(\hat{K}_{a s}\right) \hat{\sigma}_{A}^{2}+\hat{\sigma}_{E}^{2}\right]}
$$

From the expected values of $\widehat{\beta}_{i j}, \mathcal{E}\left[\operatorname{tr}\left(\hat{K}_{a s}\right)\right]=n(1+f) / 2$ is assumed known and replaces $\widehat{K}_{a s}$, leading to

$$
\mathcal{E}\left(\widehat{h}^{2}\right)=\frac{(1+f) \sigma_{A}^{2}}{(1+f) \sigma_{A}^{2}+\sigma_{E}^{2}}
$$

This replaces F in the classical result with f, reflecting that is f and not F that can be estimated with data from a single population.

Use of GCTA GRM

Can also estimate half the GRM with $\hat{K}_{c}(0)$ having elements $\left\{\hat{k}_{i j}\right\}$:

$$
\widehat{k}_{i j}=\frac{\sum_{l}\left(X_{i l}-2 \tilde{p}_{l}\right)\left(X_{j l}-2 \tilde{p}_{l}\right)}{\sum_{l} 4 \tilde{p}_{l}\left(1-\tilde{p}_{l}\right)}
$$

Now all the elements of the GRM sum to zero by construction. In other words $\operatorname{tr}\left[\hat{K}_{c}(0)\right]+\Sigma_{\hat{K}_{c}(0)}=0$ and the estimated heritability is

$$
\widehat{h}^{2}=\frac{\frac{2}{n-1} \operatorname{tr}\left[\hat{K}_{c}(0)\right] \widehat{\sigma}_{A}^{2}}{\frac{2}{n-1} \operatorname{tr}\left[\hat{K}_{c}(0)\right] \hat{\sigma}_{A}^{2}+\widehat{\sigma}_{E}^{2}}
$$

Use of GCTA GRM

Since

$$
\begin{gathered}
\mathcal{E}\left(\widehat{k}_{i i}\right)=\frac{1}{2}\left(1+\frac{F_{i}-2 \psi_{i}+\theta_{S}}{1-\theta_{S}}\right), \psi_{i}=\frac{1}{n-1} \sum_{j \neq i} \theta_{i j}, \theta_{S}=\frac{1}{n} \sum_{i} \psi_{i} \\
\mathcal{E}\left[\operatorname{tr}\left[\hat{K}_{c}(0)\right]=\frac{n}{2}(1+f)\right.
\end{gathered}
$$

and, regarding this as a constant, the expected value of the estimated heritability is

$$
\begin{aligned}
\mathcal{E}\left(\widehat{h}^{2}\right) & =\frac{\frac{n}{n-1}(1+f) \sigma_{A}^{2}}{\frac{n}{n-1}(1+f) \sigma_{A}^{2}+\sigma_{E}^{2}} \\
& \approx \frac{(1+f) \sigma_{A}^{2}}{(1+f) \sigma_{A}^{2}+\sigma_{E}^{2}}
\end{aligned}
$$

as for the β estimate.

Very different GRMs give the same estimates of heritability.

