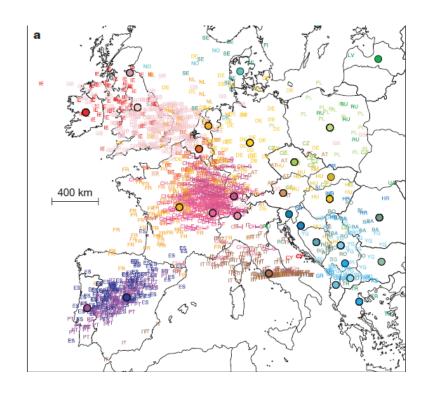

POPULATION STRUCTURE

Human Populations: History and Structure

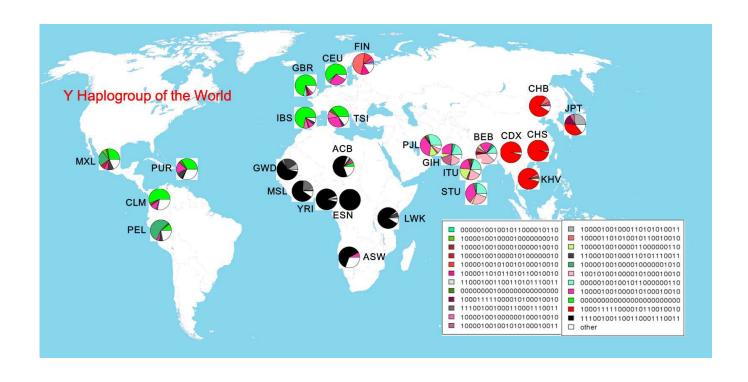
"there is quite dramatic evidence that our genetic profiles contain information about where we live, suggesting that these profiles reflect the history of our populations." Novembre J, Johnson, Bryc K, Kutalik Z, Boyko AR, Auton A, Indap A, King KS, Bergmann A, Nelson MB, Stephens M, Bustamante CD. 2008. Genes mirror geography within Europe. Nature 456:98


The authors collected "SNP" (single nucleotide polymorphism) data on over people living in Europe. Either the country of origin of the people's grandparents or their own country of birth was known. On the next slide, these geographic locations were used to color the location of each of 1,387 people in "genetic space." Instead of latitude and longitude on a geographic map, their first two principal components were used: these components summarize the 500,000 SNPs typed for each person.

Novembre et al., 2008

Novembre et al., 2008

As a follow-up, the authors took the genetic profile of each person and used it to predict their latitude and longitude, and plotted these on a geographic map. These predicted positions are colored by the country of origin of each person.



Y SNP Data Haplogroups

Another set of SNP data, this time from around the world, is available for the Y chromosome. These data were collected for the 1000 Genomes project (http://www.1000genomes.org/): there are 26 populations:

East Asia (5), South Asian (5), African (7), European (5), Americas (4).

Y SNP Data Haplogroups

Migration History of Early Humans

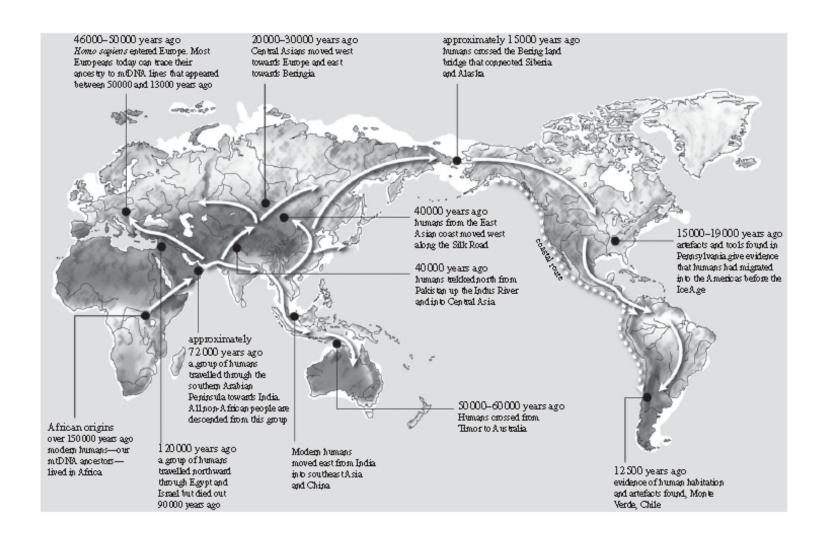
An interesting video of the migration of early humans is available at:

http://www.bradshawfoundation.com/journey/

Migration Map of Early Humans

https://genographic.nationalgeographic.com/human-journey/

This map summarizes the migration patterns of early humans.


Migration Map of Early Humans

The map on the next slide, based on mitochondrial genetic profiles, is taken from:

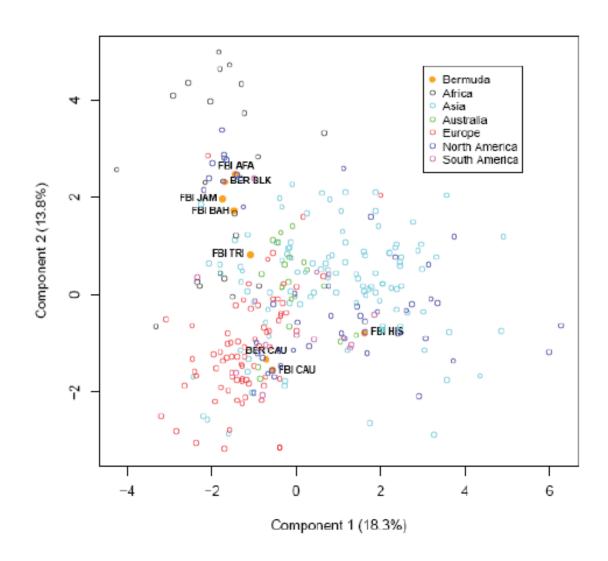
Oppenheimer S. 2012. Out-of-Africa, the peopling of continents and islands: tracing uniparental gene trees across the map. Phil. Trans. R. Soc. B (2012) 367, 770-784 doi:10.1098/rstb.2011.0306.

The first two pages of this paper give a good overview, and they contain this quote: "The finding of a greater genetic diversity within Africa, when compared with outside, is now abundantly supported by many genetic markers; so Africa is the most likely geographic origin for a modern human dispersal."

Migration Map of Early Humans

Forensic Implications

What does the theory about the spread of modern humans tell us about how to interpret matching profiles?


Matching probabilities should be bigger within populations, and more similar among populations that are closer together in time.

Forensic allele frequencies are consistent with the theory of human migration patterns.

Forensic STR PCA Map

A large collection of forensic STR allele frequencies was used to construct the principal component map on the next page. Also shown are some data collected by forensic agencies in the Caribbean, and by the FBI. The Bermuda police has been using FBI data - does this seem to be reasonable?

Forensic STR PCA Map

Genetic Distances

Forensic allele frequencies were collected from 21 populations. The next slides list the populations and show allele frequencies for the Gc marker. This has only three alleles, A,B,C.

The matching proportions within each population, and between each pair of populations, were calculated. These allow distances ("theta" or β) to be calculated for each pair of populations, say 1 and 2: $\hat{\beta}_{12} = ([\tilde{M}_1 + \tilde{M}_2]/2 - \tilde{M}_{12})/(1 - \tilde{M}_{12})$.

 \tilde{M}_1 : two alleles taken randomly from population 1 are the same type.

 $ilde{M}_1$: two alleles taken randomly from population 1 are the same type.

 \tilde{M}_{12} : an allele taken randomly from population 1 matches an allele taken randomly from population 2.

Published Gc frequencies

Symbol	Description	Symbol	Description
AFA	FBI African-American	IT4	Italian
AL1	North Slope Alaskan	KOR	Korean
AL2	Bethel-Wade Alaskan	NAV	Navajo
ARB	Arabic	NBA	North Bavarian
CAU	FBI Caucasian	PBL	Pueblo
CBA	Coimbran	SEH	FBI Southeastern Hispanic
DUT	Dutch Caucasian	SOU	Sioux
GAL	Galician	SPN	Spanish
HN1	Hungarian	SWH	FBI Southwestern Hispanic
HN2	Hungarian	SWI	Swiss Caucasian
IT2	Italian		

Gc allele frequencies

Popn.	Sample size	Α	В	C	Popn.	Sample size	Α	В	C
AFA	145	.338	.237	.423	IT4	200	.302	.163	.535
AL1	96	.177	.489	.334	KOR	116	.310	.422	.267
AL2	112	.236	.451	.313	NAV	81	.105	.240	.654
ARB	94	.133	.441	.425	NBA	150	.133	.383	.484
CAU	148	.114	.456	.429	PBL	103	.102	.374	.524
CBA	119	.159	.533	.306	SEH	94	.165	.447	.389
DUT	155	.106	.422	.471	SOU	64	.055	.422	.524
GAL	143	.140	.448	.413	SPN	132	.118	.474	.409
HN1	345	.106	.457	.438	SWH	96	.156	.437	.407
HN2	163	.097	.448	.454	SWI	100	.135	.465	.400
IT2	374	.139	.454	.408					

Clustering populations

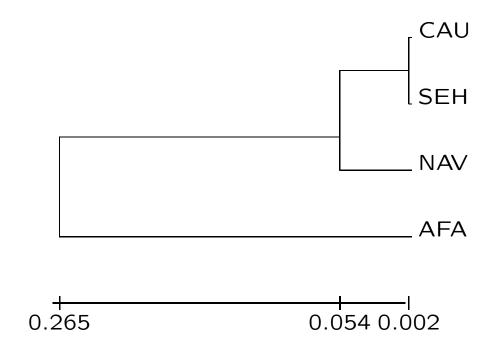
Populations can be clustered on the basis of the genetic distances β_{ij} between each pair i,j. For short-term evolution (among human populations) the simple UPGMA method performs satisfactorily. The closest pair of populations are clustered, and then distances recomputed from each other population to this cluster. Then the process continues.

Look at four of the populations:

	AFA	CAU	SEH	NAV
AFA	_			
CAU	0.303	_		
SEH	0.254	0.002	_	
NAV	0.242	0.054	0.054	_

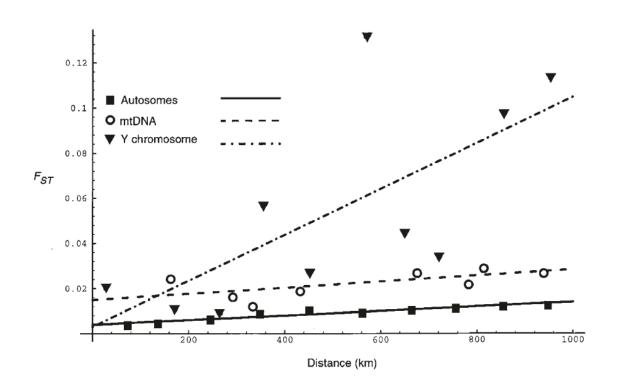
Clustering populations

The closest pair is CAU/SEH. Cluster them, and compute distances from the other two to this cluster:


AFA distance =
$$(0.303+0.254)/2 = 0.278$$

NAV distance = $(0.054+0.054)/2 = 0.054$

The new distance matrix is


	AFA	CAU/SEH	NAV
AFA	_		
CAU/SEH	0.278	_	
NAV	0.242	0.054	_

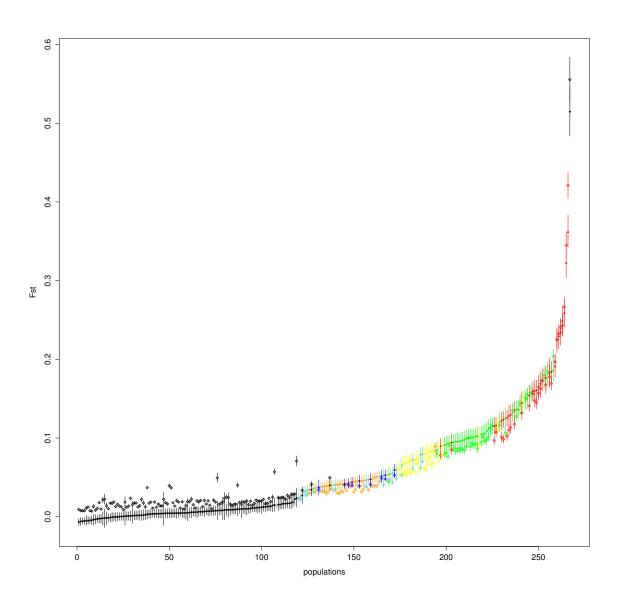
and the next shortest distance is between NAV and CAU/SEH.

Gc UPGMA Dendrogram

Human Migration Rates

Suggests higher migration rate for human females among 14 African populations.

Seielstad MT, Minch E, Cavalli-Sforza LL. 1998. Nature Genetics 20:278-280.


Worldwide Survey of STR Data

Published allele frequencies for 24 STR loci were obtained for 446 populations. For each population i, the within-population matching proportion \tilde{M}_i was calculated. Also the average \tilde{M}_B of all the between-population matching proportions. The " θ " for each population is calculated as $\hat{\beta}_i = (\tilde{M}_i - \tilde{M}_B)/(1 - \tilde{M}_B)$. These are shown on the next slide, ranked from smallest to largest and colored by continent.

Africa: black; America: red; South Asia: orange; East Asia: yellow; Europe: blue; Latino: turquoise; Middle East: grey; Oceania: green.

Buckleton JS, Curran JM, Goudet J, Taylor D, Thiery A, Weir BS. 2016. Forensic Science International: Genetics 23:91-100.

Worldwide Survey of STR Data

Match Probabilities

The β estimates for population structure provide numerical values to substitute for θ into the Balding-Nichols match probabilities when database sample allele frequencies are used for the population values p_A .

For AA homozygotes:

$$\Pr(AA|AA) = \frac{[3\theta + (1-\theta)p_A][2\theta + (1-\theta)p_A]}{(1+\theta)(1+2\theta)}$$

and for AB heterozygotes

$$\Pr(AB|AB) = \frac{2[\theta + (1-\theta)p_A][\theta + (1-\theta)p_B]}{(1+\theta)(1+2\theta)}$$

These match probabilities are greater than the profile probabilities Pr(AA), Pr(AB).

Balding DJ, Nichols RA. 1994. Forensic Science International 64:125-140.

Balding Sampling Formula

The match probabilities on the previous slide follow from a "sampling formula": the probability of seeing an A allele if the previous n alleles have n_A of type A is

$$Pr(A|n_A \text{ of } n) = \frac{n_A \theta + (1-\theta)p_A}{1 + (n-1)\theta}$$

For example:

$$\Pr(A) = p_{A}$$

$$\Pr(A|A) = p_{A}[\theta + (1-\theta)p_{A}]$$

$$\Pr(A|AA) = p_{A}[\theta + (1-\theta)p_{A}] \frac{[2\theta + (1-\theta)p_{A}]}{1+\theta}$$

$$\Pr(A|AAA) = p_{A}[\theta + (1-\theta)p_{A}] \frac{[2\theta + (1-\theta)p_{A}]}{1+\theta} \frac{[3\theta + (1-\theta)p_{A}]}{1+2\theta}$$

Partial Matching

For autosomal markers, two profiles may be:

Match: AA, AA or AB, AB

Partially Match: AA, AB or AB, AC

Mismatch: AA, BB or AA, BC or AB, CD

How likely are each of these?

Database Matching

If every profile in a database is compared to every other profile, each pair can be characterized as matching, partially matching or mismatching without regard to the particular alleles. We find the probabilities of these events by adding over all allele types.

The probability P_2 that two profiles match (at two alleles) is

$$P_{2} = \sum_{A} \Pr(AA, AA) + \sum_{A \neq B} \Pr(AB, AB)$$

$$= \frac{\sum_{A} p_{A} [\theta + (1 - \theta)p_{A}] [2\theta + (1 - \theta)p_{A}] [3\theta + (1 - \theta)p_{A}]}{(1 + \theta)(1 + 2\theta)}$$

$$+ \frac{2\sum_{A \neq B} [\theta + (1 - \theta)p_{A}] [\theta + (1 - \theta)p_{B}]}{(1 + \theta)(1 + 2\theta)}$$

Database Matching

This approach leads to probabilities P_2, P_1, P_0 of matching at 2,1,0 alleles:

$$P_2 = \frac{1}{D} [6\theta^3 + \theta^2 (1 - \theta)(2 + 9S_2) + 2\theta (1 - \theta)^2 (2S_2 + S_3) + (1 - \theta)^3 (2S_2^2 - S_4)]$$

$$P_1 = \frac{1}{D} [8\theta^2 (1 - \theta)(1 - S_2) + 4\theta(1 - \theta)^2 (1 - S_3) + 4(1 - \theta)^3 (S_2 - S_3 - S_2^2 + S_4)]$$

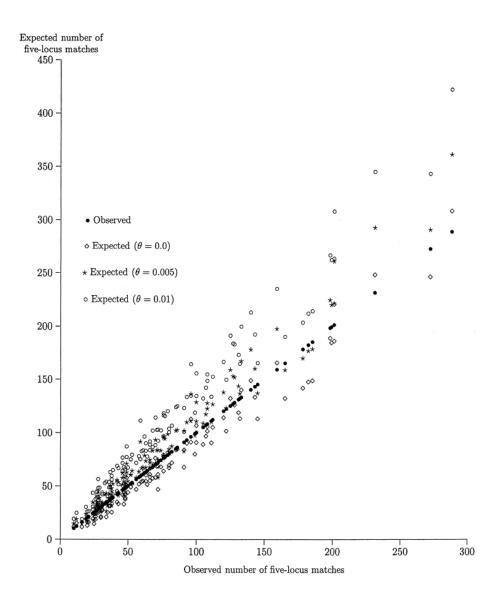
$$P_0 = \frac{1}{D} [\theta^2 (1 - \theta)(1 - S_2) + 2\theta(1 - \theta)^2 (1 - 2S_2 + S_3) + (1 - \theta)^3 (1 - 4S_2 + 4S_3 + 2S_2^2 - 3S_4)]$$

where $D=(1+\theta)(1+2\theta)$, $S_2=\sum_A p_A^2$, $S_3=\sum_A p_A^3$, $S_4=\sum_A p_A^4$. For any value of θ we can predict the matching, partially matching and mismatching proportions in a database.

FBI Caucasian Matching Counts

One-locus matches in FBI Caucasian data (18,721 pairs of 13-locus profiles).

				heta		
Locus	Observed	.000	.001	.005	.010	.030
D3S1358	.077	.075	.075	.077	.079	.089
vWA	.063	.062	.063	.065	.067	.077
FGA	.036	.036	.036	.038	.040	.048
D8S1179	.063	.067	.068	.070	.072	.083
D21S11	.036	.038	.038	.040	.042	.051
D18S51	.027	.028	.029	.030	.032	.040
D5S818	.163	.158	.159	.161	.164	.175
D13S317	.076	.085	.085	.088	.090	.101
D7S820	.062	.065	.066	.068	.070	.080
CSF1PO	.122	.118	.119	.121	.123	.134
TPOX	.206	.195	.195	.198	.202	.216
THO1	.074	.081	.082	.084	.086	.096
D16S539	.086	.089	.089	.091	.094	.105


FBI Database Matching Counts

	Match						Ν	umber c	of Partia	illy Mate	ching Lo	oci			
	-ing	heta	0	1	2	3	4	5	6	7	8	9	10	11	12,13
•	0	Obs. .000 .010	0 0 0	3 2 2	18 19 14	92 90 70	249 293 236	624 672 566	1077 1129 992	1363 1403 1289	1116 1290 1241	849 868 875	379 415 439	112 134 148	25, 4 26, 2 30, 3
	1	Obs. .000 .010	0 0 0	12 7 5	48 50 40	203 212 178	574 600 527	1133 1192 1094	1516 1704 1637	1596 1768 1779	1206 1320 1393	602 692 767	193 242 282	43 51 62	3 5 6
	2	Obs000 .010	0 1 1	7 9 8	61 56 50	203 210 193	539 514 494	836 871 875	942 1040 1096	807 877 969	471 511 593	187 196 239	35 45 57	2 5 6	
	3	Obs. .000 .010	0 1 0	6 7 6	33 36 35	124 116 117	215 243 256	320 344 380	259 334 387	196 220 268	92 94 120	16 23 32	1 3 4		
	4	Obs. .000 .010	1 0 0	5 3 3	17 15 15	29 40 44	54 70 81	82 81 98	67 61 78	16 29 40	6 8 12	0 1 1			
	5	Obs. .000 .010	0 0 0	1 1 1	2 4 4	6 9 11	12 13 16	14 11 15	6 6 9	5 2 3	0 0 0				
	6	Obs. .000 .010	0 0 0	1 0 0	0 1 1	2 1 2	2 1 2	0 1 1	0 0 1	0 0 0					

Predicted Matches when n = 65,493

Matching	Number of partially matching loci									
loci	0	1	2	3	4	5	6	7		
6	4,059	37,707	148,751	322,963	416,733	319,532	134,784	24,125		
7	980	7,659	24,714	42,129	40,005	20,061	4,150			
8	171	1,091	2,764	3,467	2,153	530				
9	21	106	198	163	50					
10	2	7	8	3						
11	0	0	0							
12	0	0								
13	0									

Multi-locus Matches

STR Survey: $\hat{\beta}$ Values for Groups and Loci

	Geographic Region									
Locus	Africa	AusAb	Asian	Cauc	Hisp	IndPK	NatAm	Poly	Aver.	
CSF1PO	0.003	0.002	0.008	0.008	0.002	0.007	0.055	0.026	0.011	
D1S1656	0.000	0.000	0.000	0.002	0.003	0.000	0.000	0.000	0.011	
D2S441	0.000	0.000	0.002	0.003	0.021	0.000	0.000	0.000	0.020	
D2S1338	0.009	0.004	0.011	0.017	0.013	0.003	0.023	0.005	0.031	
D3S1358	0.004	0.010	0.009	0.006	0.012	0.040	0.079	0.001	0.025	
D5S818	0.002	0.013	0.009	0.008	0.014	0.018	0.044	0.007	0.029	
D6S1043	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.016	
D7S820	0.004	0.021	0.010	0.007	0.007	0.046	0.030	0.005	0.026	
D8S1179	0.003	0.007	0.012	0.006	0.002	0.031	0.020	0.008	0.019	
D10S1248	0.000	0.000	0.000	0.002	0.004	0.000	0.000	0.000	0.007	
D12S391	0.000	0.000	0.000	0.003	0.020	0.000	0.000	0.000	0.010	
D13S317	0.015	0.016	0.013	0.008	0.014	0.025	0.050	0.014	0.038	
D16S539	0.007	0.002	0.015	0.006	0.009	0.005	0.048	0.004	0.021	
D18S51	0.011	0.012	0.014	0.006	0.004	0.010	0.033	0.003	0.018	
D19S433	0.009	0.001	0.009	0.010	0.014	0.000	0.022	0.014	0.023	
D21S11	0.014	0.012	0.013	0.007	0.006	0.023	0.067	0.018	0.021	
D22S1045	0.000	0.000	0.007	0.001	0.000	0.000	0.000	0.000	0.015	
FGA	0.002	0.009	0.012	0.004	0.007	0.016	0.021	0.006	0.013	
PENTAD	0.008	0.000	0.012	0.012	0.002	0.017	0.000	0.000	0.022	
PENTAE	0.002	0.000	0.017	0.006	0.003	0.012	0.000	0.000	0.020	
SE33	0.000	0.000	0.012	0.001	0.000	0.000	0.000	0.000	0.004	
TH01	0.022	0.001	0.022	0.016	0.018	0.014	0.071	0.017	0.071	
TPOX	0.019	0.087	0.016	0.011	0.007	0.018	0.064	0.031	0.035	
VWA	0.009	0.007	0.017	0.007	0.012	0.022	0.028	0.005	0.023	
All Loci	0.006	0.014	0.010	0.007	0.008	0.018	0.043	0.011	0.022	

Buckleton JS, Curran JM, Goudet J, Taylor D, Thiery A, Weir BS. 2016. Forensic Science International: Genetics 23:91-100.