# POPULATION STRUCTURE and 

## RELATEDNESS

## ALLELE MATCHING

## Allele Matching

Forensic genetics is concerned with matching of genetic profiles from evidence and from persons of interest. Profile match probabilities rest on the probabilities of matching among the alleles constituting the profiles.

Allele matching can refer to alleles within an individual (inbreeding), between individuals within a population (relatedness) and between populations (population structure). In all these cases there are parameters that describe profile match probabilities, and these parameters can be estimated by comparing the observed matching for a target set of alleles with that between a comparison set.

## Allele Matching Within Individuals

The inbreeding coefficient for an individual is the probability it receives two alleles at a locus, one from each parent, that are identical by descent.

What can be observed, however, is identity in state. An individual is either homozygous or heterozygous at a locus: the two alleles either match or miss-match at that locus. The proportion of matching alleles at a locus is either zero or one, not a very informative statistic, but the proportion of an individual's loci that are homozygous may be informative for their inbreeding status.

There is still a need for a reference: many loci will be homozygous even for non-inbred individuals. Therefore we compare the proportion of loci with matching alleles for an individual with the matching proportion for pairs of alleles taken one from each of two individuals: is allele matching higher within than between individuals?

## Inbreeding

If $\tilde{M}_{j}$ is the observed proportion of loci with matching alleles (i.e. homozygous) for individual $j$, and if $\tilde{M}_{S}$ is the observed proportion of matching alleles, one from each of two individuals in the population, then the within-population inbreeding coefficient $f_{j}$ is estimated as

$$
\hat{f}_{j}=\frac{\tilde{M}_{j}-\tilde{M}_{S}}{1-\tilde{M}_{S}}
$$

Note that this can be negative for individuals with high degrees of heterozygosity.

The average of these estimates over all the individuals in a sample from a population estimates the within-population inbreeding coefficient $f$ :

$$
\hat{f}=\frac{\tilde{M}_{I}-\tilde{M}_{S}}{1-\tilde{M}_{S}}
$$

where $\tilde{M}_{I}=\sum_{j=1}^{n} \tilde{M}_{j} / n$. Hardy-Weinberg equilibrium corresponds to $f=0$.

## Allele Matching Between Individuals

How can we tell if a pair of individuals has a high degree of allele matching? What does "high" mean?

We assess relatedness of individuals within a population by comparing their degree of allele matching with the average degree for all pairs of individuals in that population.

## Allele Matching Between Individuals

If $\tilde{M}_{j j^{\prime}}$ is the observed proportion of loci with matching alleles, one from each of individuals $j$ and $j^{\prime}$, and if $\tilde{M}_{S}$ is the average of all the $\tilde{M}_{j j^{\prime}}$ 's, then the within-population kinship coefficient beta $_{j j^{\prime}}$ is estimated as

$$
\hat{\psi}_{j j^{\prime}}=\frac{\tilde{M}_{j j^{\prime}}-\tilde{M}_{S}}{1-\tilde{M}_{S}}
$$

Note that this can be negative for pairs of individuals less related than the average pair-matching in the sample.

The average of these estimates over all pairs of individuals in a sample is zero, but this doesn't allow us to compare populations.

## Allele Matching for Populations

We calibrated allele matching within individuals by comparison with matching between pairs of individuals.

We calibrate the allele matching between pairs of individuals by comparison with matching between pairs of populations. If $\tilde{M}^{i i^{\prime}}$ is the observed proportion of loci with matching alleles, one from each of populations $i$ and $i^{\prime}$, and if $\tilde{M}_{B}$ is the average of all the $\tilde{M}^{i i^{\prime}}$,s, then the total kinship coefficient $\beta_{j j^{\prime}}$ is estimated as

$$
\hat{\psi}_{j j^{\prime}}=\frac{\tilde{M}_{j j^{\prime}}-\tilde{M}_{B}}{1-\tilde{M}_{B}}
$$

The average of these estimates over all pairs of individuals in a sample from a population is

$$
\hat{\psi}=\frac{\tilde{M}_{S}-\tilde{M}_{B}}{1-\tilde{M}_{B}}
$$

This is the " $\theta$ " needed for the "theta correction" discussed below.

## Within-population Matching

We can get some empirical matching proportions when we have a set of profiles. To simplify this initial discussion, consider the following data for the Y-STR locus DYS390 from the NIST database:

|  | Population |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Allele | Afr.Am. | Cauc. | Hisp. | Asian | Total |
| 20 | 4 | 1 | 1 | 0 | 6 |
| 21 | 176 | 4 | 17 | 1 | 198 |
| 22 | 43 | 45 | 14 | 17 | 119 |
| 23 | 36 | 116 | 50 | 17 | 219 |
| 24 | 56 | 145 | 129 | 21 | 351 |
| 25 | 23 | 46 | 21 | 36 | 126 |
| 26 | 3 | 2 | 2 | 4 | 11 |
| 27 | 0 | 0 | 2 | 0 | 2 |
| Total | 341 | 359 | 236 | 96 | 1032 |

## Within- and Between-population Matching for DYS390

Within the African-American sample there are $341 \times 340=115,940$ pairs of profiles and the number of between individual-pair matches is
$4 \times 3+176 \times 175+43 \times 42+36 \times 35+56 \times 55+23 \times 22+3 \times 2=37,470$
so the within-population matching proportion is $37,470 / 115,940=$ 0.323 .

Between the African-American and Caucasian samples, there are $341 \times 359=122,419$ pairs of profiles and the number of matches is
$4 \times 1+176 \times 4+43 \times 45+36 \times 116+56 \times 145+23 \times 4+3 \times 2=12,403$
so the between-population matching proportion is $12,403 / 122,419=$ 0.101 .

## Two-locus counts in NIST African-American Data for DYS390, DYS391

| DYS390 | DYS391 | Count $n_{g}$ | $n_{g}\left(n_{g}-1\right)$ |
| :---: | :---: | ---: | ---: |
| 22 | 10 | 34 | 1122 |
| 22 | 11 | 9 | 72 |
| 24 | 10 | 15 | 210 |
| 24 | 11 | 39 | 1482 |
| 24 | 12 | 1 | 0 |
| 24 | 9 | 1 | 0 |
| 23 | 10 | 19 | 342 |
| 23 | 11 | 14 | 182 |
| 23 | 12 | 3 | 6 |
| 21 | 10 | 157 | 24492 |
| 21 | 11 | 15 | 210 |
| 21 | 12 | 2 | 2 |
| 21 | 9 | 1 | 0 |
| 21 | 13 | 1 | 0 |
| 25 | 10 | 11 | 110 |
| 25 | 11 | 12 | 132 |
| 26 | 10 | 1 | 0 |
| 26 | 11 | 2 | 2 |
| 20 | 10 | 1 | 0 |
| 20 | 11 | 2 | 2 |
| 20 | 12 | 1 | 0 |

## Two-Iocus Matches

The within-population matching proportion for the African-American sample is $28,366 / 115,940=0.245$.

The within-population matching proportion for the Caucasian sample is $18,536 / 128,522=0.144$.

The between-population matching proportion for the AfricanAmerican and Caucasian samples is $8,347 / 122,419=0.068$.

There is a clear decrease in matching between populations from within populations.

## Will match probabilities keep decreasing?

How do these match probabilities address the observation of Donnelly:
> "after the observation of matches at some loci, it is relatively much more likely that the individuals involved are related (precisely because matches between unrelated individuals are unusual) in which case matches observed at subsequent loci will be less surprising. That is, knowledge of matches at some loci will increase the chances of matches at subsequent loci, in contrast to the independence assumption."

Donnelly P. 1995. Heredity 75:26-64.

## POPULATION STRUCTURE

## Human Populations: History and Structure

"there is quite dramatic evidence that our genetic profiles contain information about where we live, suggesting that these profiles reflect the history of our populations." Novembre J, Johnson, Bryc K, Kutalik Z, Boyko AR, Auton A, Indap A, King KS, Bergmann A, Nelson MB, Stephens M, Bustamante CD. 2008. Genes mirror geography within Europe. Nature 456:98

The authors collected "SNP" (single nucleotide polymorphism) data on over people living in Europe. Either the country of origin of the people's grandparents or their own country of birth was known. On the next slide, these geographic locations were used to color the location of each of 1,387 people in "genetic space." Instead of latitude and longitude on a geographic map, their first two principal components were used: these components summarize the 500,000 SNPs typed for each person.

## Novembre et al., 2008



## Novembre et al., 2008

As a follow-up, the authors took the genetic profile of each person and used it to predict their latitude and longitude, and plotted these on a geographic map. These predicted positions are colored by the country of origin of each person.


## Y SNP Data Haplogroups

Another set of SNP data, this time from around the world, is available for the $Y$ chromosome. These data were collected for the 1000 Genomes project (http://www.1000genomes.org/): there are 26 populations:

East Asia (5), South Asian (5), African (7), European (5), Americas (4).

## Y SNP Data Haplogroups



## Migration Map of Early Humans

The map on the next slide, based on mitochondrial genetic profiles, is taken from:

Oppenheimer S. 2012. Out-of-Africa, the peopling of continents and islands: tracing uniparental gene trees across the map. Phil. Trans. R. Soc. B (2012) 367, 770-784 doi:10.1098/rstb.2011.0306.

The first two pages of this paper give a good overview, and they contain this quote: "The finding of a greater genetic diversity within Africa, when compared with outside, is now abundantly supported by many genetic markers; so Africa is the most likely geographic origin for a modern human dispersal."

## Migration Map of Early Humans



## Forensic Implications

What does the theory about the spread of modern humans tell us about how to interpret matching profiles?

Matching probabilities should be bigger within populations, and more similar among populations that are closer together in time.

Forensic allele frequencies are consistent with the theory of human migration patterns.

## Forensic STR PCA Map

A large collection of forensic STR allele frequencies was used to construct the principal component map on the next page. Also shown are some data collected by forensic agencies in the Caribbean, and by the FBI. The Bermuda police has been using FBI data - does this seem to be reasonable?

## Forensic STR PCA Map



## Genetic Distances

Forensic allele frequencies were collected from 21 populations. The next slides list the populations and show allele frequencies for the Gc marker. This has only three alleles, $A, B, C$.

The matching proportions within each population, and between each pair of populations, were calculated. These allow distances ("theta" or $\psi$ ) to be calculated for each pair of populations, say 1 and $2: \hat{\psi}_{12}=\left(\left[\tilde{M}_{1}+\tilde{M}_{2}\right] / 2-\tilde{M}_{12}\right) /\left(1-\tilde{M}_{12}\right)$.
$\tilde{M}_{1}$ : two alleles taken randomly from population 1 are the same type.
$\tilde{M}_{1}$ : two alleles taken randomly from population 1 are the same type.
$\tilde{M}_{12}$ : an allele taken randomly from population 1 matches an allele taken randomly from population 2.

## Published Gc frequencies

| Symbol | Description | Symbol | Description |
| :---: | :--- | :---: | :--- |
| AFA | FBI African-American | IT4 | Italian |
| AL1 | North Slope Alaskan | KOR | Korean |
| AL2 | Bethel-Wade Alaskan | NAV | Navajo |
| ARB | Arabic | NBA | North Bavarian |
| CAU | FBI Caucasian | PBL | Pueblo |
| CBA | Coimbran | SEH | FBI Southeastern Hispanic |
| DUT | Dutch Caucasian | SOU | Sioux |
| GAL | Galician | SPN | Spanish |
| HN1 | Hungarian | SWH | FBI Southwestern Hispanic |
| HN2 | Hungarian | SWI | Swiss Caucasian |
| IT2 | Italian |  |  |

## Gc allele frequencies

| Popn. | Sample size | A | B | C | Popn. | Sample size | A | B | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AFA | 145 | .338 | .237 | .423 | IT4 | 200 | .302 | .163 | .535 |
| AL1 | 96 | .177 | .489 | .334 | KOR | 116 | .310 | .422 | .267 |
| AL2 | 112 | .236 | .451 | .313 | NAV | 81 | .105 | .240 | .654 |
| ARB | 94 | .133 | .441 | .425 | NBA | 150 | .133 | .383 | .484 |
| CAU | 148 | .114 | .456 | .429 | PBL | 103 | .102 | .374 | .524 |
| CBA | 119 | .159 | .533 | .306 | SEH | 94 | .165 | .447 | .389 |
| DUT | 155 | .106 | .422 | .471 | SOU | 64 | .055 | .422 | .524 |
| GAL | 143 | .140 | .448 | .413 | SPN | 132 | .118 | .474 | .409 |
| HN1 | 345 | .106 | .457 | .438 | SWH | 96 | .156 | .437 | .407 |
| HN2 | 163 | .097 | .448 | .454 | SWI | 100 | .135 | .465 | .400 |
| IT2 | 374 | .139 | .454 | .408 |  |  |  |  |  |

## Clustering populations

Populations can be clustered on the basis of the genetic distances $\beta_{i j}$ between each pair $i, j$. For short-term evolution (among human populations) the simple UPGMA method performs satisfactorily. The closest pair of populations are clustered, and then distances recomputed from each other population to this cluster. Then the process continues.

Look at four of the populations:

|  | AFA | CAU | SEH | NAV |
| :---: | :---: | :---: | :---: | :---: |
| AFA | - |  |  |  |
| CAU | 0.303 | - |  |  |
| SEH | 0.254 | 0.002 | - |  |
| NAV | 0.242 | 0.054 | 0.054 | - |

## Clustering populations

The closest pair is CAU/SEH. Cluster them, and compute distances from the other two to this cluster:

$$
\begin{array}{ll}
\text { AFA } & \text { distance }=(0.303+0.254) / 2=0.278 \\
\text { NAV } & \text { distance }=(0.054+0.054) / 2=0.054
\end{array}
$$

The new distance matrix is

|  | AFA | CAU $/$ SEH | NAV |
| :--- | :---: | :---: | :---: |
| AFA | - |  |  |
| CAU/SEH | 0.278 | - |  |
| NAV | 0.242 | 0.054 | - |

and the next shortest distance is between NAV and CAU/SEH.

## Gc UPGMA Dendrogram



## Human Migration Rates



Suggests higher migration rate for human females among 14 African populations.

Seielstad MT, Minch E, Cavalli-Sforza LL. 1998. Nature Genetics 20:278280.

## Worldwide Survey of STR Data

Published allele frequencies for 24 STR loci were obtained for 446 populations. For each population $i$, the within-population matching proportion $\tilde{M}_{i}$ was calculated. Also the average $\tilde{M}_{B}$ of all the between-population matching proportions. The " $\theta$ " for each population is calculated as $\hat{\psi}_{i}=\left(\tilde{M}_{i}-\tilde{M}_{B}\right) /\left(1-\tilde{M}_{B}\right)$. These are shown on the next slide, ranked from smallest to largest and colored by continent.

Africa: black; America: red; South Asia: orange; East Asia: yellow; Europe: blue; Latino: turquoise; Middle East: grey; Oceania: green.

Buckleton JS, Curran JM, Goudet J, Taylor D, Thiery A, Weir BS. 2016. Forensic Science International: Genetics 23:91-100.

## Worldwide Survey of STR Data



## Match Probabilities

The $\beta$ estimates for population structure provide numerical values to substitute for $\theta$ into the Balding-Nichols match probabilities when database sample allele frequencies are used for the population values $p_{A}$.

For $A A$ homozygotes:

$$
\operatorname{Pr}(A A \mid A A)=\frac{\left[3 \theta+(1-\theta) p_{A}\right]\left[2 \theta+(1-\theta) p_{A}\right]}{(1+\theta)(1+2 \theta)}
$$

and for $A B$ heterozygotes

$$
\operatorname{Pr}(A B \mid A B)=\frac{2\left[\theta+(1-\theta) p_{A}\right]\left[\theta+(1-\theta) p_{B}\right]}{(1+\theta)(1+2 \theta)}
$$

These match probabilities are greater than the profile probabilities $\operatorname{Pr}(A A), \operatorname{Pr}(A B)$.

Balding DJ, Nichols RA. 1994. Forensic Science International 64:125-140.

## Balding Sampling Formula

The match probabilities on the previous slide follow from a "sampling formula": the probability of seeing an $A$ allele if the previous $n$ alleles have $n_{A}$ of type $A$ is

$$
\operatorname{Pr}\left(A \mid n_{A} \text { of } n\right)=\frac{n_{A} \theta+(1-\theta) p_{A}}{1+(n-1) \theta}
$$

For example:

$$
\begin{aligned}
\operatorname{Pr}(A) & =p_{A} \\
\operatorname{Pr}(A \mid A) & =p_{A}\left[\theta+(1-\theta) p_{A}\right] \\
\operatorname{Pr}(A \mid A A) & =p_{A}\left[\theta+(1-\theta) p_{A}\right] \frac{\left[2 \theta+(1-\theta) p_{A}\right]}{1+\theta} \\
\operatorname{Pr}(A \mid A A A) & =p_{A}\left[\theta+(1-\theta) p_{A}\right] \frac{\left[2 \theta+(1-\theta) p_{A}\right]}{1+\theta} \frac{\left[3 \theta+(1-\theta) p_{A}\right]}{1+2 \theta}
\end{aligned}
$$

## Partial Matching

For autosomal markers, two profiles may be:

$$
\begin{array}{ll}
\text { Match: } & A A, A A \text { or } A B, A B \\
\text { Partially Match: } & A A, A B \text { or } A B, A C \\
\text { Mismatch: } & A A, B B \text { or } A A, B C \text { or } A B, C D
\end{array}
$$

How likely are each of these?

## Database Matching

If every profile in a database is compared to every other profile, each pair can be characterized as matching, partially matching or mismatching without regard to the particular alleles. We find the probabilities of these events by adding over all allele types.

The probability $P_{2}$ that two profiles match (at two alleles) is

$$
\begin{aligned}
P_{2}= & \sum_{A} \operatorname{Pr}(A A, A A)+\sum_{A \neq B} \operatorname{Pr}(A B, A B) \\
= & \frac{\sum_{A} p_{A}\left[\theta+(1-\theta) p_{A}\right]\left[2 \theta+(1-\theta) p_{A}\right]\left[3 \theta+(1-\theta) p_{A}\right]}{(1+\theta)(1+2 \theta)} \\
& +\frac{2 \sum_{A \neq B}\left[\theta+(1-\theta) p_{A}\right]\left[\theta+(1-\theta) p_{B}\right]}{(1+\theta)(1+2 \theta)}
\end{aligned}
$$

## Database Matching

This approach leads to probabilities $P_{2}, P_{1}, P_{0}$ of matching at 2,1,0 alleles:

$$
\begin{aligned}
P_{2}= & \frac{1}{D}\left[6 \theta^{3}+\theta^{2}(1-\theta)\left(2+9 S_{2}\right)+2 \theta(1-\theta)^{2}\left(2 S_{2}+S_{3}\right)\right. \\
& \left.+(1-\theta)^{3}\left(2 S_{2}^{2}-S_{4}\right)\right] \\
P_{1}= & \frac{1}{D}\left[8 \theta^{2}(1-\theta)\left(1-S_{2}\right)+4 \theta(1-\theta)^{2}\left(1-S_{3}\right)\right. \\
& \left.+4(1-\theta)^{3}\left(S_{2}-S_{3}-S_{2}^{2}+S_{4}\right)\right] \\
P_{0}= & \frac{1}{D}\left[\theta^{2}(1-\theta)\left(1-S_{2}\right)+2 \theta(1-\theta)^{2}\left(1-2 S_{2}+S_{3}\right)\right. \\
& \left.+(1-\theta)^{3}\left(1-4 S_{2}+4 S_{3}+2 S_{2}^{2}-3 S_{4}\right)\right]
\end{aligned}
$$

where $D=(1+\theta)(1+2 \theta), S_{2}=\sum_{A} p_{A}^{2}, S_{3}=\sum_{A} p_{A}^{3}, S_{4}=$ $\sum_{A} p_{A}^{4}$. For any value of $\theta$ we can predict the matching, partially matching and mismatching proportions in a database.

## FBI Caucasian Matching Counts

One-Iocus matches in FBI Caucasian data (18,721 pairs of 13locus profiles).

|  |  | $\theta$ |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Locus | Observed | .000 | .001 | .005 | .010 | .030 |
| D3S1358 | .077 | .075 | .075 | .077 | .079 | .089 |
| VWA | .063 | .062 | .063 | .065 | .067 | .077 |
| FGA | .036 | .036 | .036 | .038 | .040 | .048 |
| D8S1179 | .063 | .067 | .068 | .070 | .072 | .083 |
| D21S11 | .036 | .038 | .038 | .040 | .042 | .051 |
| D18S51 | .027 | .028 | .029 | .030 | .032 | .040 |
| D5S818 | .163 | .158 | .159 | .161 | .164 | .175 |
| D13S317 | .076 | .085 | .085 | .088 | .090 | .101 |
| D7S820 | .062 | .065 | .066 | .068 | .070 | .080 |
| CSF1PO | .122 | .118 | .119 | .121 | .123 | .134 |
| TPOX | .206 | .195 | .195 | .198 | .202 | .216 |
| THO1 | .074 | .081 | .082 | .084 | .086 | .096 |
| D16S539 | .086 | .089 | .089 | .091 | .094 | .105 |

## FBI Database Matching Counts

| Match |  | Number of Partially Matching Loci |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -ing | $\theta$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12,13 |
| 0 | Obs. | 0 | 3 | 18 | 92 | 249 | 624 | 1077 | 1363 | 1116 | 849 | 379 | 112 | 25, 4 |
|  | . 000 | 0 | 2 | 19 | 90 | 293 | 672 | 1129 | 1403 | 1290 | 868 | 415 | 134 | 26, 2 |
|  | . 010 | 0 | 2 | 14 | 70 | 236 | 566 | 992 | 1289 | 1241 | 875 | 439 | 148 | 30, 3 |
| 1 | Obs. | 0 | 12 | 48 | 203 | 574 | 1133 | 1516 | 1596 | 1206 | 602 | 193 | 43 | 3 , |
|  | . 000 | 0 | 7 | 50 | 212 | 600 | 1192 | 1704 | 1768 | 1320 | 692 | 242 | 51 | 5, |
|  | . 010 | 0 | 5 | 40 | 178 | 527 | 1094 | 1637 | 1779 | 1393 | 767 | 282 | 62 | 6 , |
| 2 | Obs. | 0 | 7 | 61 | 203 | 539 | 836 | 942 | 807 | 471 | 187 | 35 | 2 |  |
|  | . 000 | 1 | 9 | 56 | 210 | 514 | 871 | 1040 | 877 | 511 | 196 | 45 | 5 |  |
|  | . 010 | 1 | 8 | 50 | 193 | 494 | 875 | 1096 | 969 | 593 | 239 | 57 | 6 |  |
| 3 | Obs. | 0 | 6 | 33 | 124 | 215 | 320 | 259 | 196 | 92 | 16 | 1 |  |  |
|  | . 000 | 1 | 7 | 36 | 116 | 243 | 344 | 334 | 220 | 94 | 23 | 3 |  |  |
|  | . 010 | 0 | 6 | 35 | 117 | 256 | 380 | 387 | 268 | 120 | 32 | 4 |  |  |
| 4 | Obs. | 1 | 5 | 17 | 29 | 54 | 82 | 67 | 16 | 6 | 0 |  |  |  |
|  | . 000 | 0 | 3 | 15 | 40 | 70 | 81 | 61 | 29 | 8 | 1 |  |  |  |
|  | . 010 | 0 | 3 | 15 | 44 | 81 | 98 | 78 | 40 | 12 | 1 |  |  |  |
| 5 | Obs. | 0 | 1 | 2 | 6 | 12 | 14 | 6 | 5 | 0 |  |  |  |  |
|  | . 000 | 0 | 1 | 4 | 9 | 13 | 11 | 6 | 2 | 0 |  |  |  |  |
|  | . 010 | 0 | 1 | 4 | 11 | 16 | 15 | 9 | 3 | 0 |  |  |  |  |
| 6 | Obs. | 0 | 1 | 0 | 2 | 2 | 0 | 0 | 0 |  |  |  |  |  |
|  | . 000 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |  |  |  |  |  |
|  | . 010 | 0 | 0 | 1 | 2 | 2 | 1 | 1 | 0 |  |  |  |  |  |

## Predicted Matches when $n=65,493$

| Matching Ioci | Number of partially matching loci |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 6 | 4,059 | 37,707 | 148,751 | 322,963 | 416,733 | 319,532 | 134,784 | 24,125 |
| 7 | 980 | 7,659 | 24,714 | 42,129 | 40,005 | 20,061 | 4,150 |  |
| 8 | 171 | 1,091 | 2,764 | 3,467 | 2,153 | 530 |  |  |
| 9 | 21 | 106 | 198 | 163 | 50 |  |  |  |
| 10 | 2 | 7 | 8 | 3 |  |  |  |  |
| 11 | 0 | 0 | 0 |  |  |  |  |  |
| 12 | 0 | 0 |  |  |  |  |  |  |
| 13 | 0 |  |  |  |  |  |  |  |

## Multi-Iocus Matches



## STR Survey: $\widehat{\psi}$ Values for Groups and Loci

Geographic Region

| Locus | Africa | AusAb | Asian | Cauc | Hisp | IndPK | NatAm | Poly | Aver. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSF1PO | 0.003 | 0.002 | 0.008 | 0.008 | 0.002 | 0.007 | 0.055 | 0.026 | 0.011 |
| D1S1656 | 0.000 | 0.000 | 0.000 | 0.002 | 0.003 | 0.000 | 0.000 | 0.000 | 0.011 |
| D2S441 | 0.000 | 0.000 | 0.002 | 0.003 | 0.021 | 0.000 | 0.000 | 0.000 | 0.020 |
| D2S1338 | 0.009 | 0.004 | 0.011 | 0.017 | 0.013 | 0.003 | 0.023 | 0.005 | 0.031 |
| D3S1358 | 0.004 | 0.010 | 0.009 | 0.006 | 0.012 | 0.040 | 0.079 | 0.001 | 0.025 |
| D5S818 | 0.002 | 0.013 | 0.009 | 0.008 | 0.014 | 0.018 | 0.044 | 0.007 | 0.029 |
| D6S1043 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 |
| D7S820 | 0.004 | 0.021 | 0.010 | 0.007 | 0.007 | 0.046 | 0.030 | 0.005 | 0.026 |
| D8S1179 | 0.003 | 0.007 | 0.012 | 0.006 | 0.002 | 0.031 | 0.020 | 0.008 | 0.019 |
| D10S1248 | 0.000 | 0.000 | 0.000 | 0.002 | 0.004 | 0.000 | 0.000 | 0.000 | 0.007 |
| D12S391 | 0.000 | 0.000 | 0.000 | 0.003 | 0.020 | 0.000 | 0.000 | 0.000 | 0.010 |
| D13S317 | 0.015 | 0.016 | 0.013 | 0.008 | 0.014 | 0.025 | 0.050 | 0.014 | 0.038 |
| D16S539 | 0.007 | 0.002 | 0.015 | 0.006 | 0.009 | 0.005 | 0.048 | 0.004 | 0.021 |
| D18S51 | 0.011 | 0.012 | 0.014 | 0.006 | 0.004 | 0.010 | 0.033 | 0.003 | 0.018 |
| D19S433 | 0.009 | 0.001 | 0.009 | 0.010 | 0.014 | 0.000 | 0.022 | 0.014 | 0.023 |
| D21S11 | 0.014 | 0.012 | 0.013 | 0.007 | 0.006 | 0.023 | 0.067 | 0.018 | 0.021 |
| D22S1045 | 0.000 | 0.000 | 0.007 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.015 |
| FGA | 0.002 | 0.009 | 0.012 | 0.004 | 0.007 | 0.016 | 0.021 | 0.006 | 0.013 |
| PENTAD | 0.008 | 0.000 | 0.012 | 0.012 | 0.002 | 0.017 | 0.000 | 0.000 | 0.022 |
| PENTAE | 0.002 | 0.000 | 0.017 | 0.006 | 0.003 | 0.012 | 0.000 | 0.000 | 0.020 |
| SE33 | 0.000 | 0.000 | 0.012 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.004 |
| TH01 | 0.022 | 0.001 | 0.022 | 0.016 | 0.018 | 0.014 | 0.071 | 0.017 | 0.071 |
| TPOX | 0.019 | 0.087 | 0.016 | 0.011 | 0.007 | 0.018 | 0.064 | 0.031 | 0.035 |
| VWA | 0.009 | 0.007 | 0.017 | 0.007 | 0.012 | 0.022 | 0.028 | 0.005 | 0.023 |
| All Loci | 0.006 | 0.014 | 0.010 | 0.007 | 0.008 | 0.018 | 0.043 | 0.011 | 0.022 |

Buckleton JS, Curran JM, Goudet J, Taylor D, Thiery A, Weir BS. 2016. Forensic Science International: Genetics 23:91-100.

## World Survey Parallel Coordinates



Figure 1 Parallel coordinate plot for first 10 principal coordinatess for all populations with sample sizes at least 50. Each line in the plot represents one population. Color code: Black=African, Grey $=$ AusAb, Yellow $=$ Asian, Blue $=$ Caucn, Purple $=$ Hisp, Brown $=I n d P k$, Red $=$ NatAm, Orange $=$ Inuit, Brown=Andam, Green=Polyn.

