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QUANTITATIVE TRAITS
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Genetic Model for Trait

Suppose gene T affects a trait: its genotype may affect the

probability an individual has a disease or its genotype may affect

the value of some measurable quantity. There may be other

genes also affecting the trait, and there may be non-genetic

effects.

No suppose G is the genotypic effect of T on the trait and E

is the environmental effect (or all other effects). An individual

is observed to have phenotypic (trait) value (disease status or

measured value) Y and a simple linear model is

Y = G+ E

The mean environmental effect is taken to be zero, so the mean

phenotypic effect is equal to the mean genotypic value.
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Genetic Model for Trait

“If we could replicate a particular genotype in a number of indi-

viduals and measure them under environmental conditions normal

for the population, their mean environmental deviations would

be zero, and their mean phenotypic value would consequently be

equal to the genotypic value of that particular genotype. This is

the meaning of the genotypic value of an individual.”

Falconer DS. 1960. Introduction to Quantitative Genetics. Ronald Press,

New York. p. 113
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Genetic Model for Trait

Extensions to this model can include G × E interaction, but at

present G and E will be considered independent and their vari-

ances sum to the variance of Y :

Var(Y ) = Var(G) + Var(E) or σ2
Y = σ2

G + σ2
E

In general, the number of alleles for gene T is not known, but a

convenient start is to suppose there are two: an ancestral form

and a more recent form that may increase the chance of being

affected or lead to detrimental values of a measured trait. Write

the two alleles as T, t and the three genotypes as TT, T t, tt. The

three genotypic values are GTT , GT t, Gtt.
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Additive and Dominance Variance

In a population there is a mean genotypic effect, µG, and a

variance of genotypic effects, σ2
G:

µG = π2
TGTT + 2πTπtGT t + π2

t Gtt

σ2
G = π2

T (GTT − µG)2 + 2πTπt(GT t − µG)2 + π2
t (Gtt − µG)2

and the variance can be partitioned into additive and dominance

components:

σ2
G = σ2

AT
+ σ2

DT

σ2
AT

= 2πTπt[πT (GTT −GT t) + πt(GT t −Gtt)]
2

σ2
DT

= π2
Tπ

2
t (GTT − 2GT t+Gtt)

2
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Additive Traits

If the genetic value of trait heterozygotes is the average of the

values of the two trait homozygotes, GT t = (GTT +Gtt)/2 then

σ2
AT

= 2πTπt(GT t −Gtt)
2

σ2
DT

= 0

and the genetic variance is entirely additive.

If the population has only one of the two trait alleles, πTπt = 0

and there is no genetic variance. Otherwise, additive genetic

variance is maximized when the two trait alleles are equally fre-

quent.
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Heritability

A convenient single parameter to describe the trait genetic vari-

ance in a particular population is the heritability h2 defined as

h2 =
σ2
AT

σ2
Y

or the proportion of phenotypic (trait) variance due to additive

allelic effects.

The phenotypic variance, the genetic variance and the additive

and dominance variance components all depend on trait geno-

typic (or allele) frequencies and so are different in different pop-

ulations.

The genotypic effects G are not known but the variance compo-

nents and heritability can be estimated.
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Trait Mean in Inbred Populations

Finding the mean and variance for quantitative traits in popula-

tions where there is inbreeding and/or relatedness and Hardy-

Weinberg equilibrium does not hold, requires modification of

genotype probabilities. For inbred populations, the mean trait

value requires the inbreeding coefficient. For a random member

of a population inbred to an extent F (relative to a reference

population), the genotype probabilities are

PTT = π2
T + FπTπt

PT t = 2πTπt(1 − F )

Ptt = π2
t + FπTπt
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Trait Mean in Inbred Populations

The expected trait value µF in an inbred population is

µF = µ0 + FH

where µ0 is the value in a HWE population (F = 0) and H =

πTπt(GTT − 2GT t +Gtt) is a measure of dominance.
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Inbreeding Depression

Recent paper by Clark DW, et al. 2019. Nature Communica-

tions. Published October 31, 2019:

From data on 1.4 million individuals, e.g. “FROH equivalent to

the offspring of first cousins is associated with a 55% decrease

in the odds of having children.”

Note the need for estimation of individual inbreeding coefficients.
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Clark et al., 2019

Nearly one billion people live in populations where consanguineous

marriages are common.

Burden of disease thought to be disproportionately due to in-

creased homozygosity of rare, recessive variants.

The fraction of each autosomal genome in ROH > 1.5 Mb cor-

relates well with pedigree-based estimates of inbreeding.
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Genetic Variance and Covariance in Inbred Pop-
ulations

For individual U, the genetic variance for an additive trait is

σ2
GU

= (1 + FU)σ2
A

For individuals U, V , the genetic covariance for an additive trait

is

CovGUV = 2θUV σ
2
A

regardless of inbreeding.
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Total Variances and Covariances for Additive Trait

Trait values have both genetic and environmental components.

The simplest model of Y = G+ E leads to the variance of trait

values Y among individuals U in a non-inbred population of un-

related individuals:

Var(YU) = σ2
A + σ2

E

This is also referred to as the phenotypic variance σ2
P .

For an additive trait and for individuals that have no shared envi-

ronment, the variance-covariance matrix for a sample of related

and inbred individuals has elements

Var(YU) = (1 + FU)σ2
A + σ2

E

Cov(YU , YV ) = 2θUV σ
2
A
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Genetic Relationship Matrix

Vector Y of trait values for individuals i = 1,2, . . . n has GRM

G =




(1 + F1) 2θ12 . . . 2θ1n
2θ21 (1 + F2) . . . 2θ2n
. . . . . . . . . . . .

2θn1 2θ2n . . . (1 + Fn)




The trace of this matrix is

tr(G) =
n∑

i=1

Gii = n(1 + FW)

and the sum of the off-diagonal elements is

ΣG =
n∑

i=1

n∑

j=1
i 6=j

Gij = n(n− 1)θS

to define the average inbreeding and kinship values FW , θS for

the sample.
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GRM

Historically, the GRM was obtained from known pedigrees, par-

ticularly for experimental populations of plants and animals.

Beginning with Yu J, et al. 2006. Nature Genetics 38:203 it has

been recognized that pedigree information may not be available,

it may not be accurate, and it can be different from the “gold

standard” GRM.

Instead, the GRM may be constructed with estimated inbreeding

and kinship coefficients.
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Heritability

For an additive trait, heritability in a HWE population is

h2 =
σ2
A

σ2
A + σ2

E

Estimation of h2 therefore requires estimation of σ2
A and σ2

E.

There are likelihood-based methods for doing that, assuming

the trait values are normally distributed.

These notes follow a discussion given by Speed D, et al. 2012.

Am J Hum Genet 91:1011
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Speed et al. 2012

Instead of having replicates of the history of a single individual,

use the trait values for a sample of individuals in some population.

Speed et al. used V̂T for the sample variance of trait values:

V̂T =
1

n− 1

∑

i

(Yi − Ȳ )2

and V̂R for the residual variance once the genotypic effects have

been fitted:

V̂R =
1

n− 1

∑

i

(Ei − Ē)2

As an estimate of heritability, Speed et al. combined these two

sample variances

ĥ2 =
V̂T − V̂R
V̂T

Section 5.1 Slide 18



Speed et al. 2012

It can be shown that

E(V̂T ) =
1

n

[
tr(G) −

1

n− 1
ΣG

]
σ2
A + σ2

E

E(V̂R) = σ2
E

so that

E(ĥ2) =

1
n

[
tr(G) − 1

n−1ΣG

]
σ2
A

1
n

[
tr(G) − 1

n−1ΣG

]
σ2
A + σ2

E

and this has a parametric value of

E(ĥ2) =
(1 + FW − 2θS)σ

2
A

(1 + FW − 2θS)σ
2
A + σ2

E
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Expectation of ĥ2

In the case of no identity by descent within or between individ-

uals, FW = θS = 0,

E(ĥ2) =
σ2
A

σ2
A + σ2

E

= h2

In general, however, the expectation of ĥ2 is

E(ĥ2) =
(1 + FW − 2θS)σ

2
A

(1 + FW − 2θS)(1 + f)σ2
A + σ2

E

=
(1 − θS)(1 + f)σ2

A

(1 − θS)(1 + f)σ2
A + σ2

E

where f = (FW − θS)/(1 − θS). We are not aware that this

expression has been presented before, although

E(ĥ2) =
(1 + F )σ2

A

(1 + F )σ2
A + σ2

E

is often given as though the study population has inbreeding but

no kinship: F = f, θS = 0. It does not seem likely that a natural

population could consist of inbred but unrelated individuals.
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Expectation of ĥ2

For a population in Hardy-Weinberg equilibrium, FW = θS, f = 0:

E(ĥ2) =
(1 − θS)σ

2
A

(1 − θS)σ
2
A + σ2

E

and then ĥ2 will be close to unbiased if θS is low.
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Use of Estimated GRM

The Speed et al. estimate uses two sample variances, and does

not make explicit use of the GRM. Likelihood-based methods do

use the GRM. As the parametric values Fi, θij are not generally

known, G is replaced by a matrix K of estimates. What is the

resulting heritability estimate then estimating?
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Use of Allele-sharing GRM

Can estimate half the GRM with K̂as having elements {β̂ij}. If

M̃ij is the allelic matching proportion, averaged over SNPs, for

individuals i and j including i = j, the β estimates are

β̂ij =
M̃ij − M̃S

1 − M̃S

where M̃ij =
∑L
l=1[1+(Xil−1)(Xjl−1)]/(2L) for allelic dosages

Xil and M̃S =
∑
i 6=j M̃ij/[n(n − 1)]. These estimates have ex-

pected values

E(β̂ij) =





1
2(1+Fi)−θS

1−θS
i = j

θij−θS
1−θS

i 6= j
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Use of Allele-sharing GRM

As Σ
K̂as

= 0 by construction, the expectation of the estimated

heritability is

E(ĥ2) =
E[2ntr(K̂as)σ̂

2
A]

E[2ntr(K̂as)σ̂
2
A + σ̂2

E]

From the expected values of β̂ij, E[tr(K̂as)] = n(1 + f)/2 is

assumed known and replaces K̂as, leading to

E(ĥ2) =
(1 + f)σ2

A

(1 + f)σ2
A + σ2

E

This replaces F in the classical result with f , reflecting that

is f and not F that can be estimated with data from a single

population.
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Use of GCTA GRM

Can also estimate half the GRM with K̂c(0) having elements

{k̂ij}:

k̂ij =

∑
l(Xil − 2p̃l)(Xjl − 2p̃l)∑

l 4p̃l(1 − p̃l)

Now all the elements of the GRM sum to zero by construction. In

other words tr[K̂c(0)]+Σ
K̂c(0)

= 0 and the estimated heritability

is

ĥ2 =

2
n−1tr[K̂c(0)]σ̂2

A
2

n−1tr[K̂c(0)]σ̂2
A + σ̂2

E
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Use of GCTA GRM

Since

E(k̂ii) =
1

2

(
1 +

Fi − 2ψi + θS
1 − θS

)
, ψi =

1

n− 1

∑

j 6=i

θij , θS =
1

n

∑

i

ψi

E[tr[K̂c(0)] =
n

2
(1 + f)

and, regarding this as a constant, the expected value of the

estimated heritability is

E(ĥ2) =

n
n−1(1 + f)σ2

A
n

n−1(1 + f)σ2
A + σ2

E

≈
(1 + f)σ2

A

(1 + f)σ2
A + σ2

E

as for the β estimate.

Very different GRMs give the same estimates of heritability.
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