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Genetic Model for Trait

Suppose gene T affects a trait: its genotype may affect the

probability an individual has a disease or its genotype may affect

the value of some measurable quantity. There may be other

genes also affecting the trait, and there may be non-genetic

effects.

Now suppose G is the genotypic effect of T on the trait and E

is the environmental effect (or all other effects). An individual

is observed to have phenotypic (trait) value (disease status or

measured value) Y and a simple linear model is

Y = G+ E

The mean environmental effect is taken to be zero, so the mean

phenotypic effect is equal to the mean genotypic value.
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Genetic Model for Trait

“If we could replicate a particular genotype in a number of indi-

viduals and measure them under environmental conditions normal

for the population, their mean environmental deviations would

be zero, and their mean phenotypic value would consequently be

equal to the genotypic value of that particular genotype. This is

the meaning of the genotypic value of an individual.”

Falconer DS. 1960. Introduction to Quantitative Genetics. Ronald Press,

New York. p. 113
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Genetic Model for Trait

Extensions to this model can include G × E interaction, but at

present G and E will be considered independent and their vari-

ances sum to the variance of Y :

Var(Y ) = Var(G) + Var(E) or σ2
Y = σ2

G + σ2
E

In general, the number of alleles for gene T is not known, but a

convenient start is to suppose there are two: an ancestral form

and a more recent form that may increase the chance of being

affected or lead to detrimental values of a measured trait. Write

the two alleles as T, t and the three genotypes as TT, T t, tt. The

three genotypic values are GTT , GT t, Gtt.
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Additive and Dominance Variance

In a population there is a mean genotypic effect, µG, and a

variance of genotypic effects, σ2
G:

µG = π2
TGTT + 2πTπtGT t + π2

t Gtt

σ2
G = π2

T (GTT − µG)2 + 2πTπt(GT t − µG)2 + π2
t (Gtt − µG)2

and the variance can be partitioned into additive and dominance

components:

σ2
G = σ2

AT
+ σ2

DT

σ2
AT

= 2πTπt[πT (GTT −GT t) + πt(GT t −Gtt)]
2

σ2
DT

= π2
Tπ

2
t (GTT − 2GT t+Gtt)

2
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Additive Traits

If the genetic value of trait heterozygotes is the average of the

values of the two trait homozygotes, GT t = (GTT +Gtt)/2 then

σ2
AT

= 2πTπt(GT t −Gtt)
2

σ2
DT

= 0

and the genetic variance is entirely additive.

If the population has only one of the two trait alleles, πTπt = 0

and there is no genetic variance. Otherwise, additive genetic

variance is maximized when the two trait alleles are equally fre-

quent.

Quant.Traits Slide 6



Heritability

A convenient single parameter to describe the trait genetic vari-

ance in a particular population is the heritability h2 defined as

h2 =
σ2
AT

σ2
Y

or the proportion of phenotypic (trait) variance due to additive

allelic effects.

The phenotypic variance, the genetic variance and the additive

and dominance variance components all depend on trait geno-

typic (or allele) frequencies and so are different in different pop-

ulations.

The genotypic effects G are not known but the variance compo-

nents and heritability can be estimated.
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Association Mapping

Association methods use random samples from a population and

are alternatives to methods based on pedigrees or crosses be-

tween inbred lines. The associations depend on linkage disequi-

librium between marker and trait loci instead of depending on

linkage between those loci as in pedigree or line cross methods.

The chances of detecting an association between a trait and a

genetic marker are high if:

The trait has a high genetic component.

The marker has high linkage disequilibrium with the trait genes

(depends on allele frequencies at trait and marker loci).

The sample sizes are large.
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Marker-Trait Genotypes

Until the trait locus is identified, the trait genotype cannot be

observed, but maybe it can be inferred, and the location of the

locus estimated, from observations on the trait and the genotype

at a genetic marker M.

Although there are several types of genetic markers, attention

here will be restricted to those with only two alleles M,m: e.g.

SNPs. Individuals with the same marker genotype can have dif-

ferent trait genotypes and a way to describe joint marker-trait

genotypes is needed.
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Marker-Trait Genotype Frequencies

With random mating, (two-locus) genotype frequencies are prod-

ucts of gamete frequencies. For example

Pr(MM,TT) = Pr(MT)2

and gamete frequencies involve allele frequencies and linkage dis-

equilibria:

Pr(MT) = pMpT +DMT
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Two-allele Genotypes

TT Tt tt

MM P2
MT 2PMTPMt P2

Mt

Mm 2PMTPmT 2PMTPmt + 2PMtPmT 2PMtPmt

mm P2
mT 2PmTPmt P2

mt
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Two-allele Gametes

T t

M PMT = pMpT +DMT PMt = pMpt −DMT

m PmT = pmpT −DMT Pmt = pmpt +DMT

Linkage disequilibrium can be regarded as the covariance of marker

and trait allele frequencies, and this can be transformed to the

correlation of marker and trait allele frequencies:

ρMT =
DMT√

pMpmpTpt

ρ2MT =
D2
MT

pMpmpTpt
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Marker and Trait Variables

The trait genotypic values are not known, but they can be sum-

marized by the additive and dominance components of variance.

An analogous system can be considered for the marker geno-

types. These genotypes are observed and their genotypic values

can be assigned. Consider variables X for marker locus M. As

before, a Hardy-Weinberg assumption provides the following ex-

pressions for the mean and variance:

E(X) = µX = p2MXMM + 2pMpmXMm + p2mXmm

Var(X) = σ2
AM

+ σ2
DM
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Components of Variance and Covariance

The additive and dominance components of variance for the

marker are

σ2
AM

= 2pMpm[pM(XMM −XMm) + pm(XMm −Xmm)]2

σ2
DM

= p2Mp
2
m(XMM − 2XMm +Xmm)2

and these lead to the following expression for the covariance of

X and G:

Cov(G,X) = ρMTσATσAM + ρ2MTσDTσDM
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Correlation of Trait and Marker Variables

If either X or G are purely additive (e.g. X is allele dosage), so

that σDT or σDM is zero, then

Cov(G,X) = ρMTσATσAM

If both X of G are purely additive, then σ2
G = σ2

AT
and σ2

X = σ2
AM

and

ρGX = ρMT

so the correlation between the trait and marker effects is just

the linkage disequilibrium between trait and marker loci.

As the trait Y is G + E, in this case Cov(X,Y ) = Cov(X,G)

and Corr(X,Y ) = (ρMTσATσAM)/(σXσY ). In this additive case,

Corr(X,Y ) = ρMT

√
h2 (and Corr(X,G) = ρMT ).
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Measured Traits

Suppose Y = G + E where G is the genetic effect of locus T

and E are all other effects. These other effects are supposed to

have mean zero and to be independent of both G and the marker

variable X. Then

E(Y ) = E(G)

Cov(X,Y ) = Cov(X,G)

σ2
Y = σ2

AT
+ σ2

DT
+ σ2

E

Trait values Y may be regressed on marker variables X. The

regression coefficient is

βY.X =
Cov(X,Y )

Var(X)
=
ρMTσATσAM + ρ2MTσDTσDM

σ2
AM

+ σ2
DM
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Additive Marker Variable

Variable X may be chosen to be additive, e.g XMM = 2, XMm =

1, Xmm = 0 so that σ2
AM

= 2pMpm, σ2
DM

= 0, and then the

regression of trait on (coded) marker genotype has slope

βY.X = ρMT
σAT
σAM

A zero slope means either that there is no trait additive vari-

ance (unlikely) or that there is no linkage disequilibrium between

marker and trait alleles. This, in turn, suggests that trait and

marker loci are not close.
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Trait Mean in Inbred Populations

Finding the mean and variance for quantitative traits in popula-

tions where there is inbreeding and/or relatedness and Hardy-

Weinberg equilibrium does not hold, requires modification of

genotype probabilities. For inbred populations, the mean trait

value requires the inbreeding coefficient. For a random member

of a population inbred to an extent F (relative to a reference

population), the genotype probabilities are

PTT = π2
T + FπTπt

PT t = 2πTπt(1 − F )

Ptt = π2
t + FπTπt
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Trait Mean in Inbred Populations

The expected trait value µF in an inbred population is

µF = µ0 + FH

where µ0 is the value in a HWE population (F = 0) and H =

πTπt(GTT − 2GT t +Gtt) is a measure of dominance.
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Inbreeding Depression

From data on 1.4 million individuals, “FROH equivalent to the

offspring of first cousins is associated with a 55% decrease in

the odds of having children.”

Note the need for estimation of individual inbreeding coefficients.

Clark DW, et al. 2019. Nature Communications. Published October 31,

2019:
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Clark et al., 2019

Nearly one billion people live in populations where consanguineous

marriages are common.

Burden of disease thought to be disproportionately due to in-

creased homozygosity of rare, recessive variants.

The fraction of each autosomal genome in ROH > 1.5 Mb cor-

relates well with pedigree-based estimates of inbreeding.
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Genetic Variance and Covariance in Inbred Pop-

ulations

For individual j, the genetic variance for an additive trait is

σ2
Gj

= (1 + Fj)σ
2
A

For individuals j, j′, the genetic covariance for an additive trait is

CovGjj′ = 2θjj′σ
2
A

regardless of inbreeding.
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Total Variances and Covariances for Additive Trait

Trait values have both genetic and environmental components.

The simplest model of Y = G+ E leads to the variance of trait

values Y among individuals j in a non-inbred population of un-

related individuals:

Var(Yj) = σ2
A + σ2

E

This is also referred to as the phenotypic variance σ2
P .

For an additive trait and for individuals that have no shared envi-

ronment, the variance-covariance matrix for a sample of related

and inbred individuals has elements

Var(Yj) = (1 + Fj)σ
2
A + σ2

E

Cov(Yj, Yj′) = 2θjj′σ
2
A
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Genetic Relationship Matrix

Vector Y of trait values for individuals i = 1,2, . . . n has GRM

G =




(1 + F1) 2θ12 . . . 2θ1n
2θ21 (1 + F2) . . . 2θ2n
. . . . . . . . . . . .

2θn1 2θ2n . . . (1 + Fn)




The trace of this matrix is

tr(G) =
n∑

j=1

(1 + Fj) = n(1 + FI)

and the sum of the off-diagonal elements is

ΣG =
n∑

j=1

n∑

j′=1

j 6=j′

2θjj′ = n(n− 1)2θS

to define the average inbreeding and kinship values FI, θS for the

sample.
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GRM

Historically, the GRM was obtained from known pedigrees, par-

ticularly for experimental populations of plants and animals.

Beginning with Yu J, et al. 2006. Nature Genetics 38:203 it has

been recognized that pedigree information may not be available,

it may not be accurate, and it can be different from the “gold

standard” GRM.

Instead, the GRM may be constructed with estimated inbreeding

and kinship coefficients.
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Heritability Estimation
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Heritability

For an additive trait, heritability in a HWE population is

h2 =
σ2
A

σ2
A + σ2

E

Estimation of h2 therefore requires estimation of σ2
A and σ2

E.

There are likelihood-based methods for doing that, assuming

the trait values are normally distributed.

These notes follow a discussion given by Speed D, et al. 2012.

Am J Hum Genet 91:1011
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Speed et al. 2012

Instead of having replicates of the history of a single individual,

use the trait values for a sample of individuals in some population.

Speed et al. used V̂T for the sample variance of trait values:

V̂T =
1

n− 1

n∑

j=1

(Yj − Ȳ )2

and V̂R for the residual variance once the genotypic effects have

been fitted:

V̂R =
1

n− 1

n∑

j=1

(Ej − Ē)2

As an estimate of heritability, Speed et al. combined these two

sample variances

ĥ2 =
V̂T − V̂R
V̂T
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Speed et al. 2012

It can be shown that

E(V̂T ) =
1

n

[
tr(G) − 1

n− 1
ΣG

]
σ2
A + σ2

E

E(V̂R) = σ2
E

so that

E(ĥ2) =

1
n

[
tr(G) − 1

n−1ΣG

]
σ2
A

1
n

[
tr(G) − 1

n−1ΣG

]
σ2
A + σ2

E

and this has a parametric value of

E(ĥ2) =
(1 + FI − 2θS)σ

2
A

(1 + FI − 2θS)σ
2
A + σ2

E
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Expectation of ĥ2

In the case of no identity by descent within or between individ-

uals, FW = θS = 0,

E(ĥ2) =
σ2
A

σ2
A + σ2

E

= h2

In general, however, the expectation of ĥ2 is

E(ĥ2) =
(1 + FI − 2θS)σ

2
A

(1 + FI − 2θS)σ
2
A + σ2

E

=
(1 − θS)(1 + f)σ2

A

(1 − θS)(1 + f)σ2
A + σ2

E

where f = (FI − θS)/(1 − θS).

Alternatively,

E(ĥ2) =
(1 + F )σ2

A

(1 + F )σ2
A + σ2

E

is often given as though the study population has inbreeding but

no kinship: F = f, θS = 0. It does not seem likely that a natural

population could consist of inbred but unrelated individuals.
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Expectation of ĥ2

For a population in Hardy-Weinberg equilibrium, FI = θS, f = 0:

E(ĥ2) =
(1 − θS)σ

2
A

(1 − θS)σ
2
A + σ2

E

and then ĥ2 will be close to unbiased if θS is low.
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Use of Estimated GRM

The Speed et al. estimate uses two sample variances, and does

not make explicit use of the GRM. Likelihood-based methods do

use the GRM. As the parametric values Fi, θij are not generally

known, G is replaced by a matrix K of estimates. What is the

resulting heritability estimate then estimating?
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Use of Allele-sharing GRM

Can estimate half the GRM with K̂AS having elements {ψ̂jj′} for

row j and column j′. If Ãjj′ is the allelic matching proportion,

averaged over SNPs, for individuals j and j′ including j = j′, the

ψ estimates are

ψ̂jj′ =
Ãjj′ − ÃS

1 − ÃS

where Ãjj′ =
∑L
l=1[1+(Xjl−1)(Xj′l−1)]/(2L) for allelic dosages

Xjl and ÃS =
∑
j 6=j′ Ãjj′/[n(n − 1)]. These estimates have ex-

pected values

E(ψ̂jj′) =





1
2(1+Fj)−θS

1−θS = 1 + fj j = j′

θjj′−θS
1−θS = ψjj′ j 6= j′
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Use of Allele-sharing GRM

As Σ
K̂AS

= 0 by construction, the expectation of the estimated

heritability is

E(ĥ2) =
E[2ntr(K̂AS)σ̂2

A]

E[2ntr(K̂AS)σ̂
2
A + σ̂2

E]

From the expected values of ψ̂jj′, E[tr(K̂AS)] = n(1 + f)/2 is

assumed known and replaces K̂AS, leading to

E(ĥ2) =
(1 + f)σ2

A

(1 + f)σ2
A + σ2

E

This replaces F in the classical result with f , reflecting that

is f and not F that can be estimated with data from a single

population.
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Use of Standard GRM

Can also estimate half the GRM with K̂c0 having elements {k̂jj′}:

k̂jj′ =

∑
l(Xjl − 2p̃l)(Xj′l − 2p̃l)∑

l 4p̃l(1 − p̃l)

Now all the elements of the GRM sum to zero by construction.

In other words tr[K̂c0] +Σ
K̂c0

= 0 and the estimated heritability

is

ĥ2 =

2
n−1tr[K̂c0]σ̂

2
A

2
n−1tr[K̂c0]σ̂

2
A + σ̂2

E
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Use of Standard GRM

Since

E(k̂jj) =
1

2
(1 + fj − 4ψj)

E[tr(K̂c0)] =
n

2
(1 + f)

Since
∑
j ψj = 0, and the expected value of the estimated heri-

tability is

E(ĥ2) =

n
n−1(1 + f)σ2

A
n

n−1(1 + f)σ2
A + σ2

E

≈ (1 + f)σ2
A

(1 + f)σ2
A + σ2

E

as for the allele-sharing estimate.

Very different GRMs give the same estimates of heritability.
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GWAS
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Mixed Linear Model

A simple mixed linear model for a vector of trait values Y is

Y = Xβ + g + e with Var(Y ) = Gσ2
A + Iσ2

e

The vector Y of trait values for a set of individuals is equated to

fixed effects β, including effects of SNPs of interest and maybe

eigenvectors from principal components analysis to account for

population structure, plus random effects g for the total poly-

genic background for each individual. The trait value for an in-

dividual is assumed here to depend additively on its constituent

alleles.

G is the Genetic Relatedness Matrix.
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Simulation Study

Simulation study with 20,000 SNPs from the 1000 Genomes data

on the MXL and ASW combined data set and a trait constructed

to have genetic contribution from five SNPs and a population

effect added to one of the populations.

Figure on next slide shows the QQ plots for the strength of as-

sociation (− log10 p value) for each SNP, with red dots indicating

the causal SNPs. The allele-sharing method gives a similar plot

to PC-Air/PC-Relate with 1 PC, and does better for PC-Air/PC-

Relate with no PCs. Essentially no difference in plots that used

the allele-sharing or the Standard GRMs, and both indicated a

non-causal SNP as being most associated with the trait.

Conomos MP et al. 2015. Genet Epi 39:276-293.

Conomos MP et aal. 2016. Am J Hum Genet 98:127-148.

Schick UM et al. 2016. Am J Hum Genet 98:229-242.
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Simulation Study

QQ plots for association mapping of simulated data. Left to

right: allele-sharing GRM with no PCs, PC-Air/PC-Relate with

1 PC, PC-Relate with no PCs, Standard GRM, unweighted over

SNPs, Standard GRM, weighted over SNPs.
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Empirical Study

An empirical study was made of a quantitative trait in a study with Euro-
pean Non-Hispanic, Hispanic and African American participants. The GRM
inbreeding elements were quite different for allele-sharing and standard GRMs,
but the QQ plots for marker-trait association were very similar.
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