Population Structure Exercises

PopnStrucExercises

Balding Sampling Formula

For a case, suppose n alleles have been seen among the known and typed contributors, and n_A of these are of type A.

If allele A in the evidence profile must be contributed by an unknown contributor under some hypothesis, the probability of that allele is

$$\Pr(A|n_A \text{ of } n) = \frac{n_A \theta + (1-\theta)p_A}{1 + (n-1)\theta}$$

The A allele is then added to the n known alleles, and the probability of the next required allele, say B, is then calculated (if there were n_B among the original n alleles):

$$\Pr(B|n_B \text{ of } n+1) = \frac{n_B \theta + (1-\theta) p_B}{1 + (n+1-1)\theta}$$

etc.

PopnStrucExercises

Slide 2

Effect of θ

Use the Balding sampling formula to find a formula for:

		$\theta \neq 0$	$\theta = 0$
$n=0, n_A=0$	$\Pr(A)$		
$n=1, n_A=1$	$\Pr(A A)$		
	$\Pr(B A)$		
$n = 2, n_A = 2$	$\Pr(A AA)$		
	$\Pr(B AA)$		
$n=2, n_A=n_B=1$	$\Pr(A AB)$		
	$\Pr(B AB)$		
	Pr(C AB)		

Effect of θ

Use the Balding sampling formula to evaluate:

		p = 0.10	p = 0.01	
		$\theta = 0 \theta = 0.01$	$\theta = 0$	$\theta = 0.01$
$n=0, n_A=0$	$\Pr(A)$			
$n=1, n_A=1$	$\Pr(A A)$			
	$\Pr(B A)$			
$n = 2, n_A = 2$	$\Pr(A AA)$			
	$\Pr(B AA)$			
$n=2, n_A=n_B=1$	$\Pr(A AB)$			
	$\Pr(B AB)$			
	$\Pr(C AB)$			