Selection

Owing to this struggle for life, variations, however slight and from whatever cause proceeding, if they be in any degree profitable to the individuals of a species, in their infinitely complex relations to other organic beings and their physical conditions of life, will tend to the preservation of such individuals and will generally be inherited by the offspring. The offspring, also, will thus have a better chance of surviving, for, of the many individuals of a species which are periodically born, but a small number can survive. I have called this principle, by which each slight variation, if useful, is preserved, by the term Natural Selection.

Natural Selection

- More offspring produced that can survive/reproduce
- Individuals differ in ability to survive/reproduce (due to genotype)
- Genotypes that promote survival
 - Present in excess at reproductive age
 - Contribute disproportionately to offspring

Key points

- Selection acts on individuals
- Adaptation is a population process

Model Assumptions

- Diploid individuals
- One locus (2 alleles)
- Sexual reproduction
- Discrete generations
- Random mating
- Infinite population size
- No mutation
- No migration
- Fitnesses constant

Fitness

- Individual: proportional contribution of offspring to next generation
- Genotype: average fitness for all individuals with that genotype in the population
- With VS, fitness is probability of survival to reproductive age

Absolute Fitness

Genotypes	A ₁ A ₁	A ₁ A ₂	A_2A_2
Zygotic Frequencies	<i>p</i> ²	2 <i>pq</i>	<i>q</i> ²
Absolute fitness	w ₁₁	w ₁₂	W ₂₂
Adult Frequencies	<i>p</i> ² w ₁₁	2 <i>pq</i> w ₁₂	$q^2 w_{22}$

 $\overline{W} = p^2 W_{11} + 2p q W_{12} + q^2 W_{22}$

Absolute Fitness

Genotypes	A ₁ A ₁	A ₁ A ₂	A ₂ A ₂
Zygotic Frequencies	<i>p</i> ²	2pq	<i>q</i> ²
Absolute fitness	w ₁₁	w ₁₂	W ₂₂
Adult Frequencies	<i>p</i> ² w ₁₁	2pqw ₁₂	$q^2 w_{22}$
Normalized Adult Frequencies	$p^2 W_{11} / \overline{W}$	$2pqw_{12}/\overline{W}$	$q^2 W_{22} / \overline{W}$

$$p' = \frac{p^2 W_{11} + p q W_{12}}{\overline{W}} \qquad \Delta_s p = p' - p = \frac{p^2 W_{11} + p q W_{12} - p \overline{W}}{\overline{W}}$$

Genotypes	A ₁ A ₁	A ₁ A ₂	A ₂ A ₂
Zygotic Frequencies	<i>p</i> ²	2pq	<i>q</i> ²
Absolute fitness	w ₁₁	w ₁₂	W ₂₂

Genotypes	A ₁ A ₁	A ₁ A ₂	A ₂ A ₂
Zygotic Frequencies	<i>p</i> ²	2 <i>pq</i>	<i>q</i> ²
Absolute fitness	w ₁₁	W ₁₂	W ₂₂
Relative fitness	1	w ₁₂ /w ₁₁	w ₂₂ /w ₁₁

2 alleles: $A_1(p), A_2(q)$

Genotypes	A ₁ A ₁	A ₁ A ₂	A_2A_2
Zygotic Frequencies	<i>p</i> ²	2pq	<i>q</i> ²
Absolute fitness	w ₁₁	w ₁₂	w ₂₂
Relative fitness	1	w ₁₂ /w ₁₁	w ₂₂ /w ₁₁
Relative fitness	1	1- <i>hs</i>	1- <i>s</i>

s: Coefficient of selection

h: Dominance coefficient h = 0: A₁ dominant h = 1: A₁ recessive 0 < h < 1: incomplete dominance h = 0.5: codominant h < 0: overdominance h > 1: underdominance

Genotypes	A ₁ A ₁	A ₁ A ₂	A ₂ A ₂
Zygotic Frequencies	<i>p</i> ²	2 <i>pq</i>	<i>q</i> ²
Absolute fitness	w ₁₁	w ₁₂	w ₂₂
Relative fitness	1	w ₁₂ /w ₁₁	w ₂₂ /w ₁₁
Relative fitness	1	1- <i>hs</i>	1- <i>s</i>
Adult frequencies	<i>p</i> ²	2pq(1-hs)	q ² (1-s)

$$\overline{W} = p^2 + 2pq(1 - hs) + q^2(1 - s)$$

Genotypes	A ₁ A ₁	A ₁ A ₂	A ₂ A ₂
Zygotic Frequencies	<i>p</i> ²	2 <i>pq</i>	<i>q</i> ²
Absolute fitness	w ₁₁	W ₁₂	W ₂₂
Relative fitness	1	w ₁₂ /w ₁₁	w ₂₂ /w ₁₁
Relative fitness	1	1- <i>hs</i>	1- <i>s</i>
Adult frequencies	<i>p</i> ²	2pq(1-hs)	q ² (1-s)
Normalized adult frequencies	p^2/\overline{W}	$2pq(1-hs)/\overline{W}$	$q^2(1-s)/\overline{W}$

Genotypes	A ₁ A ₁	A ₁ A ₂	A ₂ A ₂
Zygotic Frequencies	<i>p</i> ²	2 <i>pq</i>	<i>q</i> ²
Absolute fitness	w ₁₁	w ₁₂	W ₂₂
Relative fitness	1	w ₁₂ /w ₁₁	w ₂₂ /w ₁₁
Relative fitness	1	1- <i>hs</i>	1- <i>s</i>
Adult frequencies	<i>p</i> ²	2pq(1-hs)	q ² (1-s)
Normalized adult frequencies	p^2/\overline{W}	$2pq(1-hs)/\overline{W}$	$q^2(1-s)/\overline{W}$

$$p' = \frac{p^2 + pq(1-hs)}{\overline{W}} \qquad \Delta_s p = p' - p = \frac{p^2 + pq(1-hs) - p\overline{W}}{\overline{W}}$$

Change in Allele Frequency $\Delta_{s} p = \frac{pq (ph+q(1-h))}{\overline{W}}$

(ph+q(1-h))

 $\Delta_{s} p > 0 \text{ if } s > 0$ $\Delta_{s} p < 0 \text{ if } s < 0$

Dependency on s

Hamilton 2009

Dependency on p

Gillespie 2004

Dependency on *h*

Hartl & Clark 2007

Overdominance

2 alleles: $A_1(p), A_2(q)$

h < 0

 $W_{11} < W_{12}$

 $W_{22} < W_{12}$

Genotypes	A ₁ A ₁	A ₁ A ₂	A ₂ A ₂
Zygotic Frequencies	<i>p</i> ²	2 <i>pq</i>	<i>q</i> ²
Absolute fitness	W ₁₁	w ₁₂	W ₂₂
Relative fitness	1	1- <i>hs</i>	1- <i>s</i>

Overdominance

2 alleles: $A_1(p), A_2(q)$

h < 0

 $W_{11} < W_{12}$

 $W_{22} < W_{12}$

Genotypes	A ₁ A ₁	A ₁ A ₂	A ₂ A ₂
Zygotic Frequencies	<i>p</i> ²	2 <i>pq</i>	<i>q</i> ²
Absolute fitness	W ₁₁	W ₁₂	W ₂₂
Relative fitness	1	1- <i>hs</i>	1- <i>s</i>
Relative fitness	1- <i>s</i>	1	1- <i>t</i>

Overdominance

Hartl and Clark

Underdominance

2 alleles: $A_1(p), A_2(q)$

h > 1

 $W_{12} < W_{11}$

 $W_{12} < W_{22}$

Genotypes	A ₁ A ₁	A ₁ A ₂	A ₂ A ₂
Zygotic Frequencies	<i>p</i> ²	2 <i>pq</i>	<i>q</i> ²
Absolute fitness	W ₁₁	w ₁₂	W ₂₂
Relative fitness	1	1- <i>hs</i>	1- <i>s</i>

Underdominance

Hartl and Clark

	AA Aa aa	
Directional selection		
Case 1	$w_{11} > w_{12} > w_{22}$	A becomes fixed
•		1 p 0
Case 2	$w_{11} < w_{12} < w_{22}$	a becomes fixed
		0 9 1
Overdominance		
Case 3	$w_{11} < w_{12} > w_{22}$	Stable polymorphism
		1 p 0
Underdominance		
Case 4	$w_{11} > w_{12} < w_{22}$	Unstable equilibrium
		1 p 0

Table 3. Summary of behavior of the one-locus two-allele viability model.