Incorporating Relatives

Relatives

Because DNA profiles are inherited, relatives are more likely to share a DNA profile than unrelated individuals.
H_{p} : The DNA in the sample came from the suspect.
H_{d} : The DNA in the sample came from an unrelated individual.
H_{p} : The DNA in the sample came from the suspect.
H_{d} : The DNA in the sample came from a brother of the suspect.

The relationship type can be anything: parent, child, sibling, uncle, cousin, etc.

The more distant the relationship, the closer the value will become to the LR considering unrelated individuals.

Pedigrees

Pedigrees provide a graphical representation of relationships.

Individuals are said to be related if they share a common ancestor. Relationships can be unilateral (one-sided) or bilateral (two-sided).

Identity By Descent

- Relatives are similar because they share alleles that are identical by descent (IBD).
- IBD alleles are copies of the same allelic type inherited through a common ancestor (and ignores mutation).
- A pedigree or relationship determines IBD probabilities, which determine probabilities of joint genotypes.

IBD Coefficients

For non-inbred relatives, there are three IBD classes. We write κ_{i} to denote the IBD probabilities:

$$
\kappa_{i}=\operatorname{Pr}(i \text { alleles IBD })
$$

IBD Coefficients

The following table shows IBD probabilities for common relationships:

Relationship	κ_{0}	κ_{1}	κ_{2}
Unrelated	1	0	0
Parent/child	0	1	0
Identical twins	0	0	1
Siblings	$1 / 4$	$1 / 2$	$1 / 4$
Half-sibs	$1 / 2$	$1 / 2$	0
First cousins	$3 / 4$	$1 / 4$	0

These IBD probabilities give the expected relatedness between individuals (the realized relatedness is variable).

Match Probabilities for Relatives

If $\kappa_{0}=1$, we are in the original situation and write M_{2} for the appropriate match probability:

$$
M_{2}= \begin{cases}p_{A}^{2}, & \text { for homozygous loci } A A \\ 2 p_{A} p_{B}, & \text { for heterozygous loci } A B .\end{cases}
$$

If $\kappa_{1}=1$, the match probability M_{1} changes to:

$$
M_{1}= \begin{cases}p_{A}, & \text { for homozygous loci } A A \\ \frac{1}{2}\left(p_{A}+p_{B}\right), & \text { for heterozygous loci } A B .\end{cases}
$$

If $\kappa_{2}=1$, both alleles are IBD and the match probability is 1 .

Match Probabilities for Relatives

Combining the terms leads to the overall single-locus match probability for relatives:

$$
\kappa_{2}+\kappa_{1} M_{1}+\kappa_{0} M_{2}
$$

which yields a standard match probability of M_{2} for unrelated individuals.

LRs for Relatives

With this approach we can incorporate specific relatives. But what if no specific alternative is available?
H_{d} : The DNA in the sample came from an unrelated individual.
H_{d} : The DNA in the sample came from a brother of the suspect.
H_{d} : The DNA in the sample came from an unknown individual from the population.

LRs Including Relatives

- We can model a situation where relatives of the suspect make up a small proportion of the total population.
- Background information may be used to assess plausible values for the number of relatives in each category.
- An overall LR can be calculated as a weighted average over the sets.

