OTHER TOPICS

OtherTopics

SINGLE CONTRIBUTORS

OtherTopics

Profile and Match Probabilities

Profile Probability:

$$\begin{aligned} \mathsf{Pr}(AA) &= p_A^2 + \theta p_A (1 - p_A) \le 2p_A \\ \mathsf{Pr}(AB) &= 2p_A p_B - 2\theta p_A p_B \le 2p_A p_B \end{aligned}$$

Match Probability:

$$\Pr(AA|AA) = \frac{[2\theta + (1-\theta)p_A][3\theta + (1-\theta)p_A]}{(1+\theta)(1+2\theta)}$$
$$\Pr(AB|AB) = \frac{2[\theta + (1-\theta)p_A][\theta + (1-\theta)p_B]}{(1+\theta)(1+2\theta)}$$

Relatives

$$\Pr(AA|AA) = k_2 + k_1 p_A + k_0 p_A^2$$

$$\Pr(AB|AB) = k_2 + \frac{1}{2}(p_A + p_B)k_1 + 2k_0 p_A p_B$$

For unilineal relatives, $k_2 = 0, k_1 + k_0 = 1$ and kinship $\theta = k_1/4$:

$$\Pr(AA|AA) = p_A^2 + 4\theta p_A(1 - p_A)$$

$$\Pr(AB|AB) = 2p_A p_B + 2\theta (p_A + p_B - 4p_A p_B)$$

For full-sibs, $k_1 = k_0 = 1/4, k_1 = 1/2$:

$$\Pr(AA|AA) = \frac{1}{4}(1+p_A)^2$$

$$\Pr(AB|AB) = \frac{1}{4}(1+p_A+p_B+2p_Ap_B)$$

Relatives with Population Structure

$$\Pr(AA|AA) = k_2 + k_1 \frac{2\theta + (1-\theta)p_A}{1+\theta} + k_0 \frac{[2\theta + (1-\theta)p_A][3\theta + (1-\theta)p_A]}{(1+\theta)(1+2\theta)}$$

$$\Pr(AB|AB) = k_2 + k_1 \frac{2\theta + (1-\theta)(p_A + p_B)}{2(1+\theta)} + k_0 \frac{2[\theta + (1-\theta)p_A][\theta + (1-\theta)p_B]}{(1+\theta)(1+2\theta)}$$

OtherTopics

Paternity Index with Homozygous Mother

- G_M : Mother's genotype; G_C : Child's genotype;
- A_M : Maternal allele; A_P : Paternal allele;
- G_{AF} : Alleged father's genotype; PI: Paternity index.

Paternity Index with Heterozygous Mother

- G_M : Mother's genotype; G_C : Child's genotype;
- A_M : Maternal allele; A_P : Paternal allele;
- G_{AF} : Alleged father's genotype; PI: Paternity index.

GENETIC GENEALOGY

OtherTopics

Identity by Descent

Two alleles from the same ancestral allele are identical by descent.

Individuals that share alleles identical by descent are related.

Individuals may share 0,1 or 2 pairs of alleles identical by descent: e.g. they may have both, either or neither of their maternal and paternal alleles identical by descent. The probabilities of these three states are k_0, k_1, k_2 .

The kinship coefficient of two people is $\theta = k_2/2 + k_1/4$.

STR Kinship Coefficients

Relationship	k_2	k_1	k_0	$\theta = \frac{1}{2}k_2 + \frac{1}{4}k_1$			
Identical twins	1	0	0	$\frac{1}{2}$			
Full sibs	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$			
Parent-child	0	1	0	$\frac{1}{4}$			
Double first cousins	<u>1</u> 16	<u>3</u> 8	<u>9</u> 16	$\frac{1}{8}$			
Half sibs*	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{8}$			
First cousins	0	$\frac{1}{4}$	<u>3</u> 4	$\frac{1}{16}$			
nth cousins	0	$\left(\frac{1}{4}\right)^n$	$1-\left(rac{1}{4} ight)^n$	$\left(\frac{1}{4}\right)^{n+1}$			
Unrelated	0	0	1	0			
* Also grandparent-grandchild and avuncular (e.g. uncle-niece).							

STR Kinship Coefficients

These kinship coefficients with forensic STR panels are not good for distinguishing different types of relatives beyond half sibs. Difficult even to separate half sibs from full sibs.

SNP panels, with up to a million SNPs allow distinguishing even distant cousins. A different statistical measure is used, that takes (lack of) recombination into account.

Recombination

One Morgan is the length along a chromosome in which 1 recombination event is expected to occur. The human genome has a total map length of 36M, meaning that each chromosome is expected to have 1-2 recombination events per generation. A centi-Morgan (cM) is one-hundreth of a Morgan.

Ancestors of variable ancestry

Sampled admixed individual

Wegmann D et al. 2011. Nature Genetics 43:84

First Cousins

X, Y are first cousins, and are expected to share identical alleles from one grandparent with probability 1/16.

But most parts of their genomes will not share identical alleles and some blocks will have identity across the block.

https://thegeneticgenealogist.com/

https://thegeneticgenealogist.com/2017/08/26/august-2017-updateto-the-shared-cm-project/

The Shared cM Project – Version 3.0 (August 2017) Figure 1. The Relationship Chart

The Shar	ed cM Pro	oject – Vei	rsion 3.0	For MU	JCH more inf	ormation (inc	luding histog	rams and con	npany breakd	owns) see: goo	.gl/Z1EcJQ
August 2 Blaine T. Betting www.TheGeneti CC 4.0 Attributio	O17 cGenealogist.com on License		Au 13	How to read this chart: Relationship Aunt/Uncle 1750 ← 1349 - 2175 ← (09% Percentile)			Great-			GGGG- Aunt/Uncle	
Half GG- Aunt/Uncle 187 12 - 383			G	reat-Grandpare 881 464 – 1486	nt			Great-Great Aunt/Uncle 427 191 – 885			Other Relationships
	Half Great- Aunt/Uncle 432 125 - 765			Grandparent 1766 1156 – 2311			Great Aunt/Uncle 914 251 - 2108				6C 21 0 - 86
		Half Aunt/Uncle 891 500 – 1446		Parent 3487 3330 - 3720		Aunt/Uncle 1750 1349 - 2175					6C1R 16 0 - 72
Half 3c 61 0 - 178	Half 2c 117 9 - 397	Half 1C 457 137 - 856	Half-Sibling 1783 1317 - 2312	Sibling 2629 2209 - 3384	SELF	1C 874 553 - 1225	2c 233 46 - 515	3c 74 0 - 217	4c 35 0 - 127	5c 25 0 - 94	6C2R 17 0 – 75
Half 3c1R 42 0 - 165	Half 3c1R Half 2c1R Half 1C1R Niece/Nephew Child 1C1R 2c1R 3C1R 4C1R 5C1R 7C 42 73 0 - 341 57 - 530 57 - 530 1750 3487 3487 3439 123 48 28 21 13 0 - 165 57 - 530 500 - 1446 1349 - 2175 3330 - 3720 141 - 851 0 - 316 0 - 173 0 - 117 0 - 79 0 - 57										7C 13 0 - 57
Half 3c2R 34 0 - 96	Half 2c2R 61 0 - 353	Half 1C2R 145 37 - 360	Half Great Niece/Nephew 432 125 - 765	Great- Niece/Nephew 910 251 - 2108	Grandchild 1766 1156 - 2311	1C2R 229 43 - 531	2c2R 74 0- 261	3C2R 35 0 – 116	4C2R 22 0 - 109	5C2R 17 0 - 43	7 C1R 13 0 - 53
Half 3c3R	Half 2c3R	Half 1C3R 87 0 - 191	Half GG Niece/Nephew 187 12 - 383	Great-Great- Niece/Nephew 427 191 - 885	Great- Grandchild 881 464 – 1486	1C3R 123 0 - 283	2c3R 57 0 – 139	3C3R 22 0 – 69	4C3R 29 0 - 82	5C3R 11 0 - 44	8C 12 0 - 50
Minimum was automatically set to 0 cM for relationships more distant than Half 2C, and averages were determined only for submissions in which DNA was shared								was shared			

The Shared cM Project – Version 3.0 (August 2017)

Table 1. The Cluster Chart

The average, minimums, and maximums for each Cluster were calculated using every submission for the relationships within that Cluster, rather than averaging the previously calculated averages for those relationships. Minimums were automatically set to "o cM" for Clusters 6-10.

The Shared August 201	d cM Project - Version 3.0	Blaine T. Bettinger www.TheGeneticGenealogist.com CC 4.0 Attribution LicenseFor MUCH more information (including histograms and company breakdowns) see: goo.gl/Z1EcJQ						
Cluster	Relationships	Total #	Average	Range (95 th Percentile)	Range (99th Percentile)	Expected		
Cluster #1	Siblings	1345	2629	2342 - 2917	2209 - 3384	2550		
Cluster #2	Half Sibling, Aunt/Uncle/Niece/Nephew, and Grandparent/Grandchild	2473	1760	1435 – 2083	1294 – 2230	1700		
Cluster #3	1C, Half Aunt/Uncle/Niece/Nephew, Great-Grandparent/Great-Grandchild, and Great-Aunt/Uncle/Niece/Nephew	2261	884	619 – 1159	486 - 1761	850		
Cluster #4	1C1R, Half 1C, Half Great- Aunt/Uncle/Niece/Nephew, and Great-Great Aunt/Uncle/Niece/Nephew	1842	440	235 – 665	131 – 851	425		
Cluster #5	1C2R, Half 1C1R, 2C, and Half Great-Great- Aunt/Uncle/Niece/Nephew	2224	232	99 – 397	47 - 517	213		
Cluster #6	1C3R, Half 1C2R, Half 2C, and 2C1R	2284	123	0 – 236	0 – 317	106		
Cluster #7	Half 1C3R, Half 2C1R, 2C2R, and 3C	2492	75	0 - 158	0 – 229	53		
Cluster #8	Half 2C2R, 2C3R, Half 3C, and 3C1R	1864	49	0 – 114	0 - 175	27		
Cluster #9	Half 3C1R, 3C2R, and 4C	1528	36	o – 84	0 - 122	13		
Cluster #10	Half 3C2R, 3C3R, Half 4C, and 4C1R	1040	29	o – 67	0 - 118	7		

Relationship	#	Min	Average	Max	Histogram
Aunt/Uncle/Niece/Nephew (Cluster #2)	1411	1349	1750	2175	200 180 160 140 120 100 80 60 60 60 60 60 60 60 60 60 6
Grandparent/Grandchild (Cluster #2)	611	1156	1766	2311	120 100 100 100 100 100 100 100

The Shared cM Project – Version 3.0 (August 2017)

"To infer identity by descent, we scanned each pair of genomes for long runs of genotype pairs that lack opposite homozygotes. We define inferred IBDhalf as the sum of the lengths of genomic segments where two individuals share DNA identical by state for at least one of the homologous chromosomes. This method is computationally feasible in large sample sets ."

Henn BL, Hon L, Macpherson JM, Eriksson N, Saxonov S, Pe'er I, Mountain JL. 2012. Cryptic distant relatives are common in both isolated and cosmopolitan genetic samples. PLoS One 7:e34267.

Figure 1. Schematic of IBD_{half} inference method. IBD_{half} segments were inferred from unphased genotype data where a series of alleles were identical by state for *at least one* of the homologous chromosomes in a given pair of individuals. IBD segments are indicated in purple. The boundaries of the IBD segments are defined by "opposite homozygotes". Additionally, an IBD region had to be minimally 5 cM in length and contains >400 genotyped SNPs that were homozygous in at least one of the two individuals being compared (see *Methods*).

Degree of cousinship	Expected amount of IBD (cM) ^a	Chance of detecting <i>n</i> th cousin (%) with IBD _{half} ^b	Expected number of cousins ^c	Expected number of detectable cousins (N ^{dc}) ^d
1	900	100	7.5	7.5
2	225	100	38	38
3	56	89.7	190	170.4
4	14	45.9	940	431.5
5	3.5	14.9	4,700	700.3
б	0.88	4.1	23,000	943
7	0.22	1.1	120,000	1,320
8	0.055	0.24	590,000	1,416
9	0.014	0.06	>10 ⁶	NA ^e
10	0.0034	0.002	>10 ⁶	NA ^e

 Table 2. Expected extent of IBD and number of cousins for 1st–10th degrees of cousinship.

^aTheoretical expectation of the amount of IBD across the genome shared between *n*th cousins, assuming 3600 cM across the entire genome. It should be emphasized this description assumes a single common ancestor for a pair of cousins; multiple shared common ancestors will increase the predicted IBD sharing.

^bThe fraction of *n*th degree cousins detected using our IBD algorithm and based on simulated pedigrees of up to 10th degree cousins (see *Methods*).

^cAssuming a specific model of pedigree and population growth over the past 11 generations (see *Methods*).

^dThe expected number of cousins detectable with our IBD algorithm (N^{dc}) was calculated by multiplying the probability of detecting an *n*th cousin by the number of *n*th cousins obtained from our pedigree model of population growth (see *Methods*).

^eGiven the variation in population growth at >9 generations ago, combined with a low power of detection for 9th or 10th cousins, we have indicated the number of detectable cousins for those categories as not applicable, "NA".

We inferred that two individuals share DNA IBD from unphased data. We inferred boundaries of IBD by comparing two individuals' genotypes at a locus and identifying SNPs where one individuals genotype is homozygous for one allele and the other individual's genotype is homozygous for a second allele. By characterizing stretches that lacked these opposite homozygotes, we defined regions that contain at least half IBD between two individuals. That is, an IBDhalf segment was characterized by a series of alleles that were identical by state for at least one of the homologous chromosomes in a given pair of individuals. We define IBDhalf as the sum of the lengths of genomic segments where two individuals are inferred to share DNA identical by descent for at least one of the homologous chromosomes.

We additionally enforced two criteria to increase our confidence that a region represents DNA that is IBD: first, the region is minimally 5 cM in length and second, it contains at least 400 genotyped SNPs that are homozygous in at least one of the two individuals being compared, ensuring that there is both sufficient genotype coverage and genetic distance defining the IBD region. Finally, we accepted a comparison as IBD if the longest segment in the comparison was at least 7 cM."

Figure 1. Schematic of IBD_{half} inference method. IBD_{half} segments were inferred from unphased genotype data where a series of alleles were identical by state for *at least one* of the homologous chromosomes in a given pair of individuals. IBD segments are indicated in purple. The boundaries of the IBD segments are defined by "opposite homozygotes". Additionally, an IBD region had to be minimally 5 cM in length and contains >400 genotyped SNPs that were homozygous in at least one of the two individuals being compared (see *Methods*).

Genealogy Search

Suppose a GEDMatch search for an evidence profile E reveals two first cousins C1, C2.

E and C1 have two of their four grandparents in common. Think of the four grandparents of C1 and trace their descendants D1: these are the parents, uncles, aunts and cousins of C1.

E and C2 have two of their four grandparents in common. Think of the four grandparents of C2 and trace their descendants D2: these are the parents, uncles, aunts and cousins of C2.

The source of E belongs to both D1 and D2.

CEU Example

A CEU individual in the 1000Genomes project appears to have parents who were first cousins. Using 1,000 windows of 1000 SNPs, chromosome 22 shows:

Chr 22 for a CEU Individual