## OTHER TOPICS

## SINGLE CONTRIBUTORS

## Profile and Match Probabilities

Profile Probability:

$$
\begin{aligned}
& \operatorname{Pr}(A A)=p_{A}^{2}+\theta p_{A}\left(1-p_{A}\right) \leq 2 p_{A} \\
& \operatorname{Pr}(A B)=2 p_{A} p_{B}-2 \theta p_{A} p_{B} \leq 2 p_{A} p_{B}
\end{aligned}
$$

Match Probability:

$$
\begin{aligned}
\operatorname{Pr}(A A \mid A A) & =\frac{\left[2 \theta+(1-\theta) p_{A}\right]\left[3 \theta+(1-\theta) p_{A}\right]}{(1+\theta)(1+2 \theta)} \\
\operatorname{Pr}(A B \mid A B) & =\frac{2\left[\theta+(1-\theta) p_{A}\right]\left[\theta+(1-\theta) p_{B}\right]}{(1+\theta)(1+2 \theta)}
\end{aligned}
$$

## Relatives

$$
\begin{aligned}
\operatorname{Pr}(A A \mid A A) & =k_{2}+k_{1} p_{A}+k_{0} p_{A}^{2} \\
\operatorname{Pr}(A B \mid A B) & =k_{2}+\frac{1}{2}\left(p_{A}+p_{B}\right) k_{1}+2 k_{0} p_{A} p_{B}
\end{aligned}
$$

For unilineal relatives, $k_{2}=0, k_{1}+k_{0}=1$ and kinship $\theta=k_{1} / 4$ :

$$
\begin{aligned}
\operatorname{Pr}(A A \mid A A) & =p_{A}^{2}+4 \theta p_{A}\left(1-p_{A}\right) \\
\operatorname{Pr}(A B \mid A B) & =2 p_{A} p_{B}+2 \theta\left(p_{A}+p_{B}-4 p_{A} p_{B}\right)
\end{aligned}
$$

For full-sibs, $k_{1}=k_{0}=1 / 4, k_{1}=1 / 2$ :

$$
\begin{aligned}
\operatorname{Pr}(A A \mid A A) & =\frac{1}{4}\left(1+p_{A}\right)^{2} \\
\operatorname{Pr}(A B \mid A B) & =\frac{1}{4}\left(1+p_{A}+p_{B}+2 p_{A} p_{B}\right)
\end{aligned}
$$

## Relatives with Population Structure

$$
\begin{aligned}
\operatorname{Pr}(A A \mid A A)= & k_{2}+k_{1} \frac{2 \theta+(1-\theta) p_{A}}{1+\theta} \\
& +k_{0} \frac{\left[2 \theta+(1-\theta) p_{A}\right]\left[3 \theta+(1-\theta) p_{A}\right]}{(1+\theta)(1+2 \theta)} \\
\operatorname{Pr}(A B \mid A B)= & k_{2}+k_{1} \frac{2 \theta+(1-\theta)\left(p_{A}+p_{B}\right)}{2(1+\theta)} \\
& +k_{0} \frac{2\left[\theta+(1-\theta) p_{A}\right]\left[\theta+(1-\theta) p_{B}\right]}{(1+\theta)(1+2 \theta)}
\end{aligned}
$$

## Paternity Index with Homozygous Mother

$G_{M}$ : Mother's genotype; $G_{C}$ : Child's genotype; $A_{M}$ : Maternal allele; $A_{P}$ : Paternal allele;
$G_{A F}$ : Alleged father's genotype; PI: Paternity index.

$$
\begin{array}{cccccl}
G_{M} & G_{C} & A_{M} & A_{P} & G_{A F} & \mathrm{PI} \\
\hline A A & A A & A & A & A A & \frac{1+3 \theta}{4 \theta+(1-\theta) p_{A}} \\
& & & & & \\
& & & & A B & \frac{1+3 \theta}{2\left[3 \theta+(1-\theta) p_{A}\right]} \\
& A B & A & B & B B & \frac{1+3 \theta}{2 \theta+(1-\theta) p_{B}} \\
& & & & & \\
& & & & A B & \frac{1+3 \theta}{2\left[\theta+(1-\theta) p_{B}\right.} \\
& & & & B C & \frac{1+3 \theta}{2\left[\theta+(1-\theta) p_{B}\right]} \\
\hline
\end{array}
$$

## Paternity Index with Heterozygous Mother

$G_{M}$ : Mother's genotype; $G_{C}$ : Child's genotype; $A_{M}$ : Maternal allele; $A_{P}$ : Paternal allele; $G_{A F}$ : Alleged father's genotype; PI: Paternity index.

$$
\begin{array}{cccccl}
G_{M} & G_{C} & A_{M} & A_{P} & G_{A F} & \mathrm{PI} \\
\hline A B & A A & A & A & A A & \frac{1+3 \theta}{3 \theta+(1-\theta) p_{A}} \\
& & & & & \\
& & & & A B & \frac{1+3 \theta}{2\left[2 \theta+(1-\theta) p_{A}\right]} \\
& A C & A & C & C C & \frac{1+3 \theta}{2 \theta+(1-\theta) p_{C}} \\
& & & & & \\
& & & & A C & \frac{1+3 \theta}{2\left[\theta+(1-\theta) p_{C}\right]} \\
& & & & & \\
& & & & C D & \frac{1+3 \theta}{2\left[\theta+(1-\theta) p_{C}\right]}
\end{array}
$$

## GENETIC GENEALOGY

## Identity by Descent

Two alleles from the same ancestral allele are identical by descent.

Individuals that share alleles identical by descent are related.

Individuals may share 0,1 or 2 pairs of alleles identical by descent: e.g. they may have both, either or neither of their maternal and paternal alleles identical by descent. The probabilities of these three states are $k_{0}, k_{1}, k_{2}$.

The kinship coefficient of two people is $\theta=k_{2} / 2+k_{1} / 4$.

## STR Kinship Coefficients

| Relationship | $k_{2}$ | $k_{1}$ | $k_{0}$ | $\theta=\frac{1}{2} k_{2}+\frac{1}{4} k_{1}$ |
| :--- | :---: | :---: | :---: | :---: |
| Identical twins | 1 | 0 | 0 | $\frac{1}{2}$ |
| Full sibs | $\frac{1}{4}$ | $\frac{1}{2}$ | $\frac{1}{4}$ | $\frac{1}{4}$ |
| Parent-child | 0 | 1 | 0 | $\frac{1}{4}$ |
| Double first cousins | $\frac{1}{16}$ | $\frac{3}{8}$ | $\frac{9}{16}$ | $\frac{1}{8}$ |
| Half sibs* | 0 | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{8}$ |
| First cousins | 0 | $\frac{1}{4}$ | $\frac{3}{4}$ | $\frac{1}{16}$ |
| $n$th cousins | 0 | $\left(\frac{1}{4}\right)^{n}$ | $1-\left(\frac{1}{4}\right)^{n}$ | $\left(\frac{1}{4}\right)^{n+1}$ |
| Unrelated | 0 | 0 | 1 | 0 |
| * Also grandparent-grandchild and avuncular (e.g. uncle-niece). |  |  |  |  |

## STR Kinship Coefficients

These kinship coefficients with forensic STR panels are not good for distinguishing different types of relatives beyond half sibs. Difficult even to separate half sibs from full sibs.

SNP panels, with up to a million SNPs allow distinguishing even distant cousins. A different statistical measure is used, that takes (lack of) recombination into account.

## Recombination

One Morgan is the length along a chromosome in which 1 recombination event is expected to occur. The human genome has a total map length of 36 M , meaning that each chromosome is expected to have 1-2 recombination events per generation. A centi-Morgan (cM) is one-hundreth of a Morgan.

Ancestors of variable ancestry


Sampled admixed individual
Wegmann D et al. 2011. Nature Genetics 43:84

## First Cousins


$X, Y$ are first cousins, and are expected to share identical alleles from one grandparent with probability $1 / 16$.

But most parts of their genomes will not share identical alleles and some blocks will have identity across the block.

## The Shared cM Project

https://thegeneticgenealogist.com/
https://thegeneticgenealogist.com/2017/08/26/august-2017-update-to-the-shared-cm-project/

## The Shared cM Project

The Shared cM Project - Version 3.0 (August 2017)
Figure 1. The Relationship Chart


## The Shared cM Project

The Shared cM Project - Version 3.0 (August 2017)

## Table 1. The Cluster Chart

The average, minimums, and maximums for each Cluster were calculated using every submission for the relationships within that Cluster, rather than averaging the previously calculated averages for those relationships. Minimums were automatically set to "o cM" for Clusters $6-10$.

| The Shared cM Project - Version 3.0 August 2017 |  | Blaine T. Bettinger www.TheGeneticGenealogist.com CC 4.0 Attribution License |  | For MUCH more information (including histograms and company breakdowns) see: goo.gl/Z1EcJQ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cluster | Relationships | Total \# | Average | Range ( $95^{\text {th }}$ Percentile) | Range (99th Percentile) | Expected |
| Cluster \#1 | Siblings | 1345 | 2629 | 2342-2917 | $2209-3384$ | 2550 |
| Cluster \#2 | Half Sibling, <br> Aunt/Uncle/Niece/Nephew, and Grandparent/Grandchild | 2473 | 1760 | $1435-2083$ | $1294-2230$ | 1700 |
| Cluster \#3 | 1C, Half Aunt/Uncle/Niece/Nephew, Great-Grandparent/Great-Grandchild, and <br> Great-Aunt/Uncle/Niece/Nephew | 2261 | 884 | 619-1159 | 486-1761 | 850 |
| Cluster \#4 | 1 C 1 R , Half 1 C , Half Great- <br> Aunt/Uncle/Niece/Nephew, and <br> Great-Great <br> Aunt/Uncle/Niece/Nephew | 1842 | 440 | $235-665$ | $131-851$ | 425 |
| Cluster \#5 | 1 C 2 R , Half $1_{1} \mathrm{C} R, 2 \mathrm{C}$, and Half Great-GreatAunt/Uncle/Niece/Nephew | 2224 | 232 | $99-397$ | $47-517$ | 213 |
| Cluster \#6 | ${ }_{1} \mathrm{C}_{3}$ R, Half ${ }_{1} \mathrm{C} 2 \mathrm{R}$, Half 2 C , and ${ }_{2} \mathrm{C}_{1} \mathrm{R}$ | 2284 | 123 | 0-236 | O-317 | 106 |
| Cluster \#7 | Half $1_{3} \mathrm{C}_{3}$, Half $2 \mathrm{C}_{1} \mathrm{R}, 2 \mathrm{C} 2 \mathrm{R}$, and 3 C | 2492 | 75 | O-158 | O-229 | 53 |
| Cluster \#8 | Half $2 \mathrm{C} 2 \mathrm{R},{ }_{2} \mathrm{C}_{3} \mathrm{R}$, Half 3 C , and $3 \mathrm{C}_{1} \mathrm{R}$ | 1864 | 49 | O-114 | O-175 | 27 |
| Cluster \#9 | Half ${ }_{3} \mathrm{C}_{1} \mathrm{R}, 3 \mathrm{C} 2 \mathrm{R}$, and ${ }_{4} \mathrm{C}$ | 1528 | 36 | O-84 | O-122 | 13 |
| Cluster \#10 | Half ${ }_{3} \mathrm{C} 2 \mathrm{R}, 3 \mathrm{C}_{3} \mathrm{R}$, Half 4 C , and 4 C 1 R | 1040 | 29 | o-67 | O-118 | 7 |

## The Shared cM Project

The Shared cM Project - Version 3.0 (August 2017)


## Henn et al., 2012

"To infer identity by descent, we scanned each pair of genomes for long runs of genotype pairs that lack opposite homozygotes. We define inferred IBDhalf as the sum of the lengths of genomic segments where two individuals share DNA identical by state for at least one of the homologous chromosomes. This method is computationally feasible in large sample sets ."

Henn BL, Hon L, Macpherson JM, Eriksson N, Saxonov S, Pe'er I, Mountain JL. 2012. Cryptic distant relatives are common in both isolated and cosmopolitan genetic samples. PLoS One 7:e34267.

## Henn et al., 2012



Figure 1. Schematic of $I B D_{\text {half }}$ inference method. $I B D_{\text {half }}$ segments were inferred from unphased genotype data where a series of alleles were identical by state for at least one of the homologous chromosomes in a given pair of individuals. IBD segments are indicated in purple. The boundaries of the IBD segments are defined by "opposite homozygotes". Additionally, an IBD region had to be minimally 5 cM in length and contains $>400$ genotyped SNPs that were homozygous in at least one of the two individuals being compared (see Methods).

## Henn et al., 2012

Table 2. Expected extent of IBD and number of cousins for 1st-10th degrees of cousinship.

| Degree of cousinship | Expected amount of IBD (cM) ${ }^{\text {a }}$ | Chance of detecting $n$th cousin (\%) with IBD $_{\text {half }}$ b | Expected number of cousins ${ }^{\text {c }}$ | Expected number of detectable cousins ( $\left.\mathrm{N}^{\mathrm{dt}}\right)^{\mathrm{d}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 900 | 100 | 7.5 | 7.5 |
| 2 | 225 | 100 | 38 | 38 |
| 3 | 56 | 89.7 | 190 | 170.4 |
| 4 | 14 | 45.9 | 940 | 431.5 |
| 5 | 3.5 | 14.9 | 4,700 | 700.3 |
| 6 | 0.88 | 4.1 | 23,000 | 943 |
| 7 | 0.22 | 1.1 | 120,000 | 1,320 |
| 8 | 0.055 | 0.24 | 590,000 | 1,416 |
| 9 | 0.014 | 0.06 | $>10^{6}$ | $N A^{e}$ |
| 10 | 0.0034 | 0.002 | $>10^{6}$ | $N A^{\text {e }}$ |

${ }^{3}$ Theoretical expectation of the amount of IBD across the genome shared between $n$th cousins, assuming 3600 cM across the entire genome. It should be emphasized this description assumes a single common ancestor for a pair of cousins; multiple shared common ancestors will increase the predicted IBD sharing.
${ }^{\text {b }}$ The fraction of $n$th degree cousins detected using our IBD algorithm and based on simulated pedigrees of up to 10th degree cousins (see Methods),
'Assuming a specific model of pedigree and population growth over the past 11 generations (see Methods).
${ }^{\text {d }}$ The expected number of cousins detectable with our IBD algorithm ( $\mathrm{N}^{\mathrm{dc}}$ ) was calculated by multiplying the probability of detecting an $n$th cousin by the number of nth cousins obtained from our pedigree model of population growth (see Methods).
${ }^{\text {G Given }}$ the variation in population growth at $>9$ generations ago, combined with a low power of detection for 9th or 10 th cousins, we have indicated the number of detectable cousins for those categories as not applicable, "NA".
…-........

## Henn et al., 2012

We inferred that two individuals share DNA IBD from unphased data. We inferred boundaries of IBD by comparing two individuals' genotypes at a locus and identifying SNPs where one individuals genotype is homozygous for one allele and the other individual's genotype is homozygous for a second allele. By characterizing stretches that lacked these opposite homozygotes, we defined regions that contain at least half IBD between two individuals. That is, an IBDhalf segment was characterized by a series of alleles that were identical by state for at least one of the homologous chromosomes in a given pair of individuals. We define IBDhalf as the sum of the lengths of genomic segments where two individuals are inferred to share DNA identical by descent for at least one of the homologous chromosomes.

## Henn et al., 2012

We additionally enforced two criteria to increase our confidence that a region represents DNA that is IBD: first, the region is minimally 5 cM in length and second, it contains at least 400 genotyped SNPs that are homozygous in at least one of the two individuals being compared, ensuring that there is both sufficient genotype coverage and genetic distance defining the IBD region. Finally, we accepted a comparison as IBD if the longest segment in the comparison was at least 7 cM ."

## Henn et al., 2012



Figure 1. Schematic of $I B D_{\text {half }}$ inference method. $I B D_{\text {half }}$ segments were inferred from unphased genotype data where a series of alleles were identical by state for at least one of the homologous chromosomes in a given pair of individuals. IBD segments are indicated in purple. The boundaries of the IBD segments are defined by "opposite homozygotes". Additionally, an IBD region had to be minimally 5 cM in length and contains $>400$ genotyped SNPs that were homozygous in at least one of the two individuals being compared (see Methods).

## Genealogy Search

Suppose a GEDMatch search for an evidence profile $E$ reveals two first cousins $C 1, C 2$.
$E$ and $C 1$ have two of their four grandparents in common. Think of the four grandparents of $C 1$ and trace their descendants $D 1$ : these are the parents, uncles, aunts and cousins of $C 1$.
$E$ and $C 2$ have two of their four grandparents in common. Think of the four grandparents of $C 2$ and trace their descendants $D 2$ : these are the parents, uncles, aunts and cousins of $C 2$.

The source of $E$ belongs to both $D 1$ and $D 2$.

## CEU Example

A CEU individual in the 1000Genomes project appears to have parents who were first cousins. Using 1,000 windows of 1000 SNPs, chromosome 22 shows:

Chr 22 for a CEU Individual


