Forensic Genetics

Module 16 – Section 8 Exercises

Exercise 1a: LR – Relatives

Consider a simple single-source crime scene sample with genotype $G_C = AA$, and a suspect that matches at that locus. Calculate the LR, using $p_A = 4\%$, and alternative hypotheses:

The DNA in the sample came from a brother of the suspect;

Exercise 1a: LR – Relatives

Consider a simple single-source crime scene sample with genotype $G_C = AA$, and a suspect that matches at that locus. Calculate the LR, using $p_A = 4\%$:

• LR =
$$\frac{1}{0.25p_A^2 + 0.5p_A + 0.25} \approx 3.7$$
;

Exercise 1b: LR - Relatives

Consider a simple single-source crime scene sample with genotype $G_C = AA$, and a suspect that matches at that locus. Calculate the LR, using $p_A = 4\%$, and alternative hypotheses:

- The DNA in the sample came from a brother of the suspect;
- The DNA in the sample came from an identical twin of the suspect.

Exercise 1b: LR - Relatives

Consider a simple single-source crime scene sample with genotype $G_C = AA$, and a suspect that matches at that locus. Calculate the LR, using $p_A = 4\%$:

• LR =
$$\frac{1}{0.25p_A^2 + 0.5p_A + 0.25} \approx 3.7$$
;

• LR = 1.

Suppose a child has genotype $G_C = AB$. What are the LR values when:

• $G_M = AA$ and $G_{AF} = BB$;

Suppose a child has genotype $G_C = AB$. The LR values are:

• LR =
$$\frac{\Pr(G_C = AB | G_M = AA, G_{AF} = BB, H_p)}{\Pr(G_C = AB | G_M = AA, H_d)} = \frac{1}{p_B};$$

Suppose a child has genotype $G_C = AB$. What are the LR values when:

•
$$G_M = AA$$
 and $G_{AF} = BB$;

•
$$G_M = AA$$
 and $G_{AF} = CD$;

Suppose a child has genotype $G_C = AB$. The LR values are:

• LR =
$$\frac{\Pr(G_C = AB | G_M = AA, G_{AF} = BB, H_p)}{\Pr(G_C = AB | G_M = AA, H_d)} = \frac{1}{p_B};$$

• LR =
$$\frac{\Pr(G_C = AB | G_M = AA, G_{AF} = CD, H_p)}{\Pr(G_C = AB | G_M = AA, H_d)} = 0;$$

Suppose a child has genotype $G_C = AB$. What are the LR values when:

•
$$G_M = AA$$
 and $G_{AF} = BB$;

•
$$G_M = AA$$
 and $G_{AF} = CD$;

•
$$G_M = AA$$
 and $G_{AF} = BC$;

Suppose a child has genotype $G_C = AB$. The LR values are:

• LR =
$$\frac{\Pr(G_C = AB | G_M = AA, G_{AF} = BB, H_p)}{\Pr(G_C = AB | G_M = AA, H_d)} = \frac{1}{p_B};$$

• LR =
$$\frac{\Pr(G_C = AB | G_M = AA, G_{AF} = CD, H_p)}{\Pr(G_C = AB | G_M = AA, H_d)} = 0;$$

• LR =
$$\frac{\Pr(G_C = AB | G_M = AA, G_{AF} = BC, H_p)}{\Pr(G_C = AB | G_M = AA, H_d)} = \frac{\frac{1}{2}}{p_B} = \frac{1}{2p_B};$$

Suppose a child has genotype $G_C = AB$. What are the LR values when:

•
$$G_M = AA$$
 and $G_{AF} = BB$;

•
$$G_M = AA$$
 and $G_{AF} = CD$;

•
$$G_M = AA$$
 and $G_{AF} = BC$;

•
$$G_M = AB$$
 and $G_{AF} = AA$.

Suppose a child has genotype $G_C = AB$. The LR values are:

• LR =
$$\frac{\Pr(G_C = AB | G_M = AA, G_{AF} = BB, H_p)}{\Pr(G_C = AB | G_M = AA, H_d)} = \frac{1}{p_B};$$

• LR =
$$\frac{\Pr(G_C = AB | G_M = AA, G_{AF} = CD, H_p)}{\Pr(G_C = AB | G_M = AA, H_d)} = 0;$$

• LR =
$$\frac{\Pr(G_C = AB | G_M = AA, G_{AF} = BC, H_p)}{\Pr(G_C = AB | G_M = AA, H_d)} = \frac{\frac{1}{2}}{p_B} = \frac{1}{2p_B}$$
;

• LR =
$$\frac{\Pr(G_C = AB|G_M = AB, G_{AF} = AA, H_p)}{\Pr(G_C = AB|G_M = AA, H_d)} = \frac{\frac{1}{2}}{\frac{1}{2}p_A + \frac{1}{2}p_B} = \frac{1}{p_A + p_B}$$
.

Calculate the weight of the evidence for the following data:

Locus	G_C	G_{M}	G_{AF}
TPOX	(6,9)	(6,12)	(8,9)
vWA	(17,17)	(17,16)	(17,17)
TH01	(7,9)	(9,10)	(7,9)

Locus	Allele	Frequency
TPOX	6	0.006
	8	0.506
	9	0.094
	12	0.038
vWA	16	0.276
	17	0.300
TH01	7	0.147
	9	0.232
	10	0.116

Source: Introduction to Statistics for Forensic Scientist (Lucy, 2005).

Calculate the weight of the evidence for the following data:

Locus	G_C	G_{M}	G_{AF}
TPOX	(6,9)	(6,12)	(8,9)
vWA	(17,17)	(17, 16)	(17,17)
TH01	(7,9)	(9,10)	(7,9)

We calculate single-locus LRs and combine these results through multiplication:

- TPOX: LR = $\frac{0.25}{0.5p_9} = \frac{1}{2 \times 0.094} = 5.32$;
- vWA: LR = $\frac{1}{p_{17}} = \frac{1}{0.3} = 3.33$;
- TH01: LR = $\frac{0.25}{0.5p_7} = \frac{1}{2 \times 0.147} = 3.40$.

Our overall LR is in this case 60.23, yielding evidence in favor of H_p .

For a missing person case, the two propositions could be:

 H_p : The sample is from the missing person.

 H_d : The sample is from some unknown person.

The following likelihood ratios are obtained for a sample with alleged mother (AM) and alleged father (AF), compared to the paternity index, for $p_A = p_B = 0.1$:

(A)M	AF	Sample	LR	Value	ΡI	Value
AA	BB	AB				
AA	BC	AB				
AB	AA	AB				

Source: Interpreting DNA Evidence (Evett & Weir, 1998).

For a missing person case, the two propositions could be:

 H_p : The sample is from the missing person.

 H_d : The sample is from some unknown person.

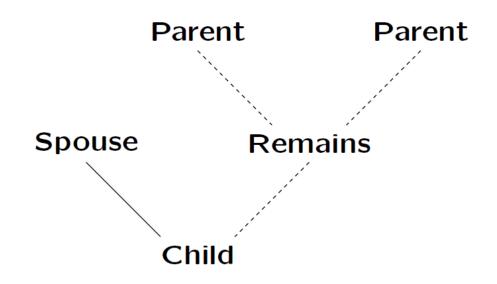
The following likelihood ratios are obtained for a sample with alleged mother (AM) and alleged father (AF), compared to the paternity index, for $p_A = p_B = 0.1$:

(A)M	AF	Sample	LR	Value	ΡI	Value
AA	BB	AB	$\frac{1}{2p_Ap_B}$	50	$\frac{1}{p_B}$	10
AA	BC	AB	$\frac{1}{4p_Ap_B}$	25	$\frac{1}{2p_B}$	5
AB	AA	AB	$\frac{1}{4p_Ap_B}$	25	$\frac{1}{p_A + p_B}$	5

Source: Interpreting DNA Evidence (Evett & Weir, 1998).

It may be the case that people apart from the spouse and child of the missing person are typed. The general procedure is the same: the probabilities of the set of observed genotypes under two explanations are compared.

Suppose the parents P and Q as well as the child C and spouse S of the missing person are typed, and that a sample is available that has come from some person X thought under H_p to be the missing person.



Under explanation H_d , the sample from X did not come from the missing person, and therefore the genotype of X does not depend on the genotypes of P and Q and the genotype of C does not depend on the genotype of X.

The likelihood ratio is arranged to involve probabilities of genotypes conditional on previous generations. If both parents of an individual have been typed, there is no need to condition on the grandparents of that individual.

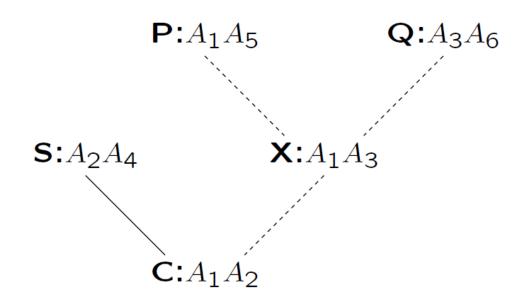
In the following slides, C, S, X, P and Q represent the genotypes of the child, the remains, the spouse and the parents of the missing person.

Under explanation H_d , the sample from X did not come from the missing person, and therefore the genotype of X does not depend on the genotypes of P and Q and the genotype of C does not depend on the genotype of X.

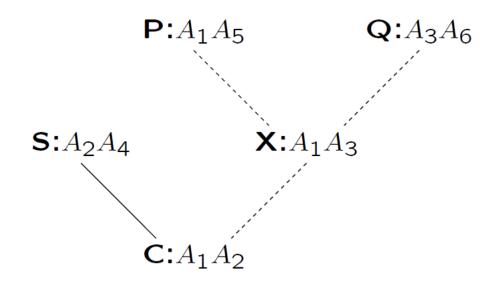
The likelihood ratio is arranged to involve probabilities of genotypes conditional on previous generations. If both parents of an individual have been typed, there is no need to condition on the grandparents of that individual.

In the following slides, C, S, X, P and Q represent the genotypes of the child, the remains, the spouse and the parents of the missing person.

$$\mathsf{LR} \; = \; \frac{\mathsf{Pr}(E|H_p)}{\mathsf{Pr}(E|H_d)} \\ = \; \frac{\mathsf{Pr}(C,S,X,P,Q|H_p)}{\mathsf{Pr}(C,S,P,X,Q|H_d)} \\ = \; \frac{\mathsf{Pr}(C|S,X,P,Q,H_p)\,\mathsf{Pr}(S,X,P,Q|H_p)}{\mathsf{Pr}(C|S,X,P,Q,H_d)\,\mathsf{Pr}(S,X,P,Q|H_d)} \\ = \; \frac{\mathsf{Pr}(C|S,X,P,Q,H_d)\,\mathsf{Pr}(S,X|P,Q,H_p)\,\mathsf{Pr}(P,Q|H_p)}{\mathsf{Pr}(C|S,P,Q,H_d)\,\mathsf{Pr}(S,X|P,Q,H_d)\,\mathsf{Pr}(P,Q|H_p)} \\ = \; \frac{\mathsf{Pr}(C|S,X,H_p)\,\mathsf{Pr}(S|H_p)\,\mathsf{Pr}(X|P,Q,H_p)}{\mathsf{Pr}(C|S,P,Q,H_d)\,\mathsf{Pr}(S|H_d)\,\mathsf{Pr}(X|H_d)} \\ = \; \frac{\mathsf{Pr}(C|S,X,H_p)\,\mathsf{Pr}(X|P,Q,H_p)}{\mathsf{Pr}(C|S,P,Q,H_d)\,\mathsf{Pr}(X|P,Q,H_p)} \\ = \; \frac{\mathsf{Pr}(C|S,X,H_p)\,\mathsf{Pr}(X|P,Q,H_p)}{\mathsf{Pr}(C|S,P,Q,H_d)\,\mathsf{Pr}(X|H_d)}$$



$$LR = \frac{\Pr(C|S, X, H_p) \Pr(X|P, Q, H_p)}{\Pr(C|S, P, Q, H_d) \Pr(X|H_d)}$$



$$\Pr(C|S, X, H_p) = 1/4$$
 $\Pr(X|P, Q, H_p) = 1/4$
 $\Pr(C|S, P, Q, H_d) = 1/8$
 $\Pr(X|H_d) = 2p_1p_3$
 $LR = \frac{1}{4p_1p_3}$