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Great Irony of Biostatistics

• Our job is to identify whether the newest, latest, 
greatest medical technologies are safe & efficacious 
and what works best for whom
– Laser therapies, Whole genome diagnostics
– Immunotherapies for cancer, etc

• Many statisticians believe our ‘technologies’ were as 
good as can be by 1933 or 1977 and nothing better 
can be invented
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Great Irony of Biostatistics

• Donald Berry @ GBM AGILE kickoff:  
“Randomized clinical trials are 70 years old…what 
other technology doesn’t change in 70 years? 
Meanwhile, cancer biology is moving at light speed 
and potential treatments have to wait in the queue.”

• Take away:  Realize the constraints (lack of) 
computing played on statistical methodology – and 
realize we are no longer constrained
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Introductions
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Plus reminder to self to confirm I’m recording
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Decision Problem 1:  Pandemic!

• A pandemic just hit the USA!!
• Patients are dying from a deadly disease
• 7-day survival rate is estimated to be less 

than 50% with standard care
• Patients who are alive at 7 days after initial 

symptoms typically have full recovery
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Decision Problem 1:  Pandemic!

• We need to determine best treatment of infected 
people

• Currently available therapies
– Standard care with aforementioned ~50% mortality
– 3 experimental anti-virals are ready to go
– Each experimental arm is a novel anti-viral drug plus 

standard care
• Primary Endpoint:

– Alive at 7 days after randomization (yes/no)
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Allocation of Patients

• An effective treatment is any treatment that is 
better than standard care

• We will design the trial in stages, lets say we can 
enroll 80 patients per month

• You tell me where you want to assign patients
• I’ll tell you how many on each drug survived
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Interim Analyses

• At each interim analysis, you will receive efficacy 
data and will have to decide one of three things:

1. Terminate the trial for futility, choose standard care as 
best option

2. Stop the trial for success, choose optimal drug to treat all 
future patients

3. Continue to collect data, allocating the next 80 patients 
to the four arms however you choose 
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Contest Points
• Team Competition

– Each deceased patient costs 5 points
– Every minute it takes to make a final decision costs 50 points 

(e.g., 20 minutes costs 1000 points)
– If you claim a drug is superior to standard care (successful 

trial):
1. If (in truth) the chosen drug is not superior to standard care, you 

lose 1,000 points
2. If (in truth) the chosen drug is superior to standard care, you receive 

2,000 points plus 200 for each % efficacy compared to control
– If you claim standard care is best (futile trial):

1. If (in truth) at least one of the drugs is superior to standard, you 
lose 1,000 points

2. If (in truth) all drugs are not superior to standard, you receive 2,000 
points
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Instructions
• I’ll create breakout rooms
• Talk among yourselves and decide how many patients (80 total) you 

would like to allocate to 
– Standard Care
– Drug 1
– Drug 2
– Drug 3

• Aim for 3-4 minutes per iteration
• One member return to the main room and private message me with

– Group Name, Patients to Placebo, Drug 1, Drug 2, Drug 3
– For example “Group C:  20  20   20  20

• I’ll write back your new total Deaths & N and % per group
• Repeat until you decide which is best or that none is better than 

standard care
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Decisions
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You private message to me, if you want 20 placebo & 
20 on each drug:

 Group C:  20  20   20  20

I private message back to you:

          N Alive PctAlive
 Control 20    10      50%
 Drug1   20     7      35%
 Drug2   20    10      50%
 Drug3   20    11      55%
 Overall 80    38      48%

I will always give you THE SUM TOTALs so far
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Go!
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I-SPY2 in Breast Cancer
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Desirable Qualities of an RCT
• b

14

• a
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Decision Problem #2
• New device to assist pre-mature infants
• Historical mortality rate >75%
• How to decide if new device is better than 

standard of care?
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Decision Problem 2:  ECMO
• Extracorporeal membrane oxygenation
• Oxygenates babies’ blood & gives 

underdeveloped lungs & heart time to heal or 
grow

• Historical survival rates ≤ 25%
• Michigan trial:  Randomized play the winner 

strategy
– Bartlett, Pediatrics, 1985, 76: 479-487
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Randomization Rules
• Randomize first patient 1:1 to treatment t
• If  survives on treatment t, add 1 “t-colored” ball
• If  dies on treatment t, add 1 other colored ball
• Treat 10 patients this way

• Expected number patients treated with better 
treatment > 5, “ethical”
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ECMO Results
Prob to Balls in Urns
ECMO TRT Result CMT ECMO

Start 1 1
1 0.50
2
3
4
5
6
7
8
9
10
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ECMO Results
Prob to Balls in Urns
ECMO TRT Result CMT ECMO

Start 1 1
1 0.50 ECMO
2
3
4
5
6
7
8
9
10
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ECMO Results
Prob to Balls in Urns
ECMO TRT Result CMT ECMO

Start 1 1
1 0.50 ECMO Lived
2
3
4
5
6
7
8
9
10
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ECMO Results
Prob to Balls in Urns
ECMO TRT Result CMT ECMO

Start 1 1
1 0.50 ECMO Lived 1 2
2 0.67
3
4
5
6
7
8
9
10
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ECMO Results
Prob to Balls in Urns
ECMO TRT Result CMT ECMO

Start 1 1
1 0.50 ECMO Lived 1 2
2 0.67 CMT Died 1 3
3 0.75
4
5
6
7
8
9
10
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ECMO Results
Prob to Balls in Urns
ECMO TRT Result CMT ECMO

Start 1 1
1 0.50 ECMO Lived 1 2
2 0.67 CMT Died 1 3
3 0.75 ECMO Lived 1 4
4 0.80
5
6
7
8
9
10
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ECMO Results
Prob to Balls in Urns
ECMO TRT Result CMT ECMO

Start 1 1
1 0.50 ECMO Lived 1 2
2 0.67 CMT Died 1 3
3 0.75 ECMO Lived 1 4
4 0.80 ECMO Lived 1 5
5 0.83
6
7
8
9
10
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ECMO Results
Prob to Balls in Urns
ECMO TRT Result CMT ECMO

Start 1 1
1 0.50 ECMO Lived 1 2
2 0.67 CMT Died 1 3
3 0.75 ECMO Lived 1 4
4 0.80 ECMO Lived 1 5
5 0.83 ECMO Lived 1 6
6 0.86 ECMO Lived 1 7
7 0.88 ECMO Lived 1 8
8 0.89 ECMO Lived 1 9
9 0.90 ECMO Lived 1 10
10 0.91 ECMO Lived 1 11
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What Would You Decide?
• ECMO  9/9 CMT  0/1*

* The 1 on CMT was the sickest of all patients

• As a statistician / clinical trialist do you have 
sufficient information to declare ECMO 
more efficacious than standard of care?
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What Would You Decide?
• ECMO  9/9 CMT  0/1*

* The 1 on CMT was the sickest of all patients

• As a statistician / clinical trialist do you have 
sufficient information to declare ECMO 
more efficacious than standard of care?

• As a parent would you dare not request 
ECMO for your premature baby?

30
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Lessons of ECMO
• Questions the trials designers should have asked 

before the trial
– How do we calculate a p-value? 

31
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Lessons of ECMO
• Questions the trials designers should have asked 

before the trial
– How do we calculate a p-value?
– Published p-values for this data (Stat Sci Nov 1989)

 
0.00049 0.051  
0.001  0.083F

0.003  0.280
0.009  0.500
0.038  0.617
0.045  1.000
undefined   
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Lessons of ECMO
• Questions the trials designers should have asked 

before the trial
– How do we calculate a p-value? 
– Will the medical community believe our results?

• Will we have enough data to sway opinions of people 
with a wide range of prior beliefs 

– What are trial results likely to look like?
– What if everyone is randomized to ECMO? 

• If CMT success = 30% and ECMO success = 90%
 6% chance all 10 patients will be randomized to ECMO
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Follow-Up Trials
• Harvard

– Stage 1: randomize equally until 4 deaths in one arm
– Stage 2: assign all to other arm until 4 deaths or stat sig. 
– 6/10 conventional therapy (60%)
– 9/9 & 19/20 on ECMO (97%) 
– Pediatrics, 1989, 84: 957-963

• U.K
– 63/93 on ECMO (68%)
– 38/92 on conventional therapy (41%)
 Lancet, 1996, 348: 75-82

• Were these study designs ethical?
• Do we have an irrational commitment to blinded RCTs?
• Do we have an irrational commitment to p < 0.05?
• Does lack of p<0.05 mean equipoise until we see p<0.05?

34

34



7/17/23

9

Why are Study Designs (Usually) Fixed

• It’s easiest to calculate type I error rates if the 
design parameters of the trial are all constant

• Results obtained using “Standard approaches” 
are generally considered valid

• Logistically simpler to execute
• Fixed designs are less sensitive to drift in the 

characteristics of subjects over time
– Fears worse than reality

• We could do the math 40 years ago
– We still can but we can also do more sophisticated things now too

35
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Why are Study Designs (Usually) Fixed

• It’s easiest to calculate type I error rates if the 
design parameters of the trial are all constant

• Results obtained using “Standard approaches” 
are generally considered valid

• Logistically simpler to execute
• Fixed designs are less sensitive to drift in the 

characteristics of subjects over time
– Fears worse than reality

• We could do the math 40 years ago
– We still can but we can also do more sophisticated things now too
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But now we can simulate tria
ls & 

do much more complicated calculations

36

Digression:
The Marshmallow Design Challenge

37
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The Marshmallow Design Challenge
Peter Skillman

• 4-person team

• 18 minutes

• 20 pieces of raw spaghetti

• 1 meter of tape

• 1 meter of string

• 1 marshmallow

Peter Skillman Marshmallow Design Challenge
https://www.youtube.com/watch?v=1p5sBzMtB3Q

38
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The Marshmallow Design Challenge

Tom Wujec: Build a tower, build a team.
https://www.youtube.com/watch?v=H0_yKBitO8M
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The Marshmallow Design Challenge

Tom Wujec: Build a tower, build a team.
https://www.youtube.com/watch?v=H0_yKBitO8M
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The Marshmallow Design Challenge

Tom Wujec: Build a tower, build a team.
https://www.youtube.com/watch?v=H0_yKBitO8M
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The Marshmallow Design Challenge

Tom Wujec: Build a tower, build a team.
https://www.youtube.com/watch?v=H0_yKBitO8M
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The Marshmallow Design Challenge
Peter Skillman

• Kindergartners
– Don’t waste time seeking power
– Don’t sit around talking about the problem
– Try, fail, try, fail until time runs out 
– They all grab stuff and try things
– Usually keep the marshmallow on top when trying

• MBA grads 
– Spend a lot of time talking
– Trained to find single best plan
– Trained never to fail
– Last thing they do it put the marshmallow on top
 (and often watch the whole tower collapse)

43
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The Marshmallow Design Challenge
Peter Skillman

• You learn by doing and failing & redoing

– With Simulation we can do this cheap, fast, and ethically!

• Work in parallel

• Doing multiple iterations is good

• All projects have resource constraints

44
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ECMO:  Trial & Error Design by 
Simulation

p.ecmo <- 0.75;      p.cmt <- 0.25

group.vec <- NULL;    outcome.vec <- NULL
outcome <- matrix(nrow=100000, ncol=5)

for(s in 1:100000){
urn <- c(1,1)
for(pt in 1:10){
  group <- sample(c("C","E"), 1, prob=urn)
  result <- rbinom(1, 1, ifelse(group=="C",p.cmt, p.ecmo))
  if(group=="C"){     
      if(result==1){
           urn[1] <- urn[1] + 1
      }else{
           urn[2] <- urn[2] + 1
      }
  }else{
      if(result==1){
           urn[2] <- urn[2] + 1
      }else{
           urn[1] <- urn[1] + 1
      }
}
group.vec[pt] <- group
outcome.vec[pt] <- result
}
tab <- table(factor(group.vec, levels=c("C","E")), factor(outcome.vec, 
levels=0:1))
outcome[s,] <- c(c(tab), fisher.test(tab, alternative='greater')$p.value)
print(s)
}

### Pr no patients on control
mean((outcome[,1]+outcome[,3]) == 0)
### Pr no patients on ECMO
mean((outcome[,2]+outcome[,4]) == 0)

### Pr more on ECMO than control
mean((outcome[,1]+outcome[,3]) < (outcome[,2]+outcome[,4]))
### Pr more equal on each
mean((outcome[,1]+outcome[,3]) == (outcome[,2]+outcome[,4]))
### Pr more on control than ECMO
mean((outcome[,1]+outcome[,3]) > (outcome[,2]+outcome[,4]))

### More ECMO than control success
mean((outcome[,3]) < (outcome[,4]))
### 4 or more ECMO than control successes
mean((outcome[,3] + 4) <= (outcome[,4]))

45
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ECMO: Prospective Simulation

Operating Characteristics CMT 25%
ECMO 75%

CMT 25%
ECMO 25%

Pr(All patients randomized to ECMO) 2.5% 0.04%

Pr(All patients randomized to CMT) 0.04% 0.04%

Pr(Majority to ECMO) 72% 36%

Pr(5 ECMO & 5 CMT) 14% 27%

Pr(Majority to CMT) 14% 36%

Pr(Fisher P-value < 5%)
Pr(Chi-square P-value < 5%)

12%
32%

0.1%
1.9%

Pr(# ECMO Success > # CMT Successes) 89% 38%

Pr(# ECMO Success ≥ # CMT Success + 4) 59% 2.7%
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ECMO: Prospective Simulation

Operating Characteristics CMT 25%
ECMO 75%

CMT 25%
ECMO 25%

Pr(All patients randomized to ECMO) 2.5% 0.04%

Pr(All patients randomized to CMT) 0.04% 0.04%

Pr(Majority to ECMO) 72% 36%

Pr(5 ECMO & 5 CMT) 14% 27%

Pr(Majority to CMT) 14% 36%

Pr(Fisher P-value < 5%)
Pr(Chi-square P-value < 5%)

12%
32%

0.1%
1.9%

Pr(# ECMO Success > # CMT Successes) 89% 38%

Pr(# ECMO Success ≥ # CMT Success + 4) 59% 2.7%

Power

Type I
error
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ECMO: Prospective Simulation

Operating Characteristics CMT 25%
ECMO 75%

CMT 25%
ECMO 25%

Pr(All patients randomized to ECMO) 2.5% 0.04%

Pr(All patients randomized to CMT) 0.04% 0.04%

Pr(Majority to ECMO) 72% 36%

Pr(5 ECMO & 5 CMT) 14% 27%

Pr(Majority to CMT) 14% 36%

Pr(Fisher P-value < 5%)
Pr(Chi-square P-value < 5%)

12%
32%

0.1%
1.9%

Pr(# ECMO Success > # CMT Successes) 89% 38%

Pr(# ECMO Success ≥ # CMT Success + 4) 59% 2.7%

Power Type I
error
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ECMO Iterate Design

N Decision Rule
# ECMO Successes vs. 
# CMT Successes

Power when
ECMO 75%
CMT 25%

Type I error
ECMO 25%
CMT 25%

10 1 or more 89% 38%

10 4 or more 59% 2.7%

10 3 or more 72% 8.1%
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ECMO Iterate Design

N Decision Rule
# ECMO Successes vs. 
# CMT Successes

Power when
ECMO 75%
CMT 25%

Type I error
ECMO 25%
CMT 25%

10 4 or more 59% 2.7%

10 3 or more 72% 8.1%

15 4 or more 79% 5.9%

15 5 or more 71% 2.3%
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ECMO Iterate Design

N Decision Rule
# ECMO Successes vs. 
# CMT Successes

Power when
ECMO 75%
CMT 25%

Type I error
ECMO 25%
CMT 25%

10 4 or more 59% 2.7%

10 3 or more 72% 8.1%

15 4 or more 79% 5.9%

15 5 or more 71% 2.3%

16 4 or more 82% 6.7%

16 5 or more 74% 2.8%
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ECMO Iterate Design

N Decision Rule
# ECMO Successes vs. 
# CMT Successes

Power when
ECMO 75%
CMT 25%

Type I error
ECMO 25%
CMT 25%

10 4 or more 59% 2.7%

10 3 or more 72% 8.1%

15 4 or more 79% 5.9%

15 5 or more 71% 2.3%

16 4 or more 82% 6.7%

16 5 or more 74% 2.8%

18 5 or more 80% 3.5%

Fisher’s exact test:  59% power @ 1-sided 5.0%. 52

52

ECMO Iterate Design

N

Decision
Rule
ECMO v 
CMT

Power
75v25

ECMO
S/N

CMT
S/N

T1error
25v25

ECMO
S/N

CMT
S/N

10 4 or more 59%
4.9 / 6.5 0.9 / 3.5

2.7%
1.25 / 5 1.25 / 5

10 3 or more 72% 8.1%

18 5 or more 80% 9.2 / 12.2 1.4 / 5.8 3.5% 2.25 / 9 2.25 / 9

8 more 
patients

5.7
more 

2.3
more

4
more 

4
more

Standard trial with 18 patients has 58% power with 5% Type I error
Always randomized half to CMT; E(survive) = 10.6 vs. 9
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ECMO with 18 patients

CMT=25%, ECMO = 75%

Randomized to ECMO
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0
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00
0

15
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0 3 6 9 12 15 18

CMT=25%, ECMO = 25%

Randomized to ECMO
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0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True Rate, p.c & p.t

Ty
pe

 I 
er

ro
r

0.00012

0.0016
0.0073

0.019
0.035

0.054

0.088 0.1
0.13

0.16 0.18
0.21 0.23

0.26 0.28
0.3 0.32 0.34

0.37

No free lunch

Type I error is controlled for low rates

Controlling Type I error over the whole range 
requires huge power hit in the likely range 

Is this worth it in a highly morbid disease  
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When designing trials I believe we should
• Remember that most ‘standard’ statistical methods were developed for 

agriculture
• Remember that current trialists were trained by people who were 

trained by people who had seeds as patients
• Remember most statistical methodology is based on asymptotic theory

– Because we couldn’t do math then that we can do it now

• Forget much of what we know about clinical trials & 
 hypothesis testing & asymptotic theory
• Hire smart people with their heart in the right place
• Balance treating the next patient well & producing valuable long-term 

evidence
• Think much harder about the ‘right’ Type I error rate

– Nothing sacred about 0.05

• Design trials by trial & error by using simulation, 
 iterate designs with doctors, patients, payers, regulators
• Not let within-trial patient benefit be a side effect of quality research

56
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Part 2

57

Trials in which key design parameters change 
during trial execution based upon a priori  
predefined rules and accumulating data from the 
trial to achieve goals of  validity, scientific 
efficiency, and safety

– Planned: All possible adaptations defined a priori
– Well-defined: Criteria for adapting clearly explained
– Key parameters: Not minor inclusion or exclusion criteria, 

routine amendments, etc.
– Validity: Reliable statistical inference

What are Adaptive Trials?

58
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What are Adaptive Designs?
• Adaptive Design:

– A design that “changes” depending on 
observed values in the trial

• Prospective Adaptive Design:
– A design that has pre-specified dynamic 

aspects that are determined by the accruing 
information

Every time I say “Adaptive Design” I mean 
 “Prospectively Adaptive Design”

59
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Trials that change based on prospective 
rules & the accruing information
– Adaptive sample sizes based on predictive probabilities

• Stop early for success
• Terminate early for futility

– Adaptive randomization
• For statistical efficiency
• For improved patient treatment
• Drop/Re-enter arms or dose groups

– Adaptive accrual rate
– Combination therapies
– Adapt to responding sub-populations
– Adaptive borrowing of  information
– Seamlessly combine phases of  development

• Phase 2/3 designs:  Operationally vs. Inferentially seamless

What are Adaptive Trials?

60
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When is Adaptation Most Valuable
• Outcomes or biomarkers available rapidly 

relative to time required for entire trial
• Substantial morbidity, risks, costs
• Large uncertainty regarding relative efficacy, 

adverse event rates, variability, patient 
population in trial, etc.

• Logistically practical
• Able to secure buy-in of stakeholders

61
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Drawbacks of Adaptation
• Infeasible if time from patient accrual to final 

outcomes long vs. total accrual time
• Adaptive design take much more forethought & buy-

in from more stakeholders
• Determining traditional Type I and II error rates more 

difficult
– Rely on simulation

• People fear new
– Most statisticians have never designed or analyzed an 

adaptive trial
– Some regulatory personnel unfamiliar with
– Funders (e.g. venture capitalists and NIH) unfamiliar with
– DMCs / IRBs may not understand
– Clinicians may not understand

62
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Drawbacks of Adaptation
• Logistical issues

– Design stage is longer
– Data needs to be entered & transmitted quickly
– Data needs to be checked / validated quickly
– Events need to be adjudicated quickly
– Drug supply concerns for adaptive randomization

• Fear of unblinding 
– Need centralized randomization

• Use web or phone systems
– Need to have lots of people / systems well & correctly 

connected 

63
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Typical Prospective Adaptive Design

Analyze
Available Data

Continue Data
Collection

Begin Data Collection with Initial
Allocation and Sampling Rules

Stopping
Rule Met?

Stop Trial or
Begin Next
Phase in
Seamless

Design

Revise Allocation
and Sampling Rules

per Adaptive Algorithm
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Typical Prospective Adaptive Design
The information in 

the data is critical

Interim values can 
be very informative

Analyze
Available Data

Continue Data
Collection

Begin Data Collection with Initial
Allocation and Sampling Rules

Stopping
Rule Met?

Stop Trial or
Begin Next
Phase in
Seamless

Design

Revise Allocation
and Sampling Rules

per Adaptive Algorithm
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JAMA 2006;296:1955-1957. 66
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Who To Involve
• Sponsor

– Project leaders
– Statisticians
– PK/PD

• Clinical site IRBs
• Data Safety Monitoring Board
• IVRS/IWRS service 
• CRO who will house data
• Regulatory agencies
• Patient advocacy groups?

• Treat patients in trial best vs. get drug to market sooner?

• Payers

– Clinical experts
– Business leaders
– Patient advocates

67
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Adaptive Designs & Collaborators
• Requires buy-in and educating IRB, DSMB, decision-makers, study 

teams, investigators, and subjects
• Requires more time, resources, and upfront planning, especially at 

the protocol-design stage
• Show sponsor many many example trials

– Also great for debugging

• Complex study designs typically require more statistical 
assumptions, rigorous calculations, and extensive simulations 
(operating characteristics)

• But also more robust to deviations from our assumptions
• Operationally challenging

– Work with CROs as early as possible, fit statistical parts within infrastructure

• Make sure sponsors understands what adaptive designs are not
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Components of an Adaptive Trial

Site 1 Site 2 Site n• • •Clinical

Logistics

Adaptive
Machinery

Management

Drug
Supply

Randomization
System

CRO/Data
Management

Thanks Roger Lewis

69

69

Components of an Adaptive Trial

Site 1 Site 2 Site n• • •Clinical

Logistics

Adaptive
Machinery

Management

Drug
Supply

Randomization
System

CRO/Data
Management

Thanks Roger Lewis

70

70



7/17/23

18

Components of an Adaptive Trial

Site 1 Site 2 Site n• • •Clinical

Logistics

Adaptive
Machinery

Management

Drug
Supply

Randomization
System

CRO/Data
Management

Thanks Roger Lewis

71

71

Components of an Adaptive Trial

Site 1 Site 2 Site n• • •Clinical

Logistics

Adaptive
Machinery

Management

Drug
Supply

Randomization
System

CRO/Data
Management

Thanks Roger Lewis

72

72

Components of an Adaptive Trial

Site 1 Site 2 Site n• • •Clinical

Logistics

Adaptive
Machinery

Management

Drug
Supply

Randomization
System

CRO/Data
Management

Adaptive
Algorithm

Data
Analysis

Thanks Roger Lewis

73

73

Components of an Adaptive Trial
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Data Safety Monitoring Boards
• Purpose

– To ensure continued safety, validity, feasibility, 
and integrity of the clinical trial

– To ensure the trial is conducted according to 
 a priori plan, including adaptation

• Structure
– Learn phase: usually includes internal personnel
– Confirm phase: generally includes only 

independent, external members

77
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Data Safety Monitoring Boards
• What’s different in an adaptive trial?

– Requires expertise to assess whether the planned 
adaptations continue to be safe and appropriate

– May increase need to include sponsor personnel
– Ideally expertise to ensure everything is working

• What’s unchanged in an adaptive trial?
– The DSMB ensures completion of the trial as 

planned, including the adaptation
– It is the trial that’s adaptive, not the DSMB

78
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IRB Review

• IRBs review/approve the full protocol, including 
the planned adaptations

• No new review when adaptations made
– IRBs may request to be informed (e.g., new sample 

size, dropping of a surgical arm)
• Amendments are different

– Not preplanned
• Irony

– Little changes (amendments) may require IRB review
– Big changes (adaptations) are defined by design and 

only reviewed/approved once
79
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Acceptability to Key Stakeholders
• FDA

– FDA Critical Path Initiative
– 2010 Guidance for the Use of Bayesian Statistics in Medical 

Device Trials
– 2019 Guidance for Adaptive Design Clinical Trials for Drugs 

and Biologics
– Joint Regulatory Science initiative with NIH

• EMEA & PCORI Guidances
• Journals

– Surprisingly clinical journals care little about design
• Ever see a medical journal with smaller font for the methods?

– We’ve had to argue to let journals give us more space for the 
design
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Acceptability to Key Stakeholders
• NIH

– ADAPT-IT sponsored by NIH Common Fund
• Redesigning four neurologic emergency trials using adaptive designs

– READAPT sponsored by NHLBI
– ISPY-2 initiated by NIH Institute

– Very good about seeking expertise to judge adaptive 
grants
• Fear is innovate statistical methods will be reviewed by 

conventional (anti-adaptive) reviewers
• Most institutes very good about seeking those with expertise 

to review methods
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FDA Critical Path Initiative
From FDA website:
 Many of the tools used today to predict and evaluate 

product safety and efficacy are badly outdated from a 
scientific perspective. We have not made a concerted 
effort to apply new scientific knowledge -- in areas 
such as gene expression, analytic methods, and 
bioinformatics -- to medical product development. 
There exists tremendous opportunities to create more 
effective tests and tools, if we focus on the hard work 
necessary to turn these innovations into reliable 
applied sciences.

 http://www.fda.gov/scienceresearch/specialtopics/criticalpathinitiative/ucm077015.htm
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FDA Critical Path Initiative
From FDA website:
 
Inefficient clinical trial designs. Innovative clinical trial design may 

make it possible to develop accepted protocols for smaller but 
smarter trials. For example, new statistical techniques may make 
it possible to reduce the number of people who need to receive 
placebo or to adaptively change the trial based on ongoing 
results.

50% of Phase 3 trials failing
$800 million per successful NME (new chemical entity)
   Ann. Rev. Medicine, Woodcock & Woosley, 2008
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Critical Path Initiative
• Areas of improvement

– Development & use of biomarkers (for prediction)
       toward personalized medicine
– Modernizing clinical trial methodologies & processes
– Aggressive use of bioinformatics 
       including disease modeling & trial simulation
– Improvement in manufacturing technologies
– 76 discrete projects that could improve product 

development & product use

US FDA 2006, “Innovation or Stagnation: Critical Path Opportunities Report 
& List.”

www.fda.gov/oc/initiatives/criticalpath/reports/opp_report.pdf
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Is Now a Prime Time for Adaptive 
Designs in Clinical Trials?

• It’s well past time
• Virtually every large pharmaceutical company, 100+ 

device companies, and dozens of biotech companies are 
investing in adaptive designs
– Many device companies have completed adaptive designs

• What is the likelihood that these designs will lead to 
regulatory approval when such approval is warranted?

• Is there a gap between perceived risk to sponsors and the 
real risk?
– Does industry overestimate FDAs conservatism?
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Time has been Right for Adaptive Designs

• Janet Woodcock, FDA’s CDER Director, 2006
– Improved utilization of adaptive and Bayesian methods could help 

resolve low success rate of and expense of phase 3 clinical trials
• Margaret Hamburg, FDA Commissioner 2010

– “The final guidance on the use of Bayesian statistics is consistent with 
the FDA’s commitment to streamline clinical trials, when possible, in 
order to get safe and effective products to market faster.”

• CDRH produced guidelines for Bayesian statistics Feb 5, 2010
– “Agency says Bayesian statistical methods could trim costs, boost 

efficiency”  from press release
– “They beauty is you do not end up doing a trial that is too big or too 

small; you end up doing a trial that is just right.”  Greg Campbell
• CDER/CBER produced guidance for adaptive designs Nov 

2019
– Generally supportive of well-characterized adaptation by design
– Appropriately cautious

86

86



7/17/23

22

87

FDA Guidance Documents

87
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Online Tools & Resources
• MD Anderson

– http://biostatistics.mdanderson.org/SoftwareDownload/
– Lots of good utilities, including “Adaptive 

Randomization” to help with response adaptive trials
– Allows 10 arms; minimum number of patients before 

adapting randomization scheme; maximum number of 
patients or length of trial

– Free
• Commercial resources increasingly available
• Usually I code my own 

88

88

89

Some Current Areas of Application
• Alzheimer’s Disease 
• Aneurysm
• Asthma
• Atrial Fibrillation
• Cancer Diagnostics
• Cancer Screening
• Cancer Therapeutics
• Crohn’s Disease
• Diabetes
• DVT
• Ebola
• Heart Valves

• Ebola
• Emphysema
• HIV
• Libido
• Lymphoma
• Lung Cancer
• Lupus
• Migraines
• Multiple Sclerosis
• Obesity
• Pain
• Parkinson’s

• Pandemic Flu 
• Pre-term Labor
• Rheumatoid 

Arthritis 
• Sepsis
• Smoking Cessation
• Spinal Cord Injury
• Spinal Implants
• Stroke 
• Tinnitus
• Uterine Cancer 
• Vaccines

89

Decision Problem 3:
ESETT Trial

A multicenter, randomized, double-blind, 
comparative effectiveness study of 

fos-phenytoin, levetiracetam, and valproic acid 
in subjects with benzodiazepine-refractory 

Status Epilepticus: 
The Established Status Epilepticus Treatment 

Trial
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Research Question
• How to treat seizing patients who’ve failed 

benzodiazapine?
– fosphenytoin (fPHT) 
– levetiracetam (LVT) 
– valproic acid (VPA) 
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Comparative Effectiveness
• No control group

– Three drugs start out equal
– Want to know which is best

• What is Type I error in CER?
– Consequence of Type I error less in CER 

• Really want to know 
– Which drug is best … with measure of certainty
– Which drug is worst … with measure of certainty

93
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Trial Overview
• Primary endpoint

– cessation of seizure within 20 minutes
– no further intervention within 1 hour
– no significant adverse event

• Powered to identify 15% difference in 
response rate
– Min 400, Max 795 Patients (to get 720)

• Stratify randomization by age

94
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Bayesian Adaptive Design Features
• Adaptively allocate to favor better treatments
• Drop poor performing arms

– Relative to one another 
– Relative to 25% goal

• Stop early if we know the answer 
  or know we won’t know

– Efficacy stop if treatment clearly better
– Futility stop if unlikely to ID a ‘best’ or ‘worst’

• Do not stop if 1 worse and other 2 equally good

– Futility stopping if all arms bad
95
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• Let rd = randomization probability to dose d
• Let pd = probability arm d has highest (best) 

response rate
• Randomization weighting by C

€ 

rd =
pd
C

p
1

C
+ p

2

C
+ p

3

C
+ ...+ pD

C

Randomization Options
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• C = 0, equal randomization (rd = 1/Number of Groups)
• C = 1, proportional to probability best (rd = pd)
• C ≥ 1 

– strongly favor 1 arm earlier in the trial, even when treatments are equal
– more subjects likely assigned to the best treatment 
– C ! big means assign all to best treatment, play the leader

• 0 < C < 1
– weakly favor better  
– fewer subjects likely assigned to best treatment
– more even distribution early in trials
– randomization less affected by early events

• C = n/N, trial begins with c = 0 and ends with c = 1

Randomization Options

€ 

rd =
pd
C

p
1

C
+ p

2

C
+ p

3

C
+ ...+ pD

C
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Adaptive Allocation
• Randomize 300 patients equally
• At 300 & then every 100 adaptively allocate to

– Favor better performing treatments
– Favor treatments with greater uncertainty
– Every 100 = About every 6 months | expected accrual

• If allocation probability < 5%, suspend accrual
• If Pr(Success > 0.25) < 0.05 drop arm

rt ∝
Pr pt =max(p)( )Var(pt )

nt
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98



7/17/23

25

Early Stopping
• Analyses begin after 400 patients and repeat 

every additional 100 patients accrued
• Early Success Stopping:

– If arm has 97.5% probability of having highest 
success rate
• i.e. Pr(pt = max(p)) > 0.975

• Early Futility Stopping
– If all doses have Pr(Success > 0.25) < 0.05
– If predicted probability of success (ID ‘winner’ or 

‘loser’ at the max N=795) < 0.05
99

99

Example Trial: 300 pt analysis
N Enrolled

Observed Response Rate
Pr(Max 

Effective Trt)
Pr(Allocation) Pred

Prob
Look LVT fPHT VPA LVT fPHT VPA LVT fPHT VPA

300 51/100
51%

55/100
55%

64/100
64%

0.025 0.092 0.88 0.12 0.22 0.66 0.71

100

100

Example Trial: 400 pt analysis
N Enrolled

Observed Response Rate
Pr(Max 

Effective Trt)
Pr(Allocation) Pred

Prob
Look LVT fPHT VPA LVT fPHT VPA LVT fPHT VPA

300 51/100
51%

55/100
55%

64/100
64%

0.025 0.092 0.88 0.12 0.22 0.66 0.71

Next
100

6/11
55%

19/26
73%

39/63
62%

400 57/111
51%

74/126
59%

105/163
64%

0.01 0.16 0.83 0.09 0.34 0.57 0.50
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Example Trial: 500 pt analysis
N Enrolled

Observed Response Rate
Pr(Max 

Effective Trt)
Pr(Allocation) Pred

Prob
Look LVT fPHT VPA LVT fPHT VPA LVT fPHT VPA

300 51/100
51%

55/100
55%

64/100
64%

0.025 0.092 0.88 0.12 0.22 0.66 0.71

400 57/111
51%

74/126
59%

105/163
64%

0.01 0.16 0.83 0.09 0.34 0.57 0.50

Next 
100

5/12
42%

20/38
53%

34/50
68%

500 62/123
50%

94/164
57%

139/213
65%

0.004 0.056 0.94 0.08 0.23 0.69 0.59
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Example Trial: 600 pt analysis
N Enrolled

Observed Response Rate
Pr(Max Effective 

Trt)
Pr(Allocation) Pred

Prob
Look LVT fPHT VPA LVT fPHT VPA LVT fPHT VPA

300 51/100
51%

55/100
55%

64/100
64%

0.025 0.092 0.88 0.12 0.22 0.66 0.71

400 57/111
51%

74/126
59%

105/163
64%

0.01 0.16 0.83 0.09 0.34 0.57 0.50

500 62/123
50%

94/164
57%

139/213
65%

0.004 0.056 0.94 0.08 0.23 0.69 0.59

Next 
100

3/3
100%

17/28
61%

55/69
80%

600 65/126
52%

111/192
58%

194/282
69%

0.000
0.87

0.008
0.13

0.992
0.00

Trial Stops Early for Identifying
Best Treatment

103
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Success Rate

 

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

LVT: 65/126 = 51.6%
fPHT 111/192 = 57.8% VPA: 194/282 = 68.8%

Example Trial: Final Evaluation

Difference Observed 95% CI Pairwise Comparison

VPA – fPHT 0.110 (0.022, 0.197) Pr(VPA>fPHT) =  0.993

VPA – LVT 0.172 (0.069, 0.272) Pr(VPA>LVT) > 0.999

fPHT - LVT 0.062 (-0.049, 0.172) Pr(fPHT>LVT) =  0.862

Treatment Observed % 95% CI Pr(Best) Pr(Worst)

VPA 194/282 68.8% (.632, .739) 0.992 0.0005

fPHT 111/192 57.8% (.507, .646) 0.007 0.138

LVT 65/126 51.6% (.429, .601) 0.0005 0.862
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Scenario
3 Efficacy Rates

Power
Best/Wst

Mean 
N

% to 
Best

Power
Best/Wst

Mean 
N

% to Best

Null
0.5 – 0.5 – 0.5

0.013 
0.018

507 0.023
0.007

499

One Good
0.5 – 0.5 – 0.65

0.89
0.03

483 48 0.87
0.04

497 33

Two Good
0.5 – 0.65 – 0.65

0.11
0.67

679 84 0.10
0.79

687 67

One Middle One Good
0.5 – 0.575 – 0.65

0.50
0.25

586 47 0.44
0.31

599 33

All Bad
0.25– 0.25 – 0.25

0.011
0.020

524 0.023
0.008

509

All Very Bad
0.10 – 0.10 – 0.10

0.006
0.01

400 0.008 
0.02

400

Comparison to without
Adaptive Randomization

Adaptive Randomization Fixed Randomization
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Scenario
3 Efficacy Rates

Power
Best/Wst

Mean 
N

% to 
Best

Power
Best/Wst

Mean 
N

% to Best

Null
0.5 – 0.5 – 0.5

0.013 
0.018

507 0.023
0.007

499

One Good
0.5 – 0.5 – 0.65

0.89
0.03

483 48 0.87
0.04

497 33

Two Good
0.5 – 0.65 – 0.65

0.11
0.67

679 84 0.10
0.79

687 67

One Middle One Good
0.5 – 0.575 – 0.65

0.50
0.25

586 47 0.44
0.31

599 33

All Bad
0.25– 0.25 – 0.25

0.011
0.020

524 0.023
0.008

509

All Very Bad
0.10 – 0.10 – 0.10

0.006
0.01

400 0.008 
0.02

400

Comparison to without
Adaptive Randomization

Adaptive Randomization Fixed Randomization
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107

Scenario
3 Efficacy Rates

Power
Best/Wst

Mean 
N

% to 
Best

Power
Best/Wst

Mean 
N

% to Best

Null
0.5 – 0.5 – 0.5

0.013 
0.018

507 0.023
0.007

499

One Good
0.5 – 0.5 – 0.65

0.89
0.03

483 48 0.87
0.04

497 33

Two Good
0.5 – 0.65 – 0.65

0.11
0.67

679 84 0.10
0.79

687 67

One Middle One Good
0.5 – 0.575 – 0.65

0.50
0.25

586 47 0.44
0.31

599 33

All Bad
0.25– 0.25 – 0.25

0.011
0.020

524 0.023
0.008

509

All Very Bad
0.10 – 0.10 – 0.10

0.006
0.01

400 0.008 
0.02

400

Comparison to without
Adaptive Randomization

Adaptive Randomization Fixed Randomization
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Scenario
3 Efficacy Rates

Power
Best/Wst

Mean 
N

% to 
Best

Power
Best/Wst

Mean 
N

% to Best

Null
0.5 – 0.5 – 0.5

0.013 
0.018

507 0.023
0.007

499

One Good
0.5 – 0.5 – 0.65

0.89
0.03

483 48 0.87
0.04

497 33

Two Good
0.5 – 0.65 – 0.65

0.11
0.67

679 84 0.10
0.79

687 67

One Middle One Good
0.5 – 0.575 – 0.65

0.50
0.25

586 47 0.44
0.31

599 33

All Bad
0.25– 0.25 – 0.25

0.011
0.020

524 0.023
0.008

509

All Very Bad
0.10 – 0.10 – 0.10

0.006
0.01

400 0.008 
0.02

400

Comparison to without
Adaptive Randomization

Adaptive Randomization Fixed Randomization
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Results
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Imagine frequentist test

11
1

> x <- c(68,53,56); n <- c(145,118,121)
> mat <- cbind(x, n-x)
> chisq.test(mat)
Pearson's Chi-squared test
data:  mat
X-squared = 0.10527, df = 2, p-value = 0.9487
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Imagine frequentist test

11
2

> x <- c(68,53,56); n <- c(145,118,121)
> mat <- cbind(x, n-x)
> chisq.test(mat)
Pearson's Chi-squared test
data:  mat
X-squared = 0.10527, df = 2, p-value = 0.9487

Can’t reject Ho: plev = pfos = pVPA with p-value = 0.95
But you have to choose a treatment
How sure are you that you’ve chosen the best one?
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Imagine frequentist test

11
3

> x <- c(68,53,56); n <- c(145,118,121)
> mat <- cbind(x, n-x)
> chisq.test(mat)
Pearson's Chi-squared test
data:  mat
X-squared = 0.10527, df = 2, p-value = 0.9487

Can’t reject Ho: plev = pfos = pVPA with p-value = 0.95
But you have to choose a treatment
How sure are you that you’ve chosen the best one?

113
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115

Thoughts on 
Adaptive Randomization

115

Usual Criticisms

116

116

Usual Criticisms
• Too few on control

– Controls randomization rate is usually fixed 
– Use adaptive randomization for different doses
– At least put a minimum on controls %

• Early, wrong adaptation leads to bias
– Require burn-in prior to adaptation
– ESSET didn’t start until N=300

117

117

Usual Criticisms
• Drift makes uninterpretable

– Legit concern
– Very rare to observe
– Standard methods also don’t work well here either
– Nearly all stats methods require i.i.d.

• If there is drift, data isn’t i.i.d. 
• Even standard methods require assumption that treatment 

effect is the same even though population is drifting
• If drift is high, results may be uninterpretable

118
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Usual Criticisms
• RAR can be unblinding

– I agree with this
– Ideally the treatment are masked so even if 

randomization probabilities change, investigators 
can not tell (e.g. ESETT)

– If blinding not possible, perhaps have somewhat 
large minimum bounds or do arm dropping

119

119

120

RAR Examples

120

Viele, Broglio, McGlothlin, Saville
• Evaluate via

– Power
– Prob choosing the best arm
– Mean square error (bias)
– Expected number of responders
– Ideal design percentage

121

121

Viele, Broglio, McGlothlin, Saville
• Evaluate via

– Power
– Prob choosing the best arm
– Mean square error (bias)
– Expected number of responders
– Ideal design percentage
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Ideal Design Percentage

123

123

Type I error

124

124

Choosing the best arm

125
RAdjCtrl means control % can go to 0 or 1
  - cases used exclusively by anti-RAR advocates

Rmatch essentially puts the control % = max best arm %
   - control never goes to 0 and goes to 50% as 1 arm appears best

125

Power with RAR

126
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Accuracy of Estimate Effect

127

Choosing the best arm

128

Mixed case with Control = 35%
   Arm 1 = 45%
   Arm 2 = 55%
   Arm 3 = 65%

128

Choosing the best arm

129

Rmatch essentially puts the control % = max best arm %
RAdjCtrl means contol % can go to 0 or 1
 Gives the worst operating characteristics
 This is why many say RAR is bad

129

Adaptive Randomization1

• Pros
– Resolve conflict of healer vs. investigator
– Maximize number of patients assigned more effective 

therapy
– Consistent with current theories of continuous quality 

improvement 
• Cons

– Must be one (or few) outcome(s) of interest
– Outcomes must be apparent in a short timeframe relative 

to accrual time
– May be statistically less efficient
– Estimates affected by population drift during accrual

1  Used with permission, Robert Truog,   http://www.bioethics.nih.gov/slides04/truog.ppt
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Conclusions for Adaptive Designs in 
Comparative Effectiveness Research

• Adaptive trials / adaptive CER processes more 
closely mimic real-life human learning & decision 
making

• Ongoing projects: Learn & Adapt
– randomize patients to best products
– drop treatments/strategies that prove less effective
– include new treatments as they come to market
– provide constant sharing of information
– encourage better patient management

131
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Why Adapt?  
The Prospective Postmortem

• Consider whether any adaptations might be added 
to prospectively address potential regrets

132

132

Why Adapt?  
The Prospective Postmortem

• Consider whether any adaptations might be added 
to prospectively address potential regrets

• Be honest with yourself in design Phase
– We overestimate treatment effects
– We underestimate variability
– Because we need to justify a doable trial
– Because we can’t be honest in grant proposals

133

133

Equipoise

• Would you rather be the last patient enrolled in a 
clinical trial or the first person treated after its 
results are published?

• Declaration of Helsinki: 
– “considerations related to the well-being of the 

human subject should take precedence over the 
interests of science and society”

134

134



7/17/23

34

135

ESSET Code

135

Definitions, Trial Parameters
rm(list=ls())
## All times in months
library(VGAM)
v = list(
  ### Event, success probabilities for IV, IV+2nd therapy, Oral, Oral + 2nd therapy
  S3 = c(## There are success rates for the three groups
     0.50,      # fPHT
     0.50,      # LVT
     0.50       # VPA
  ),
    
  # Maximum sample size & max sample size for Stage 1
  MaxN = 795,
  # Priors
  a = rep(1, 3),
  b = rep(1, 3),
  # First look and look every
  firstlook = 300,
  firststop = 400
  lookevery = 100,
  # Min to randomized
  minpr = 0.05,
  # simulations
  nsims = 1000,
  badlim = 0.25, 
  # critv to (a) for 'best'
  #          (b) for 'worst'
  #          (c) to stop for futility (i.e Pred prob a winner or loser id'd)
  #          (d) for worse than 25%
 critv = c(.975, .975, 0.05, 0.05) 
)

Response Rates

Priors

Sample Size & 
Timing of Looks

Critical values for stopping

MaxN

136

simtrials <- function(v){
  
  co <- ppcutoffs(v$critv[3])
  
  #out.mat
  # (1) N
  # (2-4) N per group
  # (5-7) Rank as 1, 2, 3 (according to prob best)
  # (8)   Sig best (1 2 or 3 or 0 if none)
  # (9)   Sig worst (1 2 or 3 or 0 if none)
  # (10) Final conclusion
  #           1 = overall futility stop, 
  #           2 = stop early for winner
  #           3 = stop early for winner & loser
  #           4 = stop early for loser and futility (not possible in ours)
  #           5 = max overall futility
  #           6 = max and loser
  #           7 = max and winner
  #           8 = max & winner & loser
  #  (11-13) Final Pr(best)
  #  (14-16) Final Pr(2nd)
  #  (17-19) Final Pr(worst)
  #  (20-22) Successes per group
  #  (23-25) Ever drop arm? (rand goes to 0 at any pt)
  
  
 

Creates a big matrix to 
store simulation results

137

out.mat <- matrix(NA, nrow=v$nsims, ncol=25)
  for(s in 1:v$nsims){
    ad <- c(1,1,1)
    ## Rand assignment for first FirstLook pts & generate outcome
    group <- rep(NA, v$MaxN)
    group[1:v$firstlook] <- rand.new(v$firstlook, c(1,1,1))
    y <- rep(NA, v$MaxN)
    y[1:v$firstlook] <- sim.endpoint(group[1:v$firstlook], v$S3)
    look1 <- interim(v$firstlook, y, group, v, co)
#    print(round(look1,3))
    # Track if arm every dropped
    ad <- ad * as.numeric(look1[12:14]>0)
    n.now <- v$firstlook
    print(c(s,n.now))
 ## Now loop through Stage 1
    while(look1[1]==1){
      new <- min(v$MaxN-n.now, v$lookevery)
      group[(n.now+1):(n.now+new)] <- rand.new(new, look1[12:14])
      y[(n.now+1):(n.now+new)] <- sim.endpoint(group[(n.now+1):(n.now+new)], v$S3)
    look1 <- interim(n.now+new, y, group, v, co)
#      print(round(look1,3))
      ad <- ad * as.numeric(look1[12:14]>0)
      n.now <- n.now+new
      print(c(s,n.now))
    }

Simulate group assignment
& response to tx

First interim look

Simulate group assignment
& response to tx

Do interim looks
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    mx <- look1[3:5];    mn <- look1[6:8]
    winner <- ifelse(max(mx) > v$critv[1], (1:3)[mx==max(mx)], 0)
    loser <-  ifelse(max(mn) > v$critv[2], (1:3)[mn==max(mn)], 0)
  if(look1[2]==1){
       whystop <- 1    ## futility
     }else if(look1[2]==3){
       if(loser>0){
         whystop <- 3
       }else{
         whystop <- 2
       }
     }else if(look1[2]==2){
       if(winner==0 & loser==0)   { whystop <- 5}
       else if(winner>0 & loser>0){ whystop <- 8}
       else if(winner>0)          { whystop <- 7}
       else if(loser>0)           { whystop <- 6}
       else{print("error why stop at max?”)}
       else{print("error, why did trial stop?”)}

 out.mat[s,1:25] <- c(n.now, look1[18:20], order(mx), winner, loser,
                 whystop,look1[c(3,4,5,9,10,11,6,7,8,15,16,17)],1-ad)
}
    out.mat <- data.frame(out.mat)
    names(out.mat) <- c("N","N1","N2","N3",…
     return(out.mat)

See if best or worst identified

See if stopping rules met

Print out simulation
results
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sumtrial <- function(outmat){
  mat <- matrix(nrow=4, ncol=9)
  out <- table(factor(outmat[,10], levels=1:8))
#              Ntotal SDN phat Rank1  Rank2  Rank3  SigBest SigWorst Drop
#      fPHT
#      LVT
#      VPA             --
#      Total
  mat[1:3,1] <- apply(outmat[,2:4], 2, mean)
  mat[1:3,2] <- apply(outmat[,2:4], 2, sd)
  mat[1:3,3] <- c(mean(outmat[,20]/outmat[,2]), mean(outmat[,21]/outmat[,3]), 
mean(outmat[,22]/outmat[,4]))
  mat[1,4:6] <- table(factor(outmat[,5], levels=3:1))/dim(outmat)[1]
  mat[2,4:6] <- table(factor(outmat[,6], levels=3:1))/dim(outmat)[1]
  mat[3,4:6] <- table(factor(outmat[,7], levels=3:1))/dim(outmat)[1]
  mat[1:3,7] <- table(factor(outmat[,8], levels=1:3))/dim(outmat)[1]
  mat[1:3,8] <- table(factor(outmat[,9], levels=1:3))/dim(outmat)[1]
  mat[1:3,9] <- apply(outmat[,23:25], 2, mean)
  mat[4,1] <- mean(outmat[,1])
  mat[4,2] <- sd(outmat[2])
  mat[4,3] <- mean(rowSums(outmat[,20:22]) / rowSums(outmat[2:4]))
  mat[4,4:6] <- NA
  mat[4,7] <- sum(mat[1:3,7])
  mat[4,8] <- sum(mat[1:3,8])
  mat[4,9] <- NA
  mat <- data.frame(mat)
  names(mat) <- c("N","SD","Phat","Best","Mid","Worst","SigBest","SigWorst","Drop")
  dimnames(mat)[[1]] <- c("fPHT","LVT","VPA","Total")
  return(list(out, mat))
}

Takes the results of ‘simtrials’ and 
Produces prettier output 
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interim <- function(N, y, group, v, co){
   ## Runs trial returns:
   #  (1) go (0=stop, 1=keep going)
   #  (2) why stop (1=3-way fut, 2=max n, 3=1 winner)
   #  (3-5) Pr each is best
   #  (6-8) Pr each is worst
   #  (9-11) x/N for each group
   #  (12-14) rand probs
   ns <- table(factor(group[1:N], levels=1:3))
   tab <- table(factor(group[1:N],levels=1:3), factor(y[1:N], levels=0:1))
  post1 <- rbeta(10000, v$a[1]+tab[1,2], v$b[1]+tab[1,1])
   post2 <- rbeta(10000, v$a[2]+tab[2,2], v$b[2]+tab[2,1])
   post3 <- rbeta(10000, v$a[3]+tab[3,2], v$b[3]+tab[3,1])
   vr <- as.numeric(( (v$a+tab[,2])*(v$b+tab[,1])) / ((v$a+v$b+ns)^2 * (v$a+v$b+ns+1)))
 top <- apply(cbind(post1,post2,post3), 1, max)
   bot <- apply(cbind(post1,post2,post3), 1, min)
 
   best <- c(mean(post1==top), mean(post2==top), mean(post3==top))
   worst <- c(mean(post1==bot), mean(post2==bot), mean(post3==bot))
   middle <- 1-best-worst

   toobad <- 1-c(pbeta(v$badlim, v$a[1]+tab[1,2], v$b[1]+tab[1,1]),
               pbeta(v$badlim, v$a[2]+tab[2,2], v$b[2]+tab[2,1]),
               pbeta(v$badlim, v$a[3]+tab[3,2], v$b[3]+tab[3,1]))

  wt <- sqrt(best * vr / as.numeric(ns));     wt <- wt/sum(wt)
   wt[wt < v$minpr] <- 0;    wt[toobad < v$critv[4]] <- 0
   if(sum(wt) > 0){
   wt <- wt/sum(wt)
   }
    

Calc posteriors

Calc prob each is 
best & worst

Calc Pr(p<0.25)

Calc new rand prob

Does interim analysis
Calc posteriors, new 
rand probs, 
Pred prob of success 
at max
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#####PRED PROBS; only do if all 3 arms left
   if((N >= v$firststop) & (N < v$MaxN) & (prod(wt>0)> 0)){
     drop <- 0
     left <- v$MaxN - N
     left <- ceiling(rep(left/3, 3))
     ns.total <- ns+left
     winlose <- 0
     counter <- 1
     
     while((winlose < co[counter,1]) & (winlose >= co[counter,2]) & (counter < 1000)){
       y.end <- tab[,2] + rbetabin.ab(3, left, v$a+tab[,2], v$b+tab[,1])
       post1f <- rbeta(10000, v$a[1]+y.end[1], v$b[1]+ns.total[1]-y.end[1])
       post2f <- rbeta(10000, v$a[2]+y.end[2], v$b[2]+ns.total[2]-y.end[2])
       post3f <- rbeta(10000, v$a[3]+y.end[3], v$b[3]+ns.total[3]-y.end[3])
       topf <- apply(cbind(post1f,post2f,post3f), 1, max)
       botf <- apply(cbind(post1f,post2f,post3f), 1, min)
       bestf <- c(mean(post1f==topf), mean(post2f==topf), mean(post3f==topf))
       worstf <- c(mean(post1f==botf), mean(post2f==botf), mean(post3f==botf))
       winlose <- winlose + ifelse((max(bestf)>v$critv[1]) | (max(worstf)>v$critv[2]), 
1, 0)
       counter <- counter + 1
#       print(c(winlose/counter, counter))
     }
     ppwin <- winlose/counter
   }else{
     drop <- 1
     ppwin <- v$critv[3]+1 #  If missing just make bigger than the crit value.
   }

Calc pred prob of success 
At Max N
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   ## Stopping:
   if(N < v$firststop){
     go <- 1
     whystop <- NA
   }else if(N >= v$MaxN){
     go <- 0
     whystop <- 2
   }else if(max(best) > v$critv[1]){
     go <- 0
     whystop <- 3
   }else if(ppwin < v$critv[3]){
     go <- 0
     whystop <- 1
   }else if(wt[1]==0 & wt[2]==0 & wt[3]==0){
     go <- 0
     whystop <- 1
   }else{
     go <- 1
     whystop <- NA
   }
     
  return(as.numeric(c(go, whystop, best, worst, middle, wt, tab[,2], ns, ppwin, drop)))
}

Track IF stop
And WHY stop
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Thanks for a great class

What did you like?
What worked?
What did not?
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Survey for Tomorrow
• Question 1

– More examples, less detail per example
– Fewer examples, more detail per example

• What to cover
– Platform trials
– Phase 1, Borrowing
– Device trials
– In depth example of Phase 2, Dose finding trials
– In depth example of Phase 3, Goldilocks trial
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