

1

Phase 3 / Confirmatory Trials

- CDER/CBER Phase 3
- CDRH Confirmatory
- The final test before market
- Control of Type I error rate very important
- Tend not to adaptively randomize
- Fear of drift
- Usually two arm
- No power benefit with adaptive rand. in 2-arm trial

2

What is Different About Confirmatory Trials

- Type I error is a dominant factor
- Adjusting the design (goal) in order to accommodate adaptive aspects must still control type I error
- Predictive probabilities much more relevant than posterior probabilities
- Very well-defined goal.
- A "game" you win or lose

Power vs. Prob of Success

- Doctor comes to you.
- Claims her treatment increases IQ by 5 points
- $\mathrm{SD}=10$
- "How many patients do I need to have 90% power to demonstrate superiority?"

5

7

6

8

9

11

Probability of success < Power due to Jensen's inequality

10

Three people get a positive pregnancy test

- My sister with 4 kids who I know wants more
- You or your wife/gf. Using oral contraception
- Me
- What is the probability each person is pregnant?

Three people get a positive pregnancy test

- My sister with 4 kids who I know wants more
- You or your wife/gf. Using oral contraception
- Me
- Sensitivity 100%, Specificity 95%
- What is the probability each person is pregnant?

13

15

14

16

17

18

Bayes Theorem

$$
\begin{aligned}
\operatorname{Pr}(A \mid B) & = \\
& =\frac{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)}{\operatorname{Pr}(B)} \\
& \frac{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)}{\operatorname{Pr}(B \mid A) \operatorname{Pr}(A)+\operatorname{Pr}\left(B \mid A^{C}\right) \operatorname{Pr}\left(A^{C}\right)}
\end{aligned}
$$

$\operatorname{Pr}($ Hypothesis \mid Data $)=\quad \underline{\operatorname{Pr}(\text { Data } \mid \text { Hypothesis }) \operatorname{Pr}(\text { Hypothesis })}$

$$
=\frac{\operatorname{Pr}(\text { Data } \mid \text { Hypothesis }) \operatorname{Pr}(\text { Hypothesis })}{\int_{\substack{\text { All posisile } \\ \text { hnpobeses }}}^{\operatorname{Pr}(\text { Data } \mid \text { Hypothesis }) \operatorname{Pr}(\text { Hypothesis })}}
$$

21

23

Common prior for Binomial Outcome

- Beta
- used for event probabilities
- conjugate with binomial
$-x \sim \operatorname{Binomial}(\mathrm{~N}, \mathrm{p})$
$-p \sim \operatorname{Beta}(\alpha, \beta), \mathrm{p} \in[0,1]$
$-p \mid x \sim \operatorname{Beta}(\alpha+x, \beta+N-x)$

$$
\begin{gathered}
E(p)=\frac{\alpha}{\alpha+\beta} ; \quad V(p)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)} \\
E(p \mid x)=\frac{\alpha+x}{\alpha+\beta+N} ;
\end{gathered} \quad V(p)=\frac{(\alpha+x)(\beta+N-x)}{(\alpha+\beta+N)^{2}(\alpha+\beta+N+1)}
$$

22

24

25

Beta Distribution

- $p \sim \operatorname{Beta}(\alpha, \beta)$
$-\alpha$ is like 'prior' number of successes
$-\beta$ is like 'prior' number of failures
$-\alpha+\beta$ is the prior sample size (or amount of info)
- $p \mid N, x \sim \operatorname{Beta}(\alpha+x, \beta+N-x)$
$-\alpha+x$ is posterior number of successes
$-\beta+N-x$ is posterior number of failures
- Posterior mean $=\alpha+x /(\alpha+\beta+N)$

26

Confirmatory Trials \& Bayes

- You can't have an informative prior and control Type I error
- Assuming the informative prior claims the treatment starts off better than the control

Simple Trial

- Binomial data
- One-armed trial
- $\mathrm{n}=100$
- Need to show $\mathrm{p}>0.5$
- $\mathrm{H}_{\mathrm{o}}: \mathrm{p} \leq 0.5$
- $\mathrm{H}_{\mathrm{a}}: \mathrm{p}>0.5$
- FYI: 59/100 \rightarrow Frequentist p-value $=0.044$
\& 1-sided 95\% CI (0.503-1.00)

Phase 3 \& Priors

- Simple Trial:
- Binary data. Observe x $\sim \operatorname{Bin}(100, \mathrm{p})$
- Need to show $\operatorname{Pr}(\mathrm{p}>0.5 \mid \mathrm{x}$ out of 100$)>0.95$
- Assume p ~ Beta(1,1) prior
$-\operatorname{Pr}(\mathrm{p}>0.5 \mid 59$ out of 100$)=0.963 \quad$ 1-sided p-value <0.05
$-\operatorname{Pr}(\mathrm{P}>0.5 \mid 58$ out of 100$)=0.944 \quad$ approx posterior >0.95

30

Phase 3 \& Priors

- Now we have "pure" information

9 of 10 successes in European trial

- Instead of $\operatorname{Beta}(1,1)$ prior use $\operatorname{Beta}(1+9,1+1)$
$=\operatorname{Beta}(10,2)$ prior
- Regulatory agrees it is reasonable to use this as the prior
- Fixed design: for $\operatorname{Pr}[\mathrm{p}>0.5 \mid$ data $] \geq 0.95$
$-\operatorname{Pr}(p>0.5 \mid 55$ out of $100, \alpha=10, \beta=2)=0.956$
$-\operatorname{Pr}(\mathrm{P}>0.5 \mid 54$ out of $100, \alpha=10, \beta=2)=0.936$
- $\operatorname{Pr}(\mathrm{X} \geq 55 \mid \mathrm{p}=0.50)=0.184$
- Type I error is inflated

32

Phase 3 \& Priors

- Solution to control Type I error
- Raise the post probability threshold from 0.95 bar to 0.99 (iike decreasing critical level)
$-\operatorname{Pr}(\mathrm{p}>0.5 \mid 59$ out of $100, \alpha=10, \beta=2)=0.993$
$-\operatorname{Pr}(\mathrm{P}>0.5 \mid 58$ out of $100, \alpha=10, \beta=2)=0.989$
$-\operatorname{Pr}(\mathrm{X} \geq 59 \mid \mathrm{p}=0.50)=0.044$
- Need a Beta(59+10,41+2) for a win. . . 59 is back!!!
- The type I error "restriction" forces 59/100 regardless of prior...
- Can't allow beneficial priors AND force Type I of "new" experiment!

Predictive Probabilities

- Simple Trial:
- Binary data. Observe $x \sim \operatorname{Bin}(100, p)$
- Need to show $\operatorname{Pr}(p>0.5 \mid x$ out of 100$)>0.95$
- Assume $p \sim \operatorname{Beta}(1,1)$ prior
$-\operatorname{Pr}(p>0.5 \mid 59$ out of 100$)=0.963$
$-\operatorname{Pr}(p>0.5 \mid 58$ out of 100$)=0.944$

34

Predictive Probabilities

- Simple Trial:
- Binary data. Observe $x \sim \operatorname{Bin}(100, p)$
- Need to show $\operatorname{Pr}(p>0.5 \mid x$ out of 100$)>0.95$
- Assume $p \sim \operatorname{Beta}(1,1)$ prior
$-\operatorname{Pr}(p>0.5 \mid 59$ out of 100$)=0.963$
$-\operatorname{Pr}(p>0.5 \mid 58$ out of 100$)=0.944$
- Observe data half way through
- See 28/50 successes
- Need to see 31/50 to meet threshold
- What is predictive probability of trial success?

37

Predictive Probabilities

- Know we need $x \geq 59$ at trial's end
- Have $x_{1}=28$
- Need $x_{2} \geq 31$
- $p \sim \operatorname{Beta}(1+28,1+22)$
- $x_{2} \sim \operatorname{Binomial}(50, p)$
- $\left.x_{2} \sim \operatorname{Beta-\operatorname {binomial}(50,\alpha =29,~} \beta=23\right)$
$\operatorname{Pr}($ Win Trial $)=\sum_{x_{2}=31}^{50}\left\{\binom{50}{x_{2}} \frac{B\left(x_{2}+29,50-x_{2}+23\right)}{B(29,22)}\right\}=0.301$

38

40

R code for predictive probability

> \#\#\# VIA SIMULATION
$>$ alpha <- 1 ; beta
$>\mathrm{x}<-28 ; \mathrm{N}<-50$
$\gg \times$ < 28; N <- 50
> p <- rbeta(1000000, alpha+x, beta+N-x)
$>x . n e w<-r b i n o m(1000000,50, p)$
$>$ mean(x.new >= 31)
[1] 0.301132
\gg
> \#\#\# VIA DIRECT CALCULATION
$>$ N. new <- 50
$>$ prob <- choose(N.new, x.new) *
$+\quad$ beta(alpha $+x+x$. new, $($ beta $+N-x)+(N-x . n e w) /$
$+\quad+\quad$ bum(prob)
${ }_{>}^{[1]} 1$
[1] 0.3010906
> barplot(prob, names.arg=0:50, col=c(rep (2,31), rep(3,20)), main="Predictive Distribution for Remaining 50 patients")

42

44

45

46

48

49

51

50

Predictive Probabilities

- Observe 12 / 20 (60\%)
- Need 47 / 80 successes; 59% or better rest of way
$-p$-value $=0.25, \operatorname{Pr}(p>0.5)=0.81$
- Predictive probability of success @ $100=0.54$

Predictive Probabilities

- Observe 12 / 20 (60\%)
- Need 47 / 80 successes; 59% or better rest of way
- p-value $=0.25, \operatorname{Pr}(p>0.5)=0.81$
- Predictive probability of success @ $100=0.54$
- Observe 28 / 50 (56%)
- Need 31/50 successes; 62% or better rest of way
- p-value $=0.24, \operatorname{Pr}(p>0.5)=0.80$
- Predictive probability of success @ $100=0.30$

Predictive Probabilities

- Observe 12 / 20 (60%)
- Need 47 / 80 successes; 59% or better rest of way
- p-value $=0.25, \operatorname{Pr}(p>0.5)=0.81$
- Predictive probability of success @ $100=0.54$
- Observe 28 / 50 (56%)
- Need 31/50 successes; 62% or better rest of way
- p-value $=0.24, \operatorname{Pr}(p>0.5)=0.80$
- Predictive probability of success @ $100=0.30$
- Observe 41 / 75 (54.7\%)
- Need 18/25 successes; 72% or better rest of way
- p-value $=0.24, \operatorname{Pr}(p>0.5)=0.79$
- Predictive probability of success @ $100=0.086$

Predictive Probabilities

- Observe 12 / 20 (60%)
- Need 47 / 80 successes; 59% or better rest of way
- p-value $=0.25, \operatorname{Pr}(p>0.5)=0.81$
- Predictive probability of success @ $100=0.54$
- Observe 28 / 50 (56%)
- Need 31/50 successes; 62% or better rest of way
- p-value $=0.24, \operatorname{Pr}(p>0.5)=0.80$
- Predictive probability of success @ $100=0.30$
- Observe 41 / 75 (54.7\%)
- Need 18/25 successes; 72% or better rest of way
- p-value $=0.24, \operatorname{Pr}(p>0.5)=0.79$
- Predictive probability of success @ $100=0.086$

54

Another trial

- $N_{G}=100$ in Treatment \& Control Group
- Testing $p_{t}>p_{c}$ using Fisher' s Exact Test @ 0.025
- Observe
- 34/50 in Control Group
- 41/50 in Treatment Group
- What is predictive probability of success?

```
Predictive Probability
alpha <- 1; beta <-
\(\mathrm{xc}<-34 ; \mathrm{nc}<-50\)
\(\mathrm{xt}<-41 ; \mathrm{nt}<-50\)
pc <- rbeta(100000, alpha+xc, beta+nc-xc) pt <- rbeta(100000, alpha+xt, beta+nt-xt)
xc.total <- xc + rbinom(100000, 50, pc xt.total <- xt + rbinom(100000, 50, pt
p.values <- rep(NA, 100000)
for(i in 1:100000)
p.values[i] <- fisher.test
matrix(c(xc.total[i], 100-xc.total[i],
xt.total[i], \(100-\)-xt.total[i]), nrow=2), alternative="less") \$p.value
\}
\(>\) mean(p.value<0.025)
[1] 0.549

57

But what if we have historical data
- Well known historical data, \(p_{c}=60 \% \pm 5 \%\)
- Expected from pilot studies, \(p_{t}=80 \% \pm 15 \%\)


58

\section*{But what if we have historical data}
- Well known historical data, \(p_{c}=60 \% \pm 5 \%\)
- Expected from pilot studies, \(p_{t}=80 \% \pm 15 \%\)
- Beta distribution defined by \(\mathrm{p} \sim \operatorname{Beta}(\alpha, \beta)\)
has mean \& variance
\[
E(p)=\frac{\alpha}{\alpha+\beta} \quad V(p)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}
\]
- Solve for \(\alpha \& \beta\)
\[
\frac{\alpha}{\alpha+\beta}=0.6 \quad \frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}=0.05^{2}
\]

\section*{But what if we have historical data}
- Well known historical data, \(p_{c}=60 \% \pm 5 \%\)
\[
-\alpha_{c}=57, \beta_{c}=38
\]
- Expected from pilot studies, \(p_{t}=80 \% \pm 15 \%\)
\(-\alpha_{\mathrm{t}}=4.8888, \beta_{\mathrm{t}}=1.2222\)


61

\section*{Downweight Historical Information}
- Well known historical data, \(p_{c}=60 \% \pm 5 \%\) \(-\alpha_{c}=57, \beta_{c}=38,95\) patients' worth of info
- Expected from pilot studies, \(p_{t}=80 \% \pm 15 \%\) \(-\alpha_{t}=4.8888, \beta_{t}=1.2222 \quad 6.1\) pts' worth of info

alpha.c <- 57; beta.c <- 38; alpha.t <- 4.888888; beta.t <- 1.222222
xc <- 34; nc <-50; xt <- 41; nt <- 50
\(\mathrm{xc}<-34 ; \mathrm{nc}<-50\); xt <- 41; nt <- 50
pt <- rbeta( 100000 , alpha. \(\mathrm{t}+\mathrm{xt}\), beta. \(\mathrm{b}+\mathrm{nc}\)-xc xc\()\)
xc.total <-xc \(+\operatorname{rbinom}(100000,50, \mathrm{pc})\)
xt.total <- xt \(+\operatorname{rbinom}(100000,50, \mathrm{pt})\)
p.values <- rep(NA,100000)
for (i in \(1: 100000\) ) !
p.values[i] <- fisher.test(matrix(c(xc.total[i], 100-xc.total[i], xt.total[i], 100 -xt.total[i]), nrow=2), alternative="less") \$p.value
\(>\) mean \((\mathrm{p}\). values \(<0.025\)
[1] 0.73422


62

\section*{Downweight Historical Information}
- Well known historical data, \(p_{c}=60 \% \pm 5 \%\)
\(-\alpha_{c}=57, \beta_{c}=38\), 95 patients' worth of info
- New data is \(50 /(50+95)=34 \%\) of information
- Expected from pilot studies, \(p_{t}=80 \% \pm 15 \%\)
\(-\alpha_{\mathrm{t}}=4.8888, \beta_{\mathrm{t}}=1.2222\), 6.1 patients' worth of info
- New data is \(50 /(50+6)=89 \%\) of information
- Downweight each prior so it includes \(1 / 3\) as much information
\(-\alpha_{c}=19, \beta_{c}=12.6667,31.67\) patients' worth of info
\(-\alpha_{\mathrm{t}}=1.63, \beta_{\mathrm{t}}=0.407,2\) patients' worth of info


65

\section*{Statistical Model}
- Final analysis: Chi-square test
- Interim analyses with
\(-N=N_{c}+N_{t}\) patients enrolled; \(n=n_{c}+n_{t}\) complete
\(-x_{c} \sim \operatorname{Binomial}\left(n_{c}, p_{c}\right) ; \quad p_{c} \sim \operatorname{Beta}(1,1)\)
\(-x_{t} \sim \operatorname{Binomial}\left(n_{t}, p_{t}\right) ; \quad p_{t} \sim \operatorname{Beta}(1,1)\)
\(-N=N_{c}+N_{t} \quad N_{c}=n_{c}+n_{c}^{*} \quad N_{t}=n_{t}+n_{t}^{*}\)
\(-x_{c}^{*} \sim \operatorname{Beta}-\operatorname{binomial}\left(n_{c}^{*}, 1+x_{c}, 1+n_{c}-x_{c}\right)\)
\(-x_{t}^{*} \sim \operatorname{Beta-binomial}\left(n_{t}^{*}, 1+x_{t}, 1+n_{t}-x_{t}\right)\)
\(P P_{N}=\sum_{x_{c}^{*}=0}^{n_{c}^{*}} \sum_{x_{t}^{*}=0}^{n_{t}^{*}} \operatorname{pr}\left(x_{c}^{*}\right) \operatorname{pr}\left(x_{t}^{*}\right) I\left\{\chi_{p-\text { value }}^{2}\left(x_{c}+x_{c}^{*}, N_{c}, x_{t}+x_{t}^{*}, N_{t}\right)<0.05\right\}\)

\section*{Phase 3 Cancer Design}
- Binary endpoint, complete response observed at 45 days post treatment
- Consider CR vs. PFS vs. OS?
- Primary analysis chi-square test
- Expect \(20 \%\) improvement vs. control
- Use Bayesian prediction to determine sample size necessary for success in frequentist trial
- Bayesian ‘behind the curtain'

66

\section*{Design Questions}
- What should sample size range be?
- Most sponsor can do is 300 patients
- Step 1, calculate power of fixed 300 patient trial
> bpower( \(\mathrm{n} 1=150, \mathrm{n} 2=150, \mathrm{p} 1=0.6, \mathrm{p} 2=0.8\) ) Power
0.969
- Best case want to go to FDA with \(\geq 150\) patients
- We' ll see if 300 is enough, if not we' 11 go back to the company with evidence they need to up the cap
\(>\operatorname{bpower}(\mathrm{n} 1=150, \mathrm{n} 2=150, \mathrm{p} 1=0.6, \mathrm{p} 2=0.75\) )
Power
0.795

Smallest win: \(60 \%(80 / 150)\) vs. 72\% (108/150) \(\rightarrow \mathrm{p}=0.03\)

\section*{Design Questions}
- Can we use an adaptive design?
- Expect 15-25 patients per month
_ "Fast" outcome at 45 days
- 22-37 outstanding patients at any analysis
- If we do first look @ 150 patients enrolled 128 with complete data with \(15 \mathrm{pt} /\) month accrual 113 with complete data with \(25 \mathrm{pt} /\) month accrual
- Usually accrual ramps up, assume constant here
- Don't want to interfere with accrual

Don't pause accrual at each interim analysis
Decide whether to stop accrual while accruing

69


71


70

\section*{Design Questions}
- How often to do interim looks?
- Every 25 patients is every \(1-12 / 3\) months
- Manageable, may be CRO fee for every look

\section*{Design Questions}
- How to decide when to stop accrual for predicted success?

\section*{Design Questions}
- How to decide when to stop accrual for futility (if at all)?

\section*{Design Questions}
- How to decide when to stop accrual for predicted success?
- Use predictive probabilities
- At each interim analysis ask
"If we stop enrolling \& wait for all outstanding patients to reach their 45 -day outcomes, what is the probability we 'win'?"
- If high, stop, wait, \& analyze

How high?
I never want to stop then lose! (and so far haven't)

74

\section*{Design Questions}
- How to decide when to stop accrual for futility (if at all)?
- Use predictive probabilities
- At each analysis ask
"If we enrolling to the 300 -patient maximum then wait for all patients to reach their 45-day outcomes, what is the probability we 'win' ?"
- If low, stop for futility?

How low?
More aggressive, more likely to stop a good trial

\section*{Design Questions}
- What priors to use for predictive probabilities Beta dists?
- Pretty new, let's be conservative with Beta(1,1) for treatment \& control
- Could use historical (or downweighted historical) priors here Incentive to have an 'honest' prior
- Don't use prior in final analysis, frequentist test
- Stop for predicted success if \(P P_{N}>S_{N}=0.90\)
- Stop for futility if \(P P_{\text {Nmax }}<F_{N}=0.10\)

77


\section*{Sketch of my simulation code}
- Define when to analyze, priors, cap, accrual rate, alpha level, efficacy - Factors I'll change a lot during discussions with sponsor
- Subroutine for patient accrual \& randomization
- Subroutine to generate patient response \& dropout
- Subroutine for interim analysis
- Factors in time of analysis, which patients enrolled, which pts have outcomes
- Outputs predictive probability of success with current \(N\) and at maximum \(N\) max
- Subroutine for decision
- Stop for predicted success, stop for cap, stop for futility, keep going
- Final analysis at \(n\) where trial stopped
- Track trial size, win or lose, reason for stopping, number of looks, trial duration

78


80


81

\section*{Stopping Boundaries, \(S_{n}, F_{n}\)}
- Need not be constant
- We stopped for predicted success but lost at the first interim analysis in \(1.1 \%\) of trials
- I never want this to happen if I can avoid it!
- Let \(S_{n}\) be the success stopping bound
- Let \(F_{n}\) be the futility stopping bound
- Current \(S_{n}=0.9 \& F_{n}=0.1\) for all \(n\)
- Could choose \(S_{n}=0.99\) for small \(n\)
\[
\& S_{n}=0.9 \text { for higher } n
\]


82


85


87


86


88

\section*{Enough!}
- Settle on
- Success Bound \(=0.95\)
- Futility Bound \(=0.10\)
- Type I error was 0.028 -- too high
- Pivotal trial, we need this to be \(\leq 0.025\)
- Hard to calculate analytically
- Need to simulate over many scenarios
- Then convince ourselves \& FDA we've explored the whole null space

\section*{Intuition Check}
- Use critical value \(=0.025\)
- Simulate with 4 accrual rates, 10 k sims/scenario
- Will the Type I error rates change with accrual rate? If so how?
- How will sample sizes change?
\begin{tabular}{|c|c|c|}
\hline Accrual (pts/mth) & Mean N & Type I error \\
\hline 5 & 172 & 0.039 \\
\hline 15 & 177 & 0.030 \\
\hline 25 & 182 & 0.028 \\
\hline 50 & 195 & 0.027 \\
\hline
\end{tabular}

\section*{Intuition Check}
- Use critical value \(=0.025\)
- Simulate with 4 accrual rates, 10 k sims/scenario
- Will the Type I error rates change with accrual rate? If so how?
- How will sample sizes change?
\begin{tabular}{|c|c|c|}
\hline Accrual (pts/mth) & Mean N & Type I error \\
\hline 5 & & HIGHER OR LOWER \\
\hline \(15^{*}\) & 177 & 0.030 \\
\hline 25 & & \\
\hline 50 & & \\
\hline
\end{tabular}
\[
\text { *Slightly different than previous slide because } 10,000 \text { sims each } 9
\]

90

\section*{Find Critical Value for \(\alpha=0.025\)}
- Assume accrual won' \(t\) be slower than \(15 /\) month
- Explore range of true \(p_{c} \& p_{t}\)
- Find right critical value by trial \& error
- 10,000 sims each using 0.6 vs. 0.6
\(-\operatorname{Sqrt}(0.025 * 0.975 / 10000)=0.0016\)
\begin{tabular}{cccccc}
\hline Critv & 0.40 & 0.50 & 0.60 & 0.70 & 0.80 \\
\hline 0.025 & & & 0.030 & &
\end{tabular}

Find Critical Value for \(\alpha=0.025\)
- Assume accrual won' t be slower than \(15 /\) month
- Explore range of true \(p_{c} \& p_{t}\)
- Find right critical value by trial \(\&\) error
\(-10,000\) sims each using 0.4 vs. 0.4 to 0.8 vs. 0.8
\(-\operatorname{Sqrt}(0.025 * 0.975 / 10000)=0.0016\)
\begin{tabular}{llllll}
\hline Critv & 0.40 & 0.50 & 0.60 & 0.70 & 0.80 \\
\hline 0.025 & & & 0.030 & & \\
0.020 & 0.024 & 0.026 & 0.026 & 0.024 & 0.025 \\
& & & & & \\
& & & & & \\
& & & & & \\
\hline
\end{tabular}

93

\section*{Find Critical Value for \(\alpha=0.025\)}
- Assume accrual won' t be slower than \(15 /\) month
- Explore range of true \(p_{c} \& p_{t}\)
- Find right critical value by trial \& error
- 10,000 sims each using 0.4 vs. 0.4 to 0.8 vs. 0.8
\(-\operatorname{Sqrt}\left(0.025^{*} 0.975 / 10000\right)=0.0016\)
\begin{tabular}{llllll}
\hline Critv & 0.40 & 0.50 & 0.60 & 0.70 & 0.80 \\
\hline 0.025 & & & 0.030 & & \\
0.020 & 0.024 & 0.026 & 0.026 & 0.024 & 0.025 \\
0.018 & 0.024 & 0.021 & 0.024 & 0.023 & 0.020 \\
0.019 & 0.022 & 0.026 & 0.024 & 0.024 & 0.024 \\
& & Let's go with 0.018 & & \\
& & &
\end{tabular}

If a real trial I'd run 100,000 or 1 M sims and try to get as much power as possible 95

Find Critical Value for \(\alpha=0.025\)
- Assume accrual won' t be slower than \(15 /\) month
- Explore range of true \(p_{c} \& p_{t}\)
- Find right critical value by trial \& error
\(-10,000\) sims each using 0.4 vs. 0.4 to 0.8 vs. 0.8
\(-\operatorname{Sqrt}\left(0.025^{*} 0.975 / 10000\right)=0.0016\)
\begin{tabular}{cccccc}
\hline Critv & 0.40 & 0.50 & 0.60 & 0.70 & 0.80 \\
\hline 0.025 & & & 0.030 & & \\
0.020 & 0.024 & 0.026 & 0.026 & 0.024 & 0.025 \\
0.018 & 0.024 & 0.021 & 0.023 & 0.023 & 0.020 \\
& & & & & \\
& & & & & \\
\hline
\end{tabular}

94

\section*{Example Trial \#1}
```

limulation \# 14 n
lrroup
Treatment
P_N = 0.9360 > 0.950 ? No, P_Nmax = 0.9180< 0.100 ? No
Continue to enroll

```


97

\section*{Example Trial \#1}

```

Group
Treatment
Treatment }\mp@subsup{}{~}{75

```
P_N \(=0.9360>0.950\) ? No, \(P\) Nmax \(=0.9180<0.100\) ? No
Continue to enroll

```

 \(\begin{array}{lrrrr}\text { Croup } & \text { N } & \text { Obs } & \text { Suc } & \\ \text { Control } & 88 & 73 & 39 & 53\end{array}\)
 \(\mathrm{Pr} \mathrm{N}=0.9370>0.950\) ? No, P Nmax \(=0.9360<0.100\) ? No
 Continue to enroll
 $\begin{array}{llll}\begin{array}{lll}\text { Simulation \# } \\ \text { Group }\end{array} & 14 & \text { Analysis \# } & 200 \\ \text { Obs } & \text { Suc }\end{array}$
$\begin{array}{lrrrr}\text { Group } & \text { N } & \text { Obs } & \text { Suc } & \\ \text { Control } & 100 & 91 & 48 & 53 \\ \text { Treatment } & 100 & 90 & 68 & 76\end{array}$
P_N $=>.9999>0.950$? YES, P_Nmax $=0.9900<0.100$? No
Stop for predicted success

```

\section*{Example Trial \#2}
```

limulation \# 10
Crratment
Treatment 75 65 44 68% successes for win @
P_n
Continue to enroll
0.950 ? No, P_Nmax = 0.2590 < 0.100 ? No

```

```

lrorncoc
Crontrol
P_n = 0.0000 > 0.950 ? No, P_Nmax = 0.1020 < 0.100 ? No
Continue to enrol
Simulation \# 10 Analysis \# 200
Group
Treatment 100 89 57 64% successes for win@
P_n
P_n = 0.0000> 0.950 ? No, P_Nmax = 0.0360< 0.100 ? YES
Unsuccessful trial

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Final Operating Characteristics
\[
S_{n}=0.95, F_{n}=0.10
\]} \\
\hline \(p_{c}\) & \(p_{t}\) & \begin{tabular}{l}
Mean \\
N
\end{tabular} & Futility & \begin{tabular}{l}
Max \\
\& Win
\end{tabular} & PredSuc \& Win & Power \\
\hline 0.60 & 0.60 & 175 & 0.937 & \[
\begin{aligned}
& 0.046 \\
& 0.009
\end{aligned}
\] & \[
\begin{aligned}
& 0.016 \\
& 0.015
\end{aligned}
\] & 0.024 \\
\hline 0.60 & 0.65 & 199 & 0.775 & \[
\begin{aligned}
& 0.145 \\
& 0.041
\end{aligned}
\] & \[
\begin{aligned}
& 0.081 \\
& 0.075
\end{aligned}
\] & 0.117 \\
\hline 0.60 & 0.70 & 220 & 0.478 & \[
\begin{aligned}
& 0.247 \\
& 0.114
\end{aligned}
\] & \[
\begin{aligned}
& 0.275 \\
& 0.267
\end{aligned}
\] & 0.381 \\
\hline 0.60 & 0.75 & 216 & 0.195 & \[
\begin{aligned}
& 0.216 \\
& 0.143
\end{aligned}
\] & \[
\begin{aligned}
& 0.590 \\
& 0.580
\end{aligned}
\] & 0.723 \\
\hline 0.60 & 0.80 & 189 & 0.039 & \[
\begin{aligned}
& 0.088 \\
& 0.073
\end{aligned}
\] & \[
\begin{aligned}
& 0.873 \\
& 0.868
\end{aligned}
\] & \[
0.942 \quad 101
\] \\
\hline
\end{tabular}

101
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Final Operating Characteristics vs. Fixed Frequentist Trials} \\
\hline \(p_{c}\) & \(p_{t}\) & \[
\begin{gathered}
\text { B-A } \\
\text { Mean } \mathrm{N}
\end{gathered}
\] & \begin{tabular}{l}
B-A \\
Power
\end{tabular} & F-Power
\[
300
\] & F-Power BA Mean \\
\hline 0.60 & 0.60 & \[
\begin{aligned}
& 175 \\
& 185
\end{aligned}
\] & \[
\begin{aligned}
& 0.024 \\
& 0.025
\end{aligned}
\] & 0.025 & 0.025 \\
\hline 0.60 & 0.65 & \[
\begin{aligned}
& 199 \\
& 212
\end{aligned}
\] & \[
\begin{aligned}
& 0.12 \\
& 0.13
\end{aligned}
\] & 0.14 & 0.11 \\
\hline 0.60 & 0.70 & \[
\begin{aligned}
& 220 \\
& 231
\end{aligned}
\] & \[
\begin{aligned}
& 0.38 \\
& 0.40
\end{aligned}
\] & 0.44 & 0.34 \\
\hline 0.60 & 0.75 & \[
\begin{aligned}
& 216 \\
& 221
\end{aligned}
\] & \[
\begin{aligned}
& 0.72 \\
& 0.75
\end{aligned}
\] & 0.79 & 0.66 \\
\hline 0.60 & 0.80 & \[
\begin{aligned}
& 189 \\
& 190
\end{aligned}
\] & \[
\begin{aligned}
& 0.94 \\
& 0.95 \\
& \hline
\end{aligned}
\] & 0.969 & 0.86 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Final Operating Characteristics
\[
S_{n}=0.95, F_{n}=0.05
\]} \\
\hline \(p_{c}\) & \(p_{t}\) & Mean N & Futility & \[
\begin{gathered}
\text { Max } \\
\& W_{\text {in }}
\end{gathered}
\] & PredSuc \& Win & Power \\
\hline 0.60 & 0.60 & 185 & 0.913 & \[
\begin{aligned}
& 0.071 \\
& 0.009
\end{aligned}
\] & \[
\begin{aligned}
& 0.017 \\
& 0.015
\end{aligned}
\] & 0.025 \\
\hline 0.60 & 0.65 & 212 & 0.716 & \[
\begin{aligned}
& 0.200 \\
& 0.053
\end{aligned}
\] & \[
\begin{aligned}
& 0.084 \\
& 0.079
\end{aligned}
\] & 0.132 \\
\hline 0.60 & 0.70 & 231 & 0.407 & \[
\begin{aligned}
& 0.314 \\
& 0.131
\end{aligned}
\] & \[
\begin{aligned}
& 0.280 \\
& 0.271
\end{aligned}
\] & 0.401 \\
\hline 0.60 & 0.75 & 221 & 0.143 & \[
\begin{aligned}
& 0.256 \\
& 0.155
\end{aligned}
\] & \[
\begin{aligned}
& 0.601 \\
& 0.591
\end{aligned}
\] & 0.746 \\
\hline 0.60 & 0.80 & 190 & 0.025 & \[
\begin{aligned}
& 0.095 \\
& 0.074
\end{aligned}
\] & \[
\begin{aligned}
& 0.880 \\
& 0.876
\end{aligned}
\] & 0.950102 \\
\hline
\end{tabular}

102


104

\section*{Imagine}
- Imagine investigators do a case-control study
- Identify cases
- Patients with hypertension
- Identify controls
- People without hypertension with the same demographics (age, gender, marital status)
- See statistically significant increase in blood pressure between cases \& controls
- Would JAMA publish this paper?

\section*{From Abstract Study Selection}
"Selected studies were RCTs reported as having stopped early for benefit and matching nontruncated RCTs from systematic reviews. Independent reviewers with medical content expertise, working blinded to trial results, judged the eligibility of the nontruncated RCTs based on their similarity to the truncated RCTs."
- They did: Bassler et al, March 23/31, 2010, V303, No12, 1180-1187.

Stopping Randomized Trials Early for Benefit and Estimation of Treatment Effects
Systematic Review and Meta-regression Analysis


106

\section*{From Abstract Results}
- Large differences in treatment effect size between truncated and nontruncated RCTs occurred....
- In 39 of the 63 questions ( \(62 \%\) ), the pooled effects of the nontruncated RCTs failed to demonstrate significant benefit.


109

\section*{Goodman, D. Berry, Wittes}
"So comparing the truncated trials to the nontruncated trials is similar to comparing completed trials with large effects with those with lower effects. The difference the authors observed was both predictable and uninformative."
"Bias is a property of study procedures; it is not logically applicable to a subset of results."
Goodman SN. Systematic reviews are not biased by results from trials stopped early for benefit. J Clin Epidemiol. 2008;61(1):95-96.

\section*{S. Berry, Carlin, Connor}
"To illustrate the issue, consider a clinical trial in which analysis is as follows: participants found to be performing better are retrospectively placed in the experimental group and participants found not to be performing well are retrospectively placed in the
control group; a statistically significant difference in outcome is found when the groups are compared. It is clear that post-treatment selection of participants, based on their outcomes, would be responsible for any observed difference."
"This is logically equivalent to the analysis reported by Bassler et al."
\[
\begin{gathered}
p_{t}=0.8 \text { vs. } p_{c}=0.6 \\
\mathrm{n}=180 \rightarrow 80 \% \text { Power }
\end{gathered}
\]
- What is average effect size in the statistically significant trials?
\[
\begin{gathered}
p_{t}=0.8 \text { vs. } p_{c}=0.6 \\
\mathrm{n}=180 \rightarrow 80 \% \text { Power }
\end{gathered}
\]
```

pvalue <- NULL; effect <- NULL
for(i in 1:100000){
x.c <- rbinom(1, 90, 0.6)
nat <- rbind(c(x.c, 90-x.c), c(x.t, 90-x.t))
test <- chisq.test(mat)
l
j print(i)
hist(effect,
hist(effect[pvalue<0.05], breaks=seq(-.2, .6, by=0.025), col=2, main=" ", xlab=
M,
>mean(pvalue < 0.05) \#\#\# CHECK power = 808
[1] 0.80313
mean(effect) \#\#\# cHECK mean effect = 0.20
[1] 0.2003593
>mean(effect[pvalue < 0.05])
[1] 0.2233924
mean(effect[pvalue >= 0.05])
[1] 0.1063962
> >0.80*.2233924 + 0.20*0.1063962 $\rightarrow 0.80 * .2233924+0.20 * 0.1063962$

```
```

count <- 0
rrix(nrow=8281, ncol=5)
for(xc in 0:90){
count <- count +
prob.of.pair <- dbinom(xc, 90, 0.6) * dbinom(xt, 90, 0.8)
mat <- rbind(c(xc, 90-xc), c(xt, 90-xt))
*)
outcome[count,] <- c(xc, xt, prob.of.pair, test\$p.value, effect)
print(c(xc,xt))
}}
outcome <- data.frame(outcome)
names(outcome) <- c("xc","xt","pr","pvalue","effect")
sum(outcomeSpr[outcomespvalue < 0.05}
11 0.80168
sum((outcomeseffect * outconespr) [outcomespvalue < 0.05])
sum(outcomeSpr[outcome{pvalue<0.05])
[1] 0.2231661
sum((outcomeSeffect * outcomeSpr) [outcomeSpvalue > 0.05])
sum(outcome{pr[outcomeSpvalue>0.05])
[1] 0.1063544

```

What is average effect size in the statistically significant trials?
- What is the average effect size in 100,000 simulated trials?

100k sims 0.8 vs. \(0.6, \mathrm{n}=180\)


116


117


119

\section*{Revisit Example \#1}
- Binary outcome
- Adaptive trial from 150 to 300 patients
- Expected difference \(60 \%\) vs. \(80 \%\)

118


120


\section*{Summary}
- A process is biased
- Individual trials are not biased
- Individual trials do vary about their true mean
- Larger trials have narrower CIs
- They stopped early because it was a random observation in the right or left tail
- Tradeoff - is it worth deciding earlier and offering benefit to those outside the trial?
- Many adaptive trials are larger so tighter CIs

\section*{Background}
- Medical device to treat atrial fibrillation (AF)
- Used during open cardiac surgery
- Only used when surgery being done for other reason
- e.g., CABG, Valve replacement
- Label was to 'ablate cardiac tissue' not 'treat AF'
- Trial needed to produce evidence of safety and efficacy for treatment of AF
- Controlled trial not possible due to extensive use

Example \#2:
Goldilocks Trial with 2 Endpoints
\& Informative Prior on
Longitudinal Model

\section*{Background}
- Early safety study with matched controls failed to enroll
- Matched control having same cardiac surgery without AF treatment component
- Stopped @ 32 months when 39 cases \& just 5 controls enrolled
- FDA suggested to company to explore Bayesian adaptive trial with safety \& efficacy OPCs

\section*{Objective Performance Criteria}
- Efficacy OPC (6m)
- AF free \& off AF drugs at 6 months
- Goal: \(70 \%, \delta_{\mathrm{E}}=10 \%\)
- Based upon published rates of this procedure
- 10 papers had \(60.1 \%\) efficacy
- Safety OPC (1m)
- Free of significant adverse event
- Goal: \(13.95 \%\), \(\delta_{\text {S }}=5 \%\)
- Based upon published SAE rates in Cut \& Sew MAZE

\section*{Goldilocks Design}
- Enroll 50-100 patients
- Must have 20 patients at 6 months or skip analysis
- Interim analyses every 5 patients
- Final sample size based upon predictive probabilities
- Expect to enroll 5 patients per month
\(\sim 30\) patients enrolled without complete 6 m data

\section*{Statistical Endpoints}
- Show \(\operatorname{Pr}\left(p_{E}>0.60\right)>0.975\)
\(-70 \%-\delta_{\mathrm{E}}=70 \%-10 \%=60 \%\)
- Show \(\operatorname{Pr}\left(p_{S}<0.1895\right)>0.95\)
\(-13.95 \%+\delta_{\mathrm{S}}=13.95 \%+5 \%=18.95 \%\)
- Achievable in 100 patients if
- observed efficacy \(\geq 70 \%\)
- observed safety \(\leq 12 \%\)
- basically point estimates have to match or beat OPCs
- \(p_{E}, p_{S} \sim \operatorname{Beta}(1,1)\) priors for both endpoints

130

\section*{Stopping Decisions}
- \(P_{n}=\operatorname{Pr}(\) Meet Efficacy \& Safety Goals with current sample size \(n \mid\) Current Data)
- If \(P_{n} \geq S_{n}\) then stop accrual for predicted success
\(-\mathrm{S}_{\mathrm{n}}=0.90\) for \(\mathrm{n}=50-65\)
\(-\mathrm{S}_{\mathrm{n}}=0.85\) for \(\mathrm{n}=70-80\)
\(-\mathrm{S}_{\mathrm{n}}=0.80\) for \(\mathrm{n}=85-95\)
- \(P_{\text {max }}=\operatorname{Pr}(\) Meet Efficacy @ Safety Goals with

100 patients | Current Data)
- If \(P_{n} \leq F_{n}\) then stop trial for futility
\(-\mathrm{F}_{\mathrm{n}}=0.05\) for \(\mathrm{n}=50-70\)
\(-\mathrm{F}_{\mathrm{n}}=0.10\) for \(\mathrm{n}=75-95\)

\section*{Longitudinal Model}
- Efficacy outcome is AF-free and off AADs at 6 m
- Interim outcome at 3-months is whether patients are AF-free already
- Predict 6 m outcomes using Beta-Binomial
\begin{tabular}{|l|l|l|l|}
\hline Group & \(\boldsymbol{\alpha}\) & \(\boldsymbol{\beta}\) & Prior Mean \\
\hline No 3 m data & 5 & 1 & \(83 \%\) \\
\hline In AF & 4.2 & 1.8 & \(70 \%\) \\
\hline AF-free & 5.4 & 0.6 & \(90 \%\) \\
\hline
\end{tabular}

133


135

Operating Characteristics for Trial with
\[
p_{T}=0.84, p_{S}=0.08
\]
\begin{tabular}{cccccc}
\hline \begin{tabular}{c} 
Sample \\
Size
\end{tabular} & \begin{tabular}{c} 
Proportion \\
of Trials
\end{tabular} & \begin{tabular}{c} 
Stop for \\
Futility
\end{tabular} & \begin{tabular}{c} 
Stop Early \\
For Success
\end{tabular} & \& Lose & \& Win \\
\hline \(\mathbf{5 0}\) & 0.440 & 0.008 & 0.432 & 0.011 & 0.421 \\
\hline \(\mathbf{5 5}\) & 0.150 & 0.003 & 0.147 & 0.007 & 0.140 \\
\hline \(\mathbf{6 0}\) & 0.109 & 0.006 & 0.102 & 0.005 & 0.097 \\
\hline \(\mathbf{6 5}\) & 0.033 & 0.004 & 0.029 & 0.002 & 0.027 \\
\hline \(\mathbf{7 0}\) & 0.063 & 0.002 & 0.061 & 0.002 & 0.058 \\
\hline 75 & 0.034 & 0.006 & 0.027 & 0.002 & 0.025 \\
\hline \(\mathbf{8 0}\) & 0.031 & 0.011 & 0.020 & 0.000 & 0.020 \\
\hline \(\mathbf{8 5}\) & 0.042 & 0.002 & 0.040 & 0.000 & 0.040 \\
\hline \(\mathbf{9 0}\) & 0.009 & 0.006 & 0.003 & 0.000 & 0.003 \\
\hline \(\mathbf{9 5}\) & 0.019 & 0.003 & 0.016 & 0.000 & 0.016 \\
\hline\({ }^{\mathbf{1 0 0}}\) & 0.070 & -- & 0.070 & 0.011 & 0.058 \\
\hline Total & 1.000 & 0.053 & 0.947 & 0.042 & 0.906 \\
\hline
\end{tabular}

Mean Sample Size \(=61.6, \mathrm{SD}=15.6\)

134


136


\section*{Interim Analysis}
- No look at 50 patients
- At 55-patients August 24, 2009
- All patients through 30-day safety, \(5 / 55\) had SAEs
- 24/29 efficacy successes at 6-months
- 21 subjects remain under surveillance
- \(37 / 50\) successes would show
\[
\operatorname{Pr}\left(p_{t}>0.60 \mid 37 \text { of } 50\right)=0.978>0.975
\]
- Total number of efficacy successes
\[
\mathrm{X}=24+\mathrm{x}_{\mathrm{o}}+\mathrm{x}_{+}+\mathrm{x}
\]

141

\section*{Interim Analysis}
- \(\mathrm{x}_{\mathrm{o}}=5\) enrolled with \(<3\) mo follow-up

Longitudinal Priors
\(5 / 6=.83\)
- x - \(=3\) enrolled not AF-free at \(3 \mathrm{mo} \quad 24 / 29=.83\)
\(-\mathrm{x} \sim \operatorname{Beta}-\operatorname{Bin}\left(n_{-}=3, \alpha=4.2+3, \beta=1.8+1\right) \quad 4.2 / 6=.70\)
- \(\mathrm{x}+=13\) enrolled AF-free at 3 mo \(3 / 4=.75\)
\(-\mathrm{x}+\sim \operatorname{Beta}-\operatorname{Bin}(\mathrm{n}+=13, \quad=5.4+17\), \(=0.6+3\) )
5.4/6 \(=.90\) \(17 / 20=.85\)
- \(\operatorname{Pr}\left(24+\mathrm{x}_{\mathrm{o}}+\mathrm{x}_{-}+\mathrm{x}_{+} \geq 37\right)=0.988\)

\section*{Interim Analysis}
- \(\mathrm{x}_{\mathrm{o}}=5\) enrolled with \(<3 \mathrm{mo}\) follow-up
\(-\mathrm{x}_{\mathrm{o}} \sim \operatorname{Beta}-\operatorname{Bin}\left(n_{0}=5, \alpha=5+24, \beta=1+5\right)\)
- \(\mathrm{x}-=3\) enrolled not AF-free at 3 mo
\(-\mathrm{x}_{-} \sim \operatorname{Beta}-\operatorname{Bin}\left(n_{-}=3, \alpha=4.2+3, \beta=1.8+1\right)\)
- \(\mathrm{x}+=13\) enrolled AF-free at 3 mo
\(-\mathrm{x}+\sim \operatorname{Beta}-\operatorname{Bin}(\mathrm{n}+=13, \quad=5.4+17\), \(=0.6+3\) )
- \(\operatorname{Pr}\left(24+\mathrm{x}_{\mathrm{o}}+\mathrm{x}+\mathrm{x}_{+} \geq 37\right)=0.988\)

142

Prediction of 21 remaining pts based on 29 observed pts


144

\section*{Sample Size Analysis at 55 pts}
```

Current Patients Enrolled: 55

```
Current Patients Enrolled: 55
Current patients not contributing to efficacy:
Current patients not contributing to efficacy:
Current Pafety Events: 5 of 55 patients
Current Efficacy Success: 24 of 29 patients
Current Efficacy Successes: 3 of 4 Efficacy Failures at 3 months 
0 enrolled patients to predict for 1mo safety outcomes
5 enrolled patients with <3mo to predict for efficacy outcomes
3 enrolled patients with AF at 3mo to predict for 6mo efficacy outcomes 
lol
Predicted Safety Events with Current Accrual: 5 ( 5-5) of 55 patients
Predicted Safety Events with Maximum Accrual: 9.7 (6-16) of 100 patients
```



```
\37 or more needed for efficacy success 
Stop Enrolling Due to Predicted Succe
```

 Stop for predicted success

```

145


147

\section*{Stopped Accrual for Predicted Success}
- Accrual stopped with 55 patients in
- Continue to follow 21 enrolled patients
- Perform final analysis on complete data
- Final Data
- 5/55 SAEs
- 37/50 AF-free and off AADs

\section*{Post Trial Discussion with FDA}
- Efficacy barely won
- One less success would have failed to meet primary endpoint
- Not a robust win, in part due to post-hoc changes related to inc/excl criteria
- Some concern with n=55
- But this was possible based upon design
- Safety OPC \(=0.1395\), observed 0.091
- Efficacy OPC \(=0.70\), observed 0.74


149

\section*{FDA Advisory Panel Vote Oct 2011}
- Is there reasonable assurance that the AtriCure Synergy Ablation System is effective ...? - 9 for, 0 against
- Is there reasonable assurance that the AtriCure Synergy Ablation System is safe...?
- 5 for, 4 against, 1 abstain (chair broke \(4-4\) tie)
- Largely due to patients needing pacemakers
- Do the benefits ... outweigh the risks ...?
- 5 for, 3 against, 1 abstain

Efficacy: Compare Stopping at \(\mathrm{n}=50\) to Maximum Trial Size \(n=100\)


150

\section*{[heartwire]}

AtriCure AF ablation system gets cautious thumbs-up from FDA advisors
```

OCTOBER 26, 2011 Michael O'Riordan

```


Rockville, MD (updated) - The AtriCure Synergy Ablation System squeaked by today in a meeting of the Food and Drug Administration

Five panel members believed the benefits of the ablation system outweighed the risks when used in the reatment of artial-fibriliation (AF) patients undergoing open concomitant coronary artery bypass graft CABC) surgery and /or valve replacement or repair. Three panelists expressed doubts about the system a
cautioned against device approval, voting that they did not believe the benefits outweighed the risks.
One panelist abstained from voting on the benefit/risk trade-off question.
In a vote on efficacy alone, all panelists believed the ablation system is effective in restoring sinus rhythm,
but they were split for the vote on safety. Chair of the advisory panel, Dr John Hirschfeld (University of Pennsylvania, hhiladel phia), cast the deciding vote on safety, saying he believes there is reasonable
Put surance the device is safe for use in patients who meet the indication criteria. Overall, the panel voted 9 to on efficacy and 5 to 4 on safety (with one abstention).
Panel member Dr David Slotwiner (Long Island Jewish Medical Center, New Hyde Park, NY) voted in favor of
the ablation system, saying that he believes the benefits outweigh the risks.
the ablation system, saying that he believes the benefits outweign the risks.
Ithink it's effective at creating these ablation lesions, and I think it's effective in many people for
maintaining sinus rhythm, although what that means [clinically) for many patients remains unanswered," he said. But thope, mostly, that if an approval is granted, it will allow us to get more information and to
ducate more surgeons so that the procedure becomes more widely available and we understand better who will benefit the most."

152

\section*{FDA Approved Dec 14, 2011}
- Study Design (from device label)
- ABLATE was a multi-center, prospective, nonrandomized study based on a Bayesian adaptive design that provides high probability of demonstrating safety and effectiveness of the AtriCure Synergy Ablation System for the treatment of permanent atrial fibrillation. The safety and effectiveness of the device was compared to performance goals derived from historical information. The Bayesian adaptive clinical design incorporated interim analyses of the data to determine the point of completion of trial enrollment. Enrollment was targeted to be between 50 and 100 subjects at 20 sites. The study was designed to have an initial assessment of results at the point that 50 subjects were enrolled with a minimum of 20 subjects completing their six-month follow-up visit. Nine investigational sites enrolled 55 subjects.

\section*{Lessons}
- Ensure minimum sample size will suffice
- Not just statistical, but impactful
- Company did a continue access protocol to get more patients during review, leading to panel
- Ensure data isn't coded optimistically
- Ensure inclusion / exclusion criteria rigorously followed
- Goldilocks gets the size 'just right' but that means you can be close to 'just wrong' if some data changes post hoc

\section*{Example 3: SHINE TRIAL}
with Karen Johnston, Valerie Durkalski Kristine Broglio, \& Will Meurer
- Trial for SOC vs. tight glycemic control after stroke
- Designed as Group Sequential
- Run with "Shadow" Bayesian Trial
- Design papers online
- Compares GSD to Goldilocks Trial

\section*{Platform Trials}
\& Master Protocols

\section*{Woodcock \& Lavange, NEJM 2017}
- High-quality evidence is what we use to guide medical practice. The standard approach to generating this evidence - a series of clinical trials, each investigating one or two interventions in a single disease - has become ever more expensive and challenging to execute. As a result, important clinical questions go unanswered.
- A methodologic innovation responsive to this need involves coordinated efforts to evaluate more than one or two treatments in more than one patient type or disease within the same overall trial structure. Such efforts are referred to as master protocols, defined as one overarching protocol designed to answer multiple questions.

\section*{Master Protocols}
- May or may not compare treatment across groups
- One structure, but each TX vs. common control
- Reported as multiple trials (e.g. 1 per intervention)
- Sites have one set of rules, execute like 1 trial
- Intensive pretrial discussion among sponsors
- data use, publication rights, and the timing of regulatory submission
- Matchmaker
- Therapies to targeted subpopulations

\section*{Woodcock \& Lavange, NEJM 2017}
- Master protocols may involve one or more interventions in multiple diseases or a single disease, as defined by current disease classification, with multiple interventions, each targeting a particular biomarkerdefined population or disease subtype. Included under this broad definition of a master protocol are three distinct entities: umbrella, basket, and platform trials (Table 1 and Figs. 1 and 2). All constitute a collection of trials or substudies that share key design components and operational aspects to achieve better coordination than can be achieved in single trials designed and conducted independently.

158
\begin{tabular}{|l|l|}
\hline Master ProtOCOlS \\
\hline \begin{tabular}{l} 
Table l. Types of Master Protocols. \\
Type of Trial \\
Umbrella \\
Basket \\
To study multiple targeted therapies in the context of a single \\
disease
\end{tabular} & \begin{tabular}{c} 
To study a single targeted therapy in the context of multiple \\
diseases or disease subtypes
\end{tabular} \\
\begin{tabular}{l} 
To study multiple targeted therapies in the context of a single \\
disease in a perpetual manner, with therapies allowed to \\
enter or leave the platform on the basis of a decision algo- \\
rithm
\end{tabular} \\
\hline
\end{tabular}

160


161

\section*{Asking the Right Question}
- Current Clinical Trials

Is this drug effective and safe?

More precisely
What is the probability of the observed data assuming the treatment is no good?

\section*{Platform Trials}

\section*{Asking the Right Question}
- Current Clinical Trials
- Is this drug effective and safe compared to a placebo?
- Is this drug effective \& safe compared to the SOC
- Correction Question
- What is the best treatment for this Patient?
- What is the best treatment for this type of patient?

\section*{Traditional Trial Design}

\section*{Platform Trial}
- An experimental infrastructure to evaluate multiple treatments, often for a group of diseases, and intended to function continually and be productive beyond the evaluation of any individual treatment
- Designed around a group of related diseases rather than a single treatment
- Disease focused not treatment focused
- Dynamic list of available treatments, assigned with responseadaptive randomization
- Preferred treatments may depend on health system, patient, or disease-level characteristics
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{JN The JAMA Network} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{From: The Platform Trial: An Efficient Strategy for Evaluating Multiple Treatments}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{JAMA. Published online March 23, 2015. doi:10.1001/jama.2015.2316} \\
\hline \multicolumn{4}{|l|}{Table. General Characteristics of Traditional and Platform Trials \({ }^{\text {a }}\)} \\
\hline Characterisic & Traditional Trial & Platiorm Trim & \\
\hline Scope & Efficacy of a single egent in a homogeneous population & \[
\begin{aligned}
& \text { Evaluating } \\
& \text { explicitly a }
\end{aligned}
\] & \begin{tabular}{l}
spopulation; \\
ous
\end{tabular} \\
\hline Duration & Finite, based on time required to answer the single primary question & Potentially
requiring & \\
\hline No. of treatment grous & Prespecified and generally limited & Multiple tr & ups and the \\
\hline Stopping rules & The entire trial may be stopped early for success or futility or harm, based on the apparent efficacy of the single experimental treatment & \begin{tabular}{l}
Individual
demontra
perhaps \\
perhaps w
\end{tabular} & ial, based on ntinues, ( s ) \\
\hline Allocation strategy & Fixed randomization & Response-a & \\
\hline Sponsor support & Supported by a single federal or industrial sponsor & The trial inf
or industria & \\
\hline \multicolumn{4}{|l|}{PPlatormtrials and similiar trials may also be called basket, bucket, umbrella, or standing trials.} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Table Title: \\
General Characteristics of Traditional and Platform Trialsa
\end{tabular}} \\
\hline Date of download: 3/24/2015 & \multicolumn{2}{|l|}{Copyright@ 2015 American Medical Association. All rights reserved.} & 168 \\
\hline
\end{tabular}

168



\section*{Platform Trials are Happening}
- Cancer
- I-SPY2 in Breast Cancer
- GBM AGILE in Glioblastoma multiforme
- LUNG-MAP in Lung Cancer
- PANCAN in Pancreatic Cancer
- Alzheimer's
- EPAD: European Prevention of Alzheimer's Dementia
- DIAN: Dominantly Inherited Alzheimer's Network
- ALS
- Healey ALS Platform Trial, Phase \(2 / 3\) with 5 drugs


179

\section*{Platform Trials are Happening}
- Infection diseases
- Gates Foundation sponsored Ebola design
- NIH Ebola design
- PREPARE: European Consortium for Disease Preparedness
- Pandemic flu, Butler a al Lancet, Jan 2020
- remap cap (Community Acquired Pneumonia) ongoing, RemAPCAP.org
- COVID-19
- RECOVERY
- ACTT by NIAID -- the Remdesivir trial
- SOLIDARITY by WHO, 4 arms
- REMAP-COVID by International consortium critical care trial
- PRINCIPLE in UK, pre-hospital trial
- ISPY-COVID: UCSF \& WISDOM Network, Phase 2
- ACTIV by NIH


Benjamin R Saville \({ }^{1,2}\) and Scott M Berry \({ }^{1,3}\)

Abstract
Background: A "platorm trial" is a clinical trial with a single master protocol in which multiple treatments are evalu ad simultaneously. Adaptive platform designs offer flexible features such as dropping treatments for futility, declaring Methods: A simulation studyerior, or adding new treatments to be tested during the course of a trial.
rategy.
trials can find beneficial treatments with rew
freater probability of success than a traditional two-arm strategy.
Conclusion: In an era of personalized medicine, platiorm trials provide the innovation needed to efficiently evaluate modern treatments.

Keywords
Platform trial, master protocol, multi-arm, adaptive, Bayesian, clinical trial design


181

\section*{The Problem: Ebola Treatment Trial}
- Acknowledge universe of possible treatments
- Will evolve over time
- Recognition that combinations may play an important role
- Uncertainty over role of standard of care
- Our Goal: To determine best treatment for treating ebola
- Not a trial to determine if a single drug X works


182

\section*{EV-003 Adaptive Platform Design}
- Reviewed and approved by:
- Duke University IRB
- University of Sierra Leone ethics committee
- Master Protocol dictates trial behavior, each treatment included as an appendix
- Multiple Agents
- Primary \& Secondary agents
- Combination + Single agents
- Response Adaptive Randomization (RAR)
- Run by a single algorithm
- Assigns treatment regimens that are performing better using collection of primary endpoint data
- Protocol is built so trial arms evolve (part of the protocol!), trial is perpetual
- Endpoint is 14-day mortality

\section*{Primary/Secondary Agents}
- All arms receive optimized standard of care (SOC)
- Primary and Secondary agents
- Primary: Expected capability to work as single agent (e.g. anti-viral efficacy)
- Secondary: Expected to work with other agents (not given alone)


185

\section*{Design Details}

\section*{Burn-In Enrollment}
- Endpoint: Death (Dichotomous, events are bad)
- Start with burn-in period to all 10 regimens
- Equal randomization to 10 arms
- 30 subjects / 3 per arm
- After burn-in
- Response adaptive randomization
- Proportional to probability regimen is optimal
- Adjusted for information
- Continue perpetually (committee can change vote)


186

\section*{Decision Criteria (In/Out)}
- If there is a less than 0.01 probability an agent is part of the optimal regimen
- Candidate for futility
- If the probability an agent is in the optimal regimen is greater than 0.95
- Report to the steering committee for public dissemination
- If a regimen has at least a 0.95 probability of being superior to SOC Alone then SOC Alone is reported for removal


189

\[
\begin{array}{r}
\text { Statistical Model } \\
\log \left(\frac{p}{1-p}\right)=\alpha+\sum_{X=1}^{M}[X]+\sum_{X=1}^{M} \sum_{Y=X+1}^{M}[X, Y]+\lambda_{\text {Available Data }}
\end{array}
\]
- Priors:
\[
[X] \sim N\left(0,1^{2}\right) \quad[X, Y] \sim N\left(0,0.2^{2}\right)
\]


192


193


195

Example Trial
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Regimens } & \multicolumn{5}{|c|}{ Agents } \\
\cline { 3 - 6 } & 1 & 2 & 3 & 4 \\
\hline \multirow{4}{*}{ Agents } & 1 & & & & \\
\cline { 2 - 6 } & 2 & & & & \\
\cline { 2 - 6 } & 3 & & & & \\
\cline { 2 - 6 } & 4 & & & & \\
\hline
\end{tabular}









221


223


222


224

\section*{Summary}
- Incredibly powerful design for finding effective therapies and combinations in the universe of treatments
- Type III Error (the question never asked!)
- Allows the arms to evolve internally and externally to changing science
- Improved Embedded Care: Efficiently and quickly identifies best agents, while treating patients more effectively
- Have design ready-on the shelf for next pandemic - A number of parameters can be optimized quickly
- Protocol ready (add appendices)
- Models + simulations ready
- Need independent committee to decide which drugs to plug in

\section*{Testing a New Treatment}
- Standard of Care works in 40\%

\section*{\(10 \%\) of Patients Benefit}
- Standard of Care works in \(40 \%\)
- New therapy works in \(50 \%\)

229

231


\section*{\(50 \%\) still untreatable}
- Standard of Care works in \(40 \%\)
- New therapy works in \(50 \%\)
- Nothing works in \(50 \%\)
- How many patients do we need to have \(90 \%\) chance to see a 'statistically significant' difference?

230

Need 1036 patients for \(90 \%\) Power

soc Works
- \(90 \%\) of patients you enroll tell you nothing
- Standard of Care works in \(40 \%\)
- New therapy works in \(50 \%\)
- Nothing works in \(50 \%\)


What if you KNEW which \(10 \%\)

\section*{Benefit}

－If you just enrolled the purple patients how many patients do you need for \(90 \%\) power？

What if甲解』＾NNEW which 10\％ Benefit

－Enroll 20\％to capture the \(10 \%\)
－ \(25 \%\) cured by SOC
－ \(25 \%\) still not cured
－ \(50 \%\) of enrolled patients benefit


237


239


238

Platform Example 2

\section*{GBM AGILE \\ Adaptive Global Innovative Learning Environment Trial Design V1}

EXAMPLE TRIAL ONLY TRIAL HAS CHANGED DRAMATICALLY SINCE THIS

Thanks to Todd Graves \& Don Berry

241


243

\section*{Statistical Model}
- Primary outcome: Overall Survival
- Time-to-event model including
- Age
- Tumor Size
- Performance Status
- Site (tobededined
- Drug
- Drug \(\times\) Biomarker
- Drug \(\times\) Biomarker \(\times\) Biomarker
- Flexible to add drugs \& biomarkers on the fly

242


244


245

\section*{Response-adaptive randomization}
- Randomize separately within signature
- Randomization probability proportional to \(\operatorname{Pr}(\mathrm{HR}<0.75)\)
- If randomization probability \(<5 \%\), round to 0
- If \(\mathrm{N}<50\), min rand prob \(=1 / \#\) of drugs
- Probability randomize to control =

Probability randomize to best drug
- Update monthly

\section*{\(2 \times 2\) Biomarkers \(\rightarrow 1\) Signature}


246


248


\section*{Futility}

A drug is removed from the trial for futility if
- \(\operatorname{Pr}(\mathrm{HR}<0.75)<5 \%\) for all signatures
- At least 50 patients

Or
- Been enrolling for 3 years

Stop at Max \(\mathrm{N}=150\) over all signatures

250


252


253


255


254


\section*{Factors We Can Tune}
- Max N per drug
- Signatures (Biomarker-drug interactions)
- Randomization algorithm
- Futility rule
\(-\operatorname{Pr}(\mathrm{HR}<0.75)\)
- Min N
- Max time allowed to accrue
- Graduation rule
\(-\operatorname{Pr}(H R<1)\)
- Min N, Min Exposure

\section*{Challenges in Platform Trials}
- Complexity in trial implementation and planning
- Collaborations across sponsors - who initiates the planning?
- Timely communication between participating sites and data coordinating units
- Sponsors sacrifice autonomy in running the trial
- Determining shared costs
- Identifying what to report when
- iSpy2 has rules for 'graduating'
- When to report subgroup results broadly?

\section*{Learn \& Confirm Using Biomarkers}
- Make confirmatory trials dramatically smaller
- Or learn \& confirm within a trial
- Lead us toward personalized medicine
- What works best in whom?
- May require larger platforms trials, data sharing \& adaptive randomization to efficiently identify
- Different drugs work in different types of patients
- Not one trial, one patient type
- Learn, confirm, perpetually

\section*{Platform Trial Efficiencies}
- Useful for evaluating combinations of treatments and for direct comparisons between competing treatments
- Decide a prior whether each vs. control or vs. each other
- Do not require a new trial infrastructure for every treatment under investigation
- Easier for regulators given evidence comes in common form
- Always new drugs on horizon
- Even if lull, get SOC in the process
- Can build in Phase \(2 / 3\) design
- Learn \& confirm
- Need to prospectively define control group
- Concurrent controls
- 'Time machine'
- What if control group changes

\section*{Conclusions}
- Adaptive trial designs can be used to create a seamless process in which new evidence about effectiveness is immediately used to improve patient care
- A platform trial can extend this process beyond a single treatment or few treatments
- Current work is focused on embedding this approach into the health care infrastructure
- Patients will benefit if we merge clinical trials and decision support into a single, continuous process

\section*{Thank you!}
- Thank you for a great class.
- Please complete evaluations

To access evaluations, log in to https://si.biostat.washington.edu/user/login, click "My Account" in the upper right, the evaluations will appear on your dashboard. After you have completed your evaluations, a link to download the certificate of completion will appear within 24 hours.```

