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NOTE TO SELF: 

START THE RECORDING
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Phase 3 / Confirmatory Trials

• CDER/CBER Phase 3
• CDRH Confirmatory
• The final test before market
• Control of Type I error rate very important
• Tend not to adaptively randomize

– Fear of drift
– Usually two arm
– No power benefit with adaptive rand. in 2-arm trial

3
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What is Different About 
Confirmatory Trials

• Type I error is a dominant factor
• Adjusting the design (goal) in order to 

accommodate adaptive aspects must still 
control type I error

• Predictive probabilities much more relevant 
than posterior probabilities

• Very well-defined goal.  
– A “game” you win or lose

4
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Power vs. Prob of Success
• Doctor comes to you.
• Claims her treatment increases IQ by 5 points
• SD = 10
• “How many patients do I need to have 90% 

power to demonstrate superiority?”
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7
D = 6 à Power = 97% (↑ 7%)
D = 4 à Power = 73% (↓ 17%)
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8
D = 7 à Power = 99% (↑ 9%)
D = 3 à Power = 49% (↓ 41%)
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9Estimate 5.0 (95% CI -3 to 13)
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Probability of success < Power due to Jensen’s inequality
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Quick Bayesian 
Introduction
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Three people get a positive 
pregnancy test

• My sister with 4 kids who I know wants more
• You or your wife/gf.  Using oral contraception
• Me

• What is the probability each person is 
pregnant?

12
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Three people get a positive 
pregnancy test

• My sister with 4 kids who I know wants more
• You or your wife/gf.  Using oral contraception
• Me

– Sensitivity 100%, Specificity 95%

• What is the probability each person is 
pregnant?

13
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Sensitivity = Pr(Test + | True +)
Specificity = Pr(Test - | True -)
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Pr(True + |Test +)

=
Pr(True + & Test +)

Pr(Test +)

=
Pr(True +)Pr(Test + |True +)

Pr(Test+)

=
Pr(True +)Pr(Test +|True +)

Pr(True +)Pr(Test +|True +)+Pr(True −)Pr(Test +|True −)
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Pr(True + |Test +)

=
Pr(True + & Test +)

Pr(Test +)

=
Pr(True +)Pr(Test + |True +)

Pr(Test+)

=
Pr(True +)Pr(Test +|True +)

Pr(True +)Pr(Test +|True +)+Pr(True −)Pr(Test +|True −)

Sensitivity

1-Specificity

16
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Bayes Theorem

Pr(A | B) =
Pr(B | A)Pr(A)

Pr(B)

=
Pr(B | A)Pr(A)

Pr(B | A)Pr(A)+Pr(B | A
C
)Pr(A

C
)

Pr(True+ |Test+) =
Pr(Test+ |True+)Pr(True+)

Pr(Test+ |True+)Pr(True+)+Pr(Test+ |True−)Pr(True−)

PPV =
SensitivityPr(True+)

SensitivityPr(True+)+ (1− Specificity)Pr(True−)

19

19

Bayes Theorem

Pr(A | B) =
Pr(B | A)Pr(A)

Pr(B)

=
Pr(B | A)Pr(A)

Pr(B | A)Pr(A)+Pr(B | A
C
)Pr(A

C
)

Pr(Hypothesis |Data) =
Pr(Data |Hypothesis)Pr(Hypothesis)

Pr(Data)

=
Pr(Data |Hypothesis)Pr(Hypothesis)

Pr(Data |Hypothesis)Pr(Hypothesis)
All possible
hypotheses

∫

20
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Bayes Theorem

Pr(A | B) =
Pr(B | A)Pr(A)

Pr(B)

=
Pr(B | A)Pr(A)

Pr(B | A)Pr(A)+Pr(B | A
C
)Pr(A

C
)

Pr(Hypothesis |Data) =
Pr(Data |Hypothesis)Pr(Hypothesis)

Pr(Data)

=
Pr(Data |Hypothesis)Pr(Hypothesis)

Pr(Data |Hypothesis)Pr(Hypothesis)
All possible
hypotheses

∫
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Common prior for Binomial Outcome
• Beta

– used for event probabilities
– conjugate with binomial
– x ~ Binomial(N, p)
– p ~ Beta(a,b),  p Î [0,1]
– p | x ~ Beta(a+x, b+N-x)

€ 

E(p) =
α

α + β
; V (p) =

αβ

α + β( )
2
α + β +1( )

E(p | x) = α + x
α +β + N

; V (p) = (α + x)(β + N − x)
α +β + N( )2 α +β + N +1( )

22

0.0 0.2 0.4 0.6 0.8 1.0

p

Beta(1,1)
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0.0 0.2 0.4 0.6 0.8 1.0

p

Beta(.5,.5)

24
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0.0 0.2 0.4 0.6 0.8 1.0

p

Beta(7,3)

25

0.0 0.2 0.4 0.6 0.8 1.0

p

Beta(70,30)

26

Beta Distribution
• p ~ Beta(a,b)
– a is like ‘prior’ number of successes
– b is like ‘prior’ number of failures
– a+b is the prior sample size (or amount of info)

• p | N,x ~ Beta(a+x, b+N-x)
– a+x is posterior number of successes
– b+N-x is posterior number of failures

• Posterior mean = a+x / (a+b+N)
27

27

Confirmatory Trials & Bayes
• You can’t have an informative prior and 

control Type I error
– Assuming the informative prior claims the 

treatment starts off better than the control

28

28
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Simple Trial
• Binomial data
• One-armed trial
• n = 100
• Need to show p > 0.5
• Ho: p ≤ 0.5
• Ha: p > 0.5

• FYI: 59/100 à Frequentist p-value = 0.044 
& 1-sided 95% CI (0.503 – 1.00)

29

29
30

Phase 3 & Priors
• Simple Trial: 

– Binary data. Observe x ~ Bin(100,p)
– Need to show Pr(p > 0.5 | x out of 100) > 0.95
– Assume p ~ Beta(1,1) prior
– Pr(p > 0.5 | 59 out of 100) = 0.963
– Pr(P > 0.5 | 58 out of 100) = 0.944

0.0 0.2 0.4 0.6 0.8 1.0

p

Beta(60,42)
Beta(1+59, 1+41)

Beta(59,43)
Beta(1+58, 1+42)

1-sided p-value < 0.05
approx posterior > 0.95

30

31

Phase 3 & Priors
• Simple Trial: 

– Binary data. Observe x ~ Bin(100,p)
– Need to show Pr(p > 0.5 | x out of 100) > 0.95
– Assume p ~ Beta(1,1) prior
– Pr(p > 0.5 | 59 out of 100) = 0.963
– Pr(P > 0.5 | 58 out of 100) = 0.944

• Pr(X≥59 | p = 0.50) = 0.044
– Simple binomial calculation
– This is Type I error and is < 5%
– Bayesian trial
– Good frequentist properties

31
32

Phase 3 & Priors
• Now we have “pure” information 

9 of 10 successes in European trial
• Instead of Beta(1,1) prior use Beta(1+9, 1+1)

= Beta(10,2) prior
• Regulatory agrees it is reasonable to use this 

as the prior
• Fixed design: for Pr[p > 0.5 | data] ≥ 0.95

– Pr(p > 0.5 | 55 out of 100, a=10,b=2) = 0.956
– Pr(P > 0.5 | 54 out of 100, a=10,b=2) = 0.936

• Pr(X≥55 | p = 0.50) = 0.184
– Type I error is inflated

32
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Phase 3 & Priors
• Solution to control Type I error

– Raise the post probability threshold from 
0.95 bar to 0.99 (like decreasing critical level)

– Pr(p > 0.5 | 59 out of 100, a=10,b=2) = 0.993
– Pr(P > 0.5 | 58 out of 100, a=10,b=2) = 0.989
– Pr(X≥59 | p = 0.50) = 0.044

• Need a Beta(59+10,41+2) for a win…59 is 
back!!!

• The type I error “restriction” forces 59/100 
regardless of prior…

• Can’t allow beneficial priors AND force Type 
I of “new” experiment! 

33
34

Posterior/Predictive

Phase I Phase II Phase III
Pilot Study Pivotal StudyAnimals/Bench

34
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Predictive Probabilities
• Simple Trial: 

– Binary data. Observe x ~ Bin(100, p)
– Need to show Pr( p > 0.5 | x out of 100) > 0.95
– Assume p ~ Beta(1,1) prior
– Pr( p > 0.5 | 59 out of 100) = 0.963
– Pr( p > 0.5 | 58 out of 100) = 0.944

35
36

Predictive Probabilities
• Simple Trial: 

– Binary data. Observe x ~ Bin(100, p)
– Need to show Pr( p > 0.5 | x out of 100) > 0.95
– Assume p ~ Beta(1,1) prior
– Pr( p > 0.5 | 59 out of 100) = 0.963
– Pr( p > 0.5 | 58 out of 100) = 0.944

• Observe data half way through
– See 28/50 successes
– Need to see 31/50 to meet threshold
– What is predictive probability of trial success?

36
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X ~ Bin(50, 0.56)
Pr(x) ≥ 31

X ~ Bin(50, 0.56)
Pr(x) ≤ 30

37
38

Predictive Probabilities

• Know we need x ≥ 59 at trial’s end
• Have x1 = 28
• Need x2 ≥ 31
• p ~ Beta(1+28, 1+22)
• x2 ~ Binomial(50, p)
• x2 ~ Beta-binomial(50, a=29, b=23)

€ 

Pr(Win Trial) =
50

x2

 

 
 

 

 
 
B x2 + 29,50 − x2 + 23( )

B 29,22( )

 
 
 

 
 
 x2 = 31

50

∑ = 0.301
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R code for predictive probability
> ### VIA SIMULATION
> alpha <- 1; beta <- 1
> x <- 28; N <- 50
> 
> p <- rbeta(1000000, alpha+x, beta+N-x)
> x.new <- rbinom(1000000, 50, p)
> 
> mean(x.new >= 31)
[1] 0.301132
> 
> 
> 
> ### VIA DIRECT CALCULATION
> N.new <- 50
> x.new <- 0:50
> prob <- choose(N.new,x.new) * 
+      beta(alpha+x+x.new,(beta+N-x)+(N-x.new)) / 
+         beta(alpha+x,      (beta+N-x)) 
> sum(prob)
[1] 1
> sum(prob[x.new >= 31])
[1] 0.3010906
> barplot(prob, names.arg=0:50, col=c(rep(2,31), rep(3,20)),
+ main="Predictive Distribution for Remaining 50 patients")

41
42

42
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43
44
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Predictive Probabilities
• Observe 12 / 20 (60%)

– Need 47 / 80 successes; 59% or better rest of way
– p-value = 0.25, Pr(p>0.5) = 0.81
– Predictive probability of success @ 100 = 0.54

• Observe 28 / 50  (56%)
– Need 31/50 successes; 62% or better rest of way
– p-value = 0.24, Pr(p>0.5) = 0.80
– Predictive probability of success @ 100 = 0.30

• Observe 41 / 75 (54.7%)
– Need 18/25 successes; 72% or better rest of way
– p-value = 0.24, Pr(p>0.5) = 0.79
– Predictive probability of success @ 100 = 0.086

52

52
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Predictive Probabilities
• Observe 12 / 20 (60%)

– Need 47 / 80 successes; 59% or better rest of way
– p-value = 0.25, Pr(p>0.5) = 0.81
– Predictive probability of success @ 100 = 0.54

• Observe 28 / 50  (56%)
– Need 31/50 successes; 62% or better rest of way
– p-value = 0.24, Pr(p>0.5) = 0.80
– Predictive probability of success @ 100 = 0.30

• Observe 41 / 75 (54.7%)
– Need 18/25 successes; 72% or better rest of way
– p-value = 0.24, Pr(p>0.5) = 0.79
– Predictive probability of success @ 100 = 0.086
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Predictive Probabilities
• Observe 12 / 20 (60%)

– Need 47 / 80 successes; 59% or better rest of way
– p-value = 0.25, Pr(p>0.5) = 0.81
– Predictive probability of success @ 100 = 0.54

• Observe 28 / 50  (56%)
– Need 31/50 successes; 62% or better rest of way
– p-value = 0.24, Pr(p>0.5) = 0.80
– Predictive probability of success @ 100 = 0.30

• Observe 41 / 75 (54.7%)
– Need 18/25 successes; 72% or better rest of way
– p-value = 0.24, Pr(p>0.5) = 0.79
– Predictive probability of success @ 100 = 0.086
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Predictive Probabilities
• Observe 12 / 20 (60%)

– Need 47 / 80 successes; 59% or better rest of way
– p-value = 0.25, Pr(p>0.5) = 0.81
– Predictive probability of success @ 100 = 0.54

• Observe 28 / 50  (56%)
– Need 31/50 successes; 62% or better rest of way
– p-value = 0.24, Pr(p>0.5) = 0.80
– Predictive probability of success @ 100 = 0.30

• Observe 41 / 75 (54.7%)
– Need 18/25 successes; 72% or better rest of way
– p-value = 0.24, Pr(p>0.5) = 0.79
– Predictive probability of success @ 100 = 0.086

55
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56

Another trial
• NG = 100 in Treatment & Control Group
• Testing pt > pc using Fisher’s Exact Test @ 0.025
• Observe 

– 34/50 in Control Group
– 41/50 in Treatment Group

• What is predictive probability of success?

56
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Predictive Probability
alpha <- 1; beta <- 1
xc <- 34; nc <- 50
xt <- 41; nt <- 50

pc <- rbeta(100000, alpha+xc, beta+nc-xc)
pt <- rbeta(100000, alpha+xt, beta+nt-xt)

xc.total <- xc + rbinom(100000, 50, pc)
xt.total <- xt + rbinom(100000, 50, pt)

p.values <- rep(NA,100000)
for(i in 1:100000){

p.values[i] <- fisher.test( 
matrix(c(xc.total[i], 100-xc.total[i],

xt.total[i], 100-xt.total[i]),nrow=2),
alternative=“less”)$p.value

}

> mean(p.value<0.025)
[1] 0.549

57
58

GREEN numbers are when it’s statistically superior
RED are cases not significant 

58

59

But what if we have historical data
• Well known historical data, pc = 60%±5%

• Expected from pilot studies, pt = 80% ±15%

59
60

But what if we have historical data
• Well known historical data, pc = 60%±5%

• Expected from pilot studies, pt = 80% ±15%

• Beta distribution defined by p~Beta(a,b)
has mean & variance

• Solve for a & b

€ 

E(p) =
α

α + β
V (p) =

αβ

α + β( )
2
α + β +1( )

€ 

α

α + β
= 0.6

αβ

α + β( )
2

α + β +1( )
= 0.052

60
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But what if we have historical data
• Well known historical data, pc = 60%±5%
– ac = 57, bc = 38

• Expected from pilot studies, pt = 80% ±15%
– at = 4.8888, bt = 1.2222

61
62

alpha.c <- 57; beta.c <- 38; alpha.t <- 4.888888; beta.t <- 1.222222
xc <- 34; nc <- 50; xt <- 41; nt <- 50
pc <- rbeta(100000, alpha.c+xc, beta.c+nc-xc)
pt <- rbeta(100000, alpha.t+xt, beta.t+nt-xt)
xc.total <- xc + rbinom(100000, 50, pc)
xt.total <- xt + rbinom(100000, 50, pt)
p.values <- rep(NA,100000)
for(i in 1:100000){

p.values[i] <- fisher.test(matrix(c(xc.total[i], 100-xc.total[i],
xt.total[i], 100-xt.total[i]),nrow=2), 
alternative="less")$p.value

}
> mean(p.values<0.025)
[1] 0.73422

62

63

• Well known historical data, pc = 60%±5%
– ac = 57, bc = 38,   95 patients’ worth of info

• Expected from pilot studies, pt = 80% ±15%
– at = 4.8888, bt = 1.2222    6.1 pts’ worth of info

Downweight Historical Information

63
64

• Well known historical data, pc = 60%±5%
– ac = 57, bc = 38,   95 patients’ worth of info
– New data is 50/(50+95) = 34% of information

• Expected from pilot studies, pt = 80% ±15%
– at = 4.8888, bt = 1.2222,   6.1 patients’ worth of info
– New data is 50/(50+6) = 89% of information

• Downweight each prior so it includes 1/3 as 
much information
– ac = 19, bc = 12.6667,   31.67 patients’ worth of info
– at = 1.63, bt = 0.407,   2 patients’ worth of info

Downweight Historical Information

64
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Phase 3 Cancer Design
• Binary endpoint, complete response observed 

at 45 days post treatment
– Consider CR vs. PFS vs. OS?
– Primary analysis chi-square test 

• Expect 20% improvement vs. control
• Use Bayesian prediction to determine sample 

size necessary for success in frequentist trial
– Bayesian ‘behind the curtain’

66

66

Statistical Model
• Final analysis: Chi-square test
• Interim analyses with 

– N = Nc+Nt patients enrolled;  n = nc+nt complete
– xc ~ Binomial(nc , pc);    pc ~ Beta(1,1)
– xt ~ Binomial(nt , pt);  pt ~ Beta(1,1)
– N = Nc + Nt Nc = nc+nc* Nt = nt+nt*
– xc* ~ Beta-binomial(nc*, 1+xc , 1+nc-xc)
– xt* ~ Beta-binomial(nt*, 1+xt, 1+nt-xt)

PPN = pr xc
*( ) pr xt

*( ) I χ p−value

2
xc + xc

*
,Nc, xt + xt

*
,Nt( ) < 0.05{ }

xt
*
=0

nt
*

∑
xc
*
=0

nc
*

∑

67
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Design Questions
• What should sample size range be?

– Most sponsor can do is 300 patients
• Step 1, calculate power of fixed 300 patient trial

> bpower(n1=150, n2=150, p1=0.6, p2=0.8)

Power 

0.969 

– Best case want to go to FDA with ≥150 patients
– We’ll see if 300 is enough, if not we’ll go back to 

the company with evidence they need to up the cap
> bpower(n1=150, n2=150, p1=0.6, p2=0.75)

Power 

0.795

Smallest win:  60% (80/150) vs. 72% (108/150) à p=0.03

68

68
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Design Questions
• Can we use an adaptive design?

– Expect 15-25 patients per month
– “Fast” outcome at 45 days
– 22-37 outstanding patients at any analysis
– If we do first look @ 150 patients enrolled

128 with complete data with 15 pt/month accrual
113 with complete data with 25 pt/month accrual

– Usually accrual ramps up, assume constant here
– Don’t want to interfere with accrual

Don’t pause accrual at each interim analysis
Decide whether to stop accrual while accruing

69

69

15 pt/mth

70

70

15 pt/mth

25 pt/mth

71

71

Design Questions
• How often to do interim looks?

– Every 25 patients is every 1-1⅔ months
– Manageable, may be CRO fee for every look

72

72
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Design Questions
• How to decide when to stop accrual for 

predicted success?

73

73

Design Questions
• How to decide when to stop accrual for 

predicted success?
– Use predictive probabilities
– At each interim analysis ask 
“If we stop enrolling & wait for all outstanding 
patients to reach their 45-day outcomes, what is the 
probability we ‘win’?”

– If high, stop, wait, & analyze
How high?
I never want to stop then lose! (and so far haven’t)

74
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Design Questions
• How to decide when to stop accrual for 

futility (if at all)?

75

75

Design Questions
• How to decide when to stop accrual for 

futility (if at all)?
– Use predictive probabilities
– At each analysis ask 
“If we enrolling to the 300-patient maximum 
then wait for all patients to reach their 45-day 
outcomes, what is the probability we ‘win’?”

– If low, stop for futility?
How low?    
More aggressive, more likely to stop a good trial

76
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Design Questions
• What priors to use for predictive probabilities 

Beta dists?
– Pretty new, let’s be conservative with Beta(1,1) 

for treatment & control
– Could use historical (or downweighted historical)

priors here           Incentive to have an ‘honest’ prior

– Don’t use prior in final analysis, frequentist test
• Stop for predicted success if PPN > SN = 0.90
• Stop for futility if PPNmax < FN = 0.10

77

77

Sketch of my simulation code
• Define when to analyze, priors, cap, accrual rate, alpha level, efficacy

– Factors I’ll change a lot during discussions with sponsor

• Subroutine for patient accrual & randomization
• Subroutine to generate patient response & dropout
• Subroutine for interim analysis

– Factors in time of analysis, which patients enrolled, which pts have outcomes
– Outputs predictive probability of success with current N and at maximum Nmax

• Subroutine for decision
– Stop for predicted success, stop for cap, stop for futility, keep going

• Final analysis at n where trial stopped
• Track trial size, win or lose, reason for stopping, number of looks, trial 

duration

78

78

79

Simulation Plan

Thanks Brenda Gaydos

79

Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9000   0.1000

Mean      SD
Sample Size  179.60 45.10

Lose      Win
Success    0.008    0.897

Cap    0.012    0.048
Futility    0.035    0.000

Total    0.055    0.945

Look     Lose      Win    Total
150    0.020    0.565    0.585
175    0.005    0.118    0.123
200    0.002    0.091    0.093
225    0.004    0.069    0.073
250    0.006    0.028    0.034
275    0.006    0.026    0.032
300    0.012    0.048    0.060
Tot    0.055    0.945    1.000

80

80
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Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9000   0.1000

Mean      SD
Sample Size  179.60 45.10

Lose      Win
Success    0.008    0.897

Cap    0.012    0.048
Futility    0.035    0.000

Total    0.055    0.945

Look     Lose      Win    Total
150    0.020    0.565    0.585
175    0.005    0.118    0.123
200    0.002    0.091    0.093
225    0.004    0.069    0.073
250    0.006    0.028    0.034
275    0.006    0.026    0.032
300    0.012    0.048    0.060
Tot    0.055    0.945    1.000

Fixed trial of  300 
provided 96.9% power

This design provides 
94.5% power with 
average sample size just 
180 patients 

81

81

Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9000   0.1000

Mean      SD
Sample Size  179.60 45.10

Lose      Win
Success    0.008    0.897

Cap    0.012    0.048
Futility    0.035    0.000

Total    0.055    0.945

Look     Lose      Win    Total
150    0.020    0.565    0.585
175    0.005    0.118    0.123
200    0.002    0.091    0.093
225    0.004    0.069    0.073
250    0.006    0.028    0.034
275    0.006    0.026    0.032
300    0.012    0.048    0.060
Tot    0.055    0.945    1.000

Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9000   0.0000

Mean      SD
Sample Size  182.65 49.86

Lose      Win
Success    0.013    0.894

Cap    0.026    0.067
Futility    0.000 0.000

Total    0.039    0.961

Look     Lose      Win    Total
150    0.011 0.586    0.597  
175    0.000    0.097    0.097
200    0.001    0.082    0.083
225    0.000    0.071    0.071
250    0.001    0.022    0.023
275    0.000    0.036    0.036
300    0.026    0.067    0.093
Tot    0.039    0.961    1.000
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Stopping Boundaries, Sn , Fn

• Need not be constant
• We stopped for predicted success but lost at 

the first interim analysis in 1.1% of trials
– I never want this to happen if I can avoid it!

• Let Sn be the success stopping bound
• Let Fn be the futility stopping bound
• Current Sn = 0.9 & Fn = 0.1 for all n
• Could choose Sn = 0.99 for small n

& Sn = 0.9 for higher n
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Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9000   0.0000

Mean      SD
Sample Size  182.65 49.86

Lose      Win
Success    0.013 0.894

Cap    0.026    0.067
Futility    0.000    0.000

Total    0.039    0.961

Look     Lose      Win    Total
150    0.011 0.586    0.597
175    0.000    0.097    0.097
200    0.001    0.082    0.083
225    0.000    0.071    0.071
250    0.001    0.022    0.023
275    0.000    0.036    0.036
300    0.026    0.067    0.093
Tot    0.039    0.961    1.000

Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.0000

Mean      SD
Sample Size  186.47 53.61

Lose      Win
Success    0.001 0.905

Cap    0.032    0.062
Futility    0.000    0.000

Total    0.033    0.967

Look     Lose      Win    Total
150    0.000 0.520    0.520
175    0.001    0.135    0.136
200    0.000    0.110    0.110
225    0.000    0.054    0.054
250    0.000    0.053    0.053
275    0.000    0.033    0.033
300    0.032    0.062    0.094
Tot    0.033    0.967    1.000
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Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.0500

Mean      SD
Sample Size  183.82 46.57

Lose      Win
Success    0.001    0.915

Cap    0.014    0.048
Futility    0.022    0.000

Total    0.037    0.963

Look     Lose      Win    Total
150    0.012 0.513    0.525
175    0.003    0.139    0.142
200    0.004    0.108    0.112
225    0.001    0.061    0.062
250    0.000    0.056    0.056
275    0.003    0.038    0.042
300    0.014    0.048    0.063
Tot    0.037    0.963    1.000

Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.0000

Mean      SD
Sample Size  186.47 53.61

Lose      Win
Success    0.001    0.905

Cap    0.032    0.062
Futility    0.000    0.000

Total    0.033    0.967

Look     Lose      Win    Total
150    0.000 0.520    0.520
175    0.001    0.135    0.136
200    0.000    0.110    0.110
225    0.000    0.054    0.054
250    0.000    0.053    0.053
275    0.000    0.033    0.033
300    0.032    0.062    0.094
Tot    0.033    0.967    1.000
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Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.0500

Mean      SD
Sample Size  183.82 46.57

Lose      Win
Success    0.001    0.915

Cap    0.014    0.048
Futility    0.022    0.000

Total    0.037    0.963

Look     Lose      Win    Total
150    0.012    0.513    0.525
175    0.003    0.139    0.142
200    0.004    0.108    0.112
225    0.001    0.061    0.062
250    0.000    0.056    0.056
275    0.003    0.038    0.042
300    0.014    0.048    0.063
Tot    0.037    0.963    1.000

Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.1000

Mean      SD
Sample Size  183.20 48.53

Lose      Win
Success    0.001    0.892

Cap    0.015    0.065
Futility    0.027    0.000

Total    0.043    0.957

Look     Lose      Win    Total
150    0.017    0.546    0.564
175    0.006    0.118    0.124
200    0.001    0.093    0.094
225    0.000    0.054    0.054
250    0.002    0.049    0.051
275    0.002    0.032    0.034
300    0.015    0.065    0.080
Tot    0.043    0.957    1.000
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Control Rate=    0.6000
Exper Rate =    0.7500

Accrual Rate (pts/month):  15.00
Number of Sims      5000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.0500

Mean      SD
Sample Size  217.45 59.78

Lose      Win
Success    0.009    0.639

Cap    0.083    0.152
Futility    0.116    0.000

Total    0.209    0.791

Look     Lose      Win    Total
150    0.044    0.260    0.304
175    0.017    0.100    0.117
200    0.012    0.086    0.098
225    0.016    0.068    0.084
250    0.018    0.067    0.085
275    0.019    0.057    0.076
300    0.083    0.152    0.235
Tot    0.209    0.791    1.000

Control Rate=    0.6000
Exper Rate =    0.7500

Accrual Rate (pts/month):  15.00
Number of Sims      5000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.1000

Mean      SD
Sample Size  211.28 57.80

Lose      Win
Success    0.008    0.654

Cap    0.063    0.128
Futility    0.148    0.000

Total    0.219    0.781

Look     Lose      Win    Total
150    0.064    0.263    0.327
175    0.024    0.105    0.129
200    0.020    0.088    0.108
225    0.016    0.072    0.088
250    0.017    0.073    0.090
275    0.015    0.053    0.068
300    0.063    0.128    0.191
Tot    0.219    0.781    1.000
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Control Rate=    0.6000
Exper Rate =    0.6000

Accrual Rate (pts/month):  15.00
Number of Sims      5000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.0500

Mean      SD
Sample Size  187.32 49.97

Lose      Win
Success    0.002    0.020

Cap    0.066    0.012
Futility    0.900 0.000

Total    0.968    0.032

Look     Lose      Win    Total
150    0.519    0.008    0.527
175    0.117    0.002    0.119
200    0.079    0.002    0.081
225    0.079    0.003    0.082
250    0.062    0.002    0.064
275    0.046    0.002    0.048
300    0.066    0.012    0.078
Tot    0.968    0.032    1.000

Control Rate=    0.6000
Exper Rate =    0.6000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.1000

Mean      SD
Sample Size  176.31 44.02

Lose      Win
Success    0.002    0.019

Cap    0.041    0.009
Futility    0.929 0.000

Total    0.972    0.028

Look     Lose      Win    Total
150    0.634    0.006    0.640
175    0.103    0.004    0.107
200    0.073    0.003    0.076
225    0.047    0.003    0.050
250    0.042    0.002    0.044
275    0.033    0.001    0.034
300    0.041    0.009    0.050
Tot    0.972    0.028    1.000
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Enough!
• Settle on 

– Success Bound = 0.95
– Futility Bound = 0.10

• Type I error was 0.028 -- too high
– Pivotal trial, we need this to be ≤ 0.025
– Hard to calculate analytically
– Need to simulate over many scenarios
– Then convince ourselves & FDA we’ve explored 

the whole null space

89

89

Intuition Check
• Use critical value = 0.025
• Simulate with 4 accrual rates, 10k sims/scenario
• Will the Type I error rates change with accrual 

rate?  If so how?
• How will sample sizes change?

Accrual (pts/mth) Mean N Type I error
5 HIGHER OR LOWER

15* 177 0.030
25
50

*Slightly different than previous slide because 10,000 sims each
90

90

Intuition Check
• Use critical value = 0.025
• Simulate with 4 accrual rates, 10k sims/scenario
• Will the Type I error rates change with accrual 

rate?  If so how?
• How will sample sizes change?

Accrual (pts/mth) Mean N Type I error
5 172 0.039
15 177 0.030
25 182 0.028
50 195 0.027
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Critv 0.40 0.50 0.60 0.70 0.80
0.025 0.030

Find Critical Value for a = 0.025
• Assume accrual won’t be slower than 15/month
• Explore range of true pc & pt

• Find right critical value by trial & error
– 10,000 sims each using 0.6 vs. 0.6
– Sqrt(0.025*0.975/10000) = 0.0016
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Critv 0.40 0.50 0.60 0.70 0.80
0.025 0.030
0.020 0.024 0.026 0.026 0.024 0.025

Find Critical Value for a = 0.025
• Assume accrual won’t be slower than 15/month
• Explore range of true pc & pt

• Find right critical value by trial & error
– 10,000 sims each using 0.4 vs. 0.4 to 0.8 vs. 0.8
– Sqrt(0.025*0.975/10000) = 0.0016
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Critv 0.40 0.50 0.60 0.70 0.80
0.025 0.030
0.020 0.024 0.026 0.026 0.024 0.025
0.018 0.024 0.021 0.023 0.023 0.020

Find Critical Value for a = 0.025

94

• Assume accrual won’t be slower than 15/month
• Explore range of  true pc & pt

• Find right critical value by trial & error
– 10,000 sims each using 0.4 vs. 0.4 to 0.8 vs. 0.8
– Sqrt(0.025*0.975/10000) = 0.0016

94

Critv 0.40 0.50 0.60 0.70 0.80
0.025 0.030
0.020 0.024 0.026 0.026 0.024 0.025
0.018 0.024 0.021 0.024 0.023 0.020
0.019 0.022 0.026 0.024 0.024 0.024

Let’s go with 0.018
If  a real trial I’d run 100,000 or 1M sims and try to get as much power as possible

Find Critical Value for a = 0.025
• Assume accrual won’t be slower than 15/month
• Explore range of true pc & pt

• Find right critical value by trial & error
– 10,000 sims each using 0.4 vs. 0.4 to 0.8 vs. 0.8
– Sqrt(0.025*0.975/10000) = 0.0016

95
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Example Trial #1
Simulation #  14       Analysis #  150
Group          N    Obs Suc
Control       75     68     35     51%
Treatment     75     68     49     72%
P_N   =  0.9360 >  0.950 ? No,   P_Nmax =  0.9180 <  0.100 ? No
Continue to enroll
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Example Trial #1
Simulation #  14       Analysis #  150
Group          N    Obs Suc
Control       75     68     35     51%
Treatment     75     68     49     72%
P_N   =  0.9360 >  0.950 ? No,   P_Nmax =  0.9180 <  0.100 ? No
Continue to enroll

Simulation #  14       Analysis #  175
Group          N    Obs Suc
Control       88     73     39     53%
Treatment     87     72     53     74%
P_N   =  0.9370 >  0.950 ? No,   P_Nmax =  0.9360 <  0.100 ? No
Continue to enroll
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Example Trial #1
Simulation #  14       Analysis #  150
Group          N    Obs Suc
Control       75     68     35     51%
Treatment     75     68     49     72%
P_N   =  0.9360 >  0.950 ? No,   P_Nmax =  0.9180 <  0.100 ? No
Continue to enroll

Simulation #  14       Analysis #  175
Group          N    Obs Suc
Control       88     73     39     53%
Treatment     87     72     53     74%
P_N   =  0.9370 >  0.950 ? No,   P_Nmax =  0.9360 <  0.100 ? No
Continue to enroll

Simulation #  14       Analysis #  200
Group          N    Obs Suc
Control      100     91     48     53%
Treatment    100     90     68     76%
P_N   =  >.9999 >  0.950 ? YES,  P_Nmax =  0.9900 <  0.100 ? No
Stop for predicted success
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Simulation #  14       Analysis #  150
Group          N    Obs Suc
Control       75     68     35     51%
Treatment     75     68     49     72%
P_N   =  0.9360 >  0.950 ? No,   P_Nmax =  0.9180 <  0.100 ? No
Continue to enroll

Simulation #  14       Analysis #  175
Group          N    Obs Suc
Control       88     73     39     53%
Treatment     87     72     53     74%
P_N   =  0.9370 >  0.950 ? No,   P_Nmax =  0.9360 <  0.100 ? No
Continue to enroll

Simulation #  14       Analysis #  200
Group          N    Obs Suc
Control      100     91     48     53%
Treatment    100     90     68     76%
P_N   =  >.9999 >  0.950 ? YES,  P_Nmax =  0.9900 <  0.100 ? No
Stop for predicted success

Simulation #  14   Final Analysis  200
Group      N    Obs Suc

Control      100    100     52     52%
Treatment    100    100     76     76%
Successful trial,   p-value = 0.001 < 0.0180

Example Trial #1

99
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Example Trial #2
Simulation #  10       Analysis #  150
Group          N    Obs Suc
Control       75     66     40     61%  (need to see +20
Treatment     75     65     44     68%   successes for win @ 
150)

P_n =  0.0000 >  0.950 ? No,   P_Nmax =  0.2590 <  0.100 ? No
Continue to enroll

Simulation #  10       Analysis #  175
Group          N    Obs Suc
Control       88     80     47     59%
Treatment     87     79     51     65%
P_n =  0.0000 >  0.950 ? No,   P_Nmax =  0.1020 <  0.100 ? No
Continue to enroll

Simulation #  10       Analysis #  200
Group          N    Obs Suc
Control      100     90     55     61%  (need to see +18
Treatment    100     89     57     64%  successes for win @ 
300)

P_n =  0.0000 >  0.950 ? No,   P_Nmax =  0.0360 <  0.100 ? YES
Stop for futility
Unsuccessful trial
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pc pt
Mean

N
Futility

Max
& Win

PredSuc
& Win

Power

0.60 0.60 175 0.937
0.046
0.009

0.016
0.015

0.024

0.60 0.65 199 0.775
0.145
0.041

0.081
0.075

0.117

0.60 0.70 220 0.478
0.247
0.114

0.275
0.267

0.381

0.60 0.75 216 0.195
0.216
0.143

0.590
0.580

0.723

0.60 0.80 189 0.039
0.088
0.073

0.873
0.868

0.942

Final Operating Characteristics
Sn = 0.95, Fn = 0.10
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pc pt
Mean

N
Futility

Max
& Win

PredSuc
& Win

Power

0.60 0.60 185 0.913
0.071
0.009

0.017
0.015

0.025

0.60 0.65 212 0.716
0.200
0.053

0.084
0.079

0.132

0.60 0.70 231 0.407
0.314
0.131

0.280
0.271

0.401

0.60 0.75 221 0.143
0.256
0.155

0.601
0.591

0.746

0.60 0.80 190 0.025
0.095
0.074

0.880
0.876

0.950

Final Operating Characteristics
Sn = 0.95, Fn = 0.05
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pc pt
B-A

Mean N
B-A

Power
F-Power

300
F-Power
BA Mean

0.60 0.60
175
185

0.024
0.025

0.025 0.025

0.60 0.65
199
212

0.12
0.13

0.14 0.11

0.60 0.70
220
231

0.38
0.40

0.44 0.34

0.60 0.75
216
221

0.72
0.75

0.79 0.66

0.60 0.80
189
190

0.94
0.95

0.969 0.86

Final Operating Characteristics
vs. Fixed Frequentist Trials
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Digression
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Imagine
• Imagine investigators do a case-control study
• Identify cases

– Patients with hypertension

• Identify controls
– People without hypertension with the same 

demographics (age, gender, marital status)

• See statistically significant increase in blood 
pressure between cases & controls

• Would JAMA publish this paper? 
105

105

• They did: Bassler et al, March 23/31, 2010, 
V303, No12, 1180-1187.
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From Abstract Study Selection
“Selected studies were RCTs reported as having 
stopped early for benefit and matching 
nontruncated RCTs from systematic reviews. 
Independent reviewers with medical content 
expertise, working blinded to trial results, 
judged the eligibility of the nontruncated RCTs 
based on their similarity to the truncated 
RCTs.”

107

107

From Abstract Results
• Large differences in treatment effect size 

between truncated and nontruncated RCTs 
occurred …. 

• In 39 of the 63 questions (62%), the pooled 
effects of the nontruncated RCTs failed to 
demonstrate significant benefit. 
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Control Rate=    0.6000
Exper Rate =    0.7500

Accrual Rate (pts/month):  15.00
Number of Sims      5000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.0500

Mean      SD
Sample Size  217.45 59.78

Lose      Win
Success    0.009    0.639

Cap    0.083    0.152
Futility    0.116    0.000

Total    0.209    0.791

Look     Lose      Win    Total
150    0.044    0.260    0.304
175    0.017    0.100    0.117
200    0.012    0.086    0.098
225    0.016    0.068    0.084
250    0.018    0.067    0.085
275    0.019    0.057    0.076
300    0.083    0.152    0.235
Tot    0.209    0.791    1.000
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• Example 1 Revisited
• Truth is 15% benefit
• But 23.5% of time trial 

goes to maximum … 
and 8.3% it fails to be 
stat sig.

• The reason it goes to 
max is because data is 
ambiguous

• So of course the ones 
that go to max have 
small effects

109

S. Berry, Carlin, Connor
“To illustrate the issue, consider a clinical trial in which 
analysis is as follows: participants found to be 
performing better are retrospectively placed in the 
experimental group and participants found not to be 
performing well are retrospectively placed in the 
control group; a statistically significant difference in 
outcome is found when the groups are compared. It is 
clear that post-treatment selection of participants, 
based on their outcomes, would be responsible for any 
observed difference.”
“This is logically equivalent to the analysis reported by 
Bassler et al.”

110

110

Goodman, D. Berry, Wittes
“So comparing the truncated trials to the nontruncated 
trials is similar to comparing completed trials with 
large effects with those with lower effects. The 
difference the authors observed was both predictable 
and uninformative.”
“Bias is a property of study procedures; it is not 
logically applicable to a subset of results.”
Goodman SN. Systematic reviews are not biased by 
results from trials stopped early for benefit. J Clin
Epidemiol. 2008;61(1):95-96. 
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pt = 0.8 vs. pc = 0.6 
n=180 à 80% Power

• What is average effect size in the statistically 
significant trials?

• What is the average effect size in 1000 
simulated trials?
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pt = 0.8 vs. pc = 0.6 
n=180 à 80% Power

• What is average effect size in the statistically 
significant trials?

• What is the average effect size in 100,000 
simulated trials?

113
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pvalue <- NULL; effect <- NULL

for(i in 1:100000){
x.c <- rbinom(1, 90, 0.6)
x.t <- rbinom(1, 90, 0.8)
mat <- rbind(c(x.c, 90-x.c), c(x.t, 90-x.t))
test <- chisq.test(mat)
pvalue[i] <- test$p.value
effect[i] <- x.t/90 - x.c/90
print(i)
}

hist(effect, breaks=seq(-.2, .6, by=0.025))
par(new=T)
hist(effect[pvalue<0.05], breaks=seq(-.2, .6, by=0.025), col=2, main=" ", xlab=" 
", ylab= " " )

> mean(pvalue < 0.05)     ### CHECK power = 80%
[1] 0.80313
> mean(effect)            ### CHECK mean effect = 0.20
[1] 0.2003593
> 
> mean(effect[pvalue < 0.05])
[1] 0.2233924
> mean(effect[pvalue >= 0.05])
[1] 0.1063962
> 
> 0.80 * .2233924 + 0.20 * 0.1063962
[1] 0.1999932
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count <- 0
outcome <- matrix(nrow=8281, ncol=5)
for(xc in 0:90){
for(xt in 0:90){
count <- count + 1
prob.of.pair <- dbinom(xc, 90, 0.6) * dbinom(xt, 90, 0.8)

mat <- rbind(c(xc, 90-xc), c(xt, 90-xt))
test <- chisq.test(mat)
effect <- xt/90 - xc/90

outcome[count, ] <- c(xc, xt, prob.of.pair, test$p.value, effect)
print(c(xc, xt))

}}

outcome <- data.frame(outcome)
names(outcome) <- c("xc","xt","pr","pvalue","effect")

> sum(outcome$pr[outcome$pvalue < 0.05])
[1] 0.80168

> sum((outcome$effect * outcome$pr) [outcome$pvalue < 0.05]) / 
sum(outcome$pr[outcome$pvalue<0.05])
[1] 0.2231661

> sum((outcome$effect * outcome$pr) [outcome$pvalue > 0.05]) / 
sum(outcome$pr[outcome$pvalue>0.05])
[1] 0.1063544
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100k sims 0.8 vs. 0.6, n=180
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Histogram of effect
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100k sims 0.8 vs. 0.6, n=180

117

Histogram of effect
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Mean effect of 
successful trials 
0.223

Mean effect of 
failed trials

0.106
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Revisit Example #1
• Binary outcome
• Adaptive trial from 150 to 300 patients
• Expected difference 60% vs. 80%
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Control Rate=    0.6000
Exper Rate =    0.6000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.1000

Mean      SD
Sample Size  176.31   44.02

Lose      Win
Success    0.002    0.019

Cap    0.041    0.009
Futility    0.929    0.000

Total    0.972    0.028

Look     Lose      Win    Total
150    0.634 0.006    0.640
175    0.103 0.004    0.107
200    0.073    0.003    0.076
225    0.047    0.003    0.050
250    0.042    0.002    0.044
275    0.033    0.001    0.034
300    0.041    0.009    0.050
Tot    0.972    0.028    1.000

119

Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.1000

Mean      SD
Sample Size  183.20   48.53

Lose      Win
Success    0.001    0.892

Cap    0.015    0.065
Futility    0.027    0.000

Total    0.043    0.957

Look     Lose      Win    Total
150 0.017    0.546 0.564
175 0.006    0.118 0.124
200    0.001    0.093    0.094
225    0.000    0.054    0.054
250    0.002    0.049    0.051
275    0.002    0.032    0.034
300    0.015    0.065    0.080
Tot    0.043    0.957    1.000

119

Example 1
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121

121
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Summary
• A process is biased
• Individual trials are not biased
• Individual trials do vary about their true mean
• Larger trials have narrower CIs
• They stopped early because it was a random 

observation in the right or left tail
• Tradeoff – is it worth deciding earlier and 

offering benefit to those outside the trial?
• Many adaptive trials are larger so tighter CIs

125

125

126

Example #2:
Goldilocks Trial with 2 Endpoints 

& Informative Prior on 
Longitudinal Model

126

Background

• Medical device to treat atrial fibrillation (AF)
• Used during open cardiac surgery

– Only used when surgery being done for other reason
– e.g., CABG, Valve replacement

• Label was to ‘ablate cardiac tissue’ not ‘treat AF’
• Trial needed to produce evidence of safety and 

efficacy for treatment of AF
• Controlled trial not possible due to extensive use

127

127

Background
• Early safety study with matched controls 

failed to enroll
– Matched control having same cardiac surgery 

without AF treatment component
– Stopped @ 32 months when 39 cases & 

just 5 controls enrolled
• FDA suggested to company to explore 

Bayesian adaptive trial with safety & efficacy 
OPCs

128
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Objective Performance Criteria

• Efficacy OPC (6m)
– AF free & off AF drugs at 6 months
– Goal:  70%,  dE = 10%
– Based upon published rates of this procedure

• 10 papers had 60.1% efficacy

• Safety OPC (1m)
– Free of significant adverse event
– Goal: 13.95%, dS = 5%
– Based upon published SAE rates in Cut & Sew MAZE

129

129

Statistical Endpoints
• Show Pr(pE > 0.60) > 0.975

– 70% - dE = 70% - 10% = 60%

• Show Pr(pS < 0.1895) > 0.95
– 13.95% + dS = 13.95% + 5% = 18.95%

• Achievable in 100 patients if
– observed efficacy ≥ 70% 
– observed safety ≤ 12%
– basically point estimates have to match or beat OPCs

• pE, pS ~ Beta(1,1) priors for both endpoints

130

130

Goldilocks Design
• Enroll 50 - 100 patients

– Must have 20 patients at 6 months or skip 
analysis

• Interim analyses every 5 patients
• Final sample size based upon predictive 

probabilities
• Expect to enroll 5 patients per month

~30 patients enrolled without complete 6m data

131
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Stopping Decisions
• Pn = Pr(Meet Efficacy & Safety Goals with 

current sample size n| Current Data)
– If Pn ≥ Sn then stop accrual for predicted success 
– Sn = 0.90 for n=50-65
– Sn = 0.85 for n=70-80    
– Sn = 0.80 for n=85-95

• Pmax = Pr(Meet Efficacy @ Safety Goals with 
100 patients | Current Data)
– If Pn ≤ Fn then stop trial for futility
– Fn = 0.05 for n=50-70        
– Fn = 0.10 for n=75-95

132
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• Efficacy outcome is AF-free and off AADs at 6m
• Interim outcome at 3-months is whether patients 

are AF-free already
• Predict 6m outcomes using Beta-Binomial

Longitudinal Model

Group a b Prior Mean

No 3m data 5 1 83%

In AF 4.2 1.8 70%

AF-free 5.4 0.6 90%

133

133

Operating Characteristics for Trial with  
pT = 0.84, pS = 0.08

Sample
Size

Proportion
Of  Trials

Stop for 
Futility

Stop Early
For Success & Lose & Win

50 0.440 0.008 0.432 0.011 0.421

55 0.150 0.003 0.147 0.007 0.140

60 0.109 0.006 0.102 0.005 0.097

65 0.033 0.004 0.029 0.002 0.027

70 0.063 0.002 0.061 0.002 0.058

75 0.034 0.006 0.027 0.002 0.025

80 0.031 0.011 0.020 0.000 0.020

85 0.042 0.002 0.040 0.000 0.040

90 0.009 0.006 0.003 0.000 0.003

95 0.019 0.003 0.016 0.000 0.016

100 0.070 --- 0.070 0.011 0.058

Total 1.000 0.053 0.947 0.042 0.906

Mean Sample Size = 61.6, SD = 15.6
134
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50 55 60 65 70 75 80 85 90 95 100

Efficacy = 84%   Safety = 6% 
 Mean N =  55.8    Power =  0.969
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50 55 60 65 70 75 80 85 90 95 100

Efficacy = 84%   Safety = 8% 
 Mean N =  61.4    Power =  0.905
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50 55 60 65 70 75 80 85 90 95 100

Efficacy = 79%   Safety = 8% 
 Mean N =  63.6    Power =  0.855
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50 55 60 65 70 75 80 85 90 95 100

Efficacy = 74%   Safety = 8% 
 Mean N =  65.7    Power =  0.69
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50 55 60 65 70 75 80 85 90 95 100

Efficacy = 60%   Safety = 8% 
 Mean N =  57.5    Power =  0.016
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50 55 60 65 70 75 80 85 90 95 100

Efficacy = 79%   Safety =19% 
 Mean N =  60    Power =  0.039
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Interim Analysis
• No look at 50 patients
• At 55-patients August 24, 2009

– All patients through 30-day safety, 5/55 had 
SAEs

– 24/29 efficacy successes at 6-months
– 21 subjects remain under surveillance
– 37/50 successes would show 

Pr(pt > 0.60 |  37 of 50) = 0.978 > 0.975
– Total number of efficacy successes

X = 24 + xo + x+ + x-
141

141

Interim Analysis

• xo = 5 enrolled with < 3mo follow-up
– xo ~ Beta-Bin(n0 = 5, a=5+24, b=1+5)

• x- = 3 enrolled not AF-free at 3mo
– x- ~ Beta-Bin(n- = 3, a=4.2+3, b=1.8+1)

• x+ = 13 enrolled AF-free at 3mo
– x+ ~ Beta-Bin(n+ = 13, �=5.4+17, 
�=0.6+3)

• Pr(24+xo+x-+x+ ≥ 37) = 0.988

142

142

Interim Analysis

• xo = 5 enrolled with < 3mo follow-up
– xo ~ Beta-Bin(n0 = 5, a=5+24, b=1+5)

• x- = 3 enrolled not AF-free at 3mo
– x- ~ Beta-Bin(n- = 3, a=4.2+3, b=1.8+1)

• x+ = 13 enrolled AF-free at 3mo
– x+ ~ Beta-Bin(n+ = 13, �=5.4+17, 
�=0.6+3)

• Pr(24+xo+x-+x+ ≥ 37) = 0.988

5/6 = .83
24/29 = .83

4.2/6 = .70
3/4 = .75

5.4/6 = .90
17/20 = .85

Longitudinal Priors 
were right on

143
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0.1843

0.1116

0.0351

Prediction of 21 remaining pts based on 29 observed pts
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Sample Size Analysis at 55 pts
Current Patients Enrolled: 55 
Current patients not contributing to efficacy: 5 
Current Safety Events: 5 of 55 patients 
Current Efficacy Success: 24 of 29 patients 
Current Efficacy Successes: 24 of 29 patients 
Current Efficacy Successes: 3 of 4 Efficacy Failures at 3 months 
Current Efficacy Successes: 17 of 20 Efficacy Successes at 3 months 

0 enrolled patients to predict for 1mo safety outcomes
45 future patients to predict for 1mo safety outcomes
5 enrolled patients with <3mo to predict for efficacy outcomes
3 enrolled patients with AF at 3mo to predict for 6mo efficacy outcomes
13 enrolled patients without AF at 3mo to predict for 6mo efficacy outcomes
45 future patients to predict for 6mo efficacy outcomes

Predicted Safety Events with Current Accrual: 5 ( 5 - 5 ) of 55 patients 
5  or fewer needed for safety success 

Predicted Safety Events with Maximum Accrual: 9.7 ( 6 - 16 ) of 100 patients 
12  or fewer needed for safety success 

Predicted Efficacy Successes with Current Accrual: 41.5 ( 37 - 45 ) of 50 patients 
37  or more needed for efficacy success 

Predicted Efficacy Successes with Maximum Accrual: 78.8 ( 69 - 86 ) of 95 patients 
67  or more needed for efficacy success 

Decision Rule: Stop Enrolling Due to Predicted Success 

Prob Win Efficacy Prob Win Safety Prob Win Both
Now               0.988           1.000         0.988
Max N             0.992           0.846         0.838

.988 > .90 
Stop for 

predicted success
145

145

Stopped Accrual for 
Predicted Success

• Accrual stopped with 55 patients in
• Continue to follow 21 enrolled patients
• Perform final analysis on complete data

• Final Data
– 5/55 SAEs
– 37/50 AF-free and off  AADs

146

146

147

147

Post Trial Discussion with FDA
• Efficacy barely won

– One less success would have failed to meet 
primary endpoint

– Not a robust win, in part due to post-hoc 
changes related to inc/excl criteria

• Some concern with n=55
– But this was possible based upon design
– Safety OPC = 0.1395, observed 0.091
– Efficacy OPC = 0.70, observed 0.74

148
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0.0 0.2 0.4 0.6 0.8 1.0

qt

Safety:  Compare Stopping at n=55 to 
Maximum Trial Size n=100

Observed MAEs: 5/55 = 9.1% 
Pr(qt<0.1895) = 0.967 > 0.95

If Observed MAEs: 12/100 = 12% 
Pr(qt<0.1895) = 0.960 > 0.95

Trial stopped very early because the 
observed MAE rate was much lower.

Observed

Smallest win
@ 100

149

149

0.0 0.2 0.4 0.6 0.8 1.0

pt

Observed Success: 37/50= 74% 
Pr(pt > 0.60) = 0.978 > 0.975

If Observed Success: 70/100 = 70% 
Pr(pt > 0.60) = 0.979 > 0.95

Trial stopped very early because 
the observed Success rate 
was higher.

Observed

Smallest win @ 100

Efficacy:  Compare Stopping at n=50 to 
Maximum Trial Size n=100

150

150

FDA Advisory Panel Vote Oct 2011

• Is there reasonable assurance that the AtriCure
Synergy Ablation System is effective …? 
– 9 for, 0 against

• Is there reasonable assurance that the AtriCure
Synergy Ablation System is safe…? 
– 5 for, 4 against, 1 abstain  (chair broke 4-4 tie)
– Largely due to patients needing pacemakers

• Do the benefits … outweigh the risks …? 
– 5 for, 3 against, 1 abstain

151
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FDA Approved Dec 14, 2011
• Study Design  (from device label)
• ABLATE was a multi-center, prospective, non-

randomized study based on a Bayesian adaptive design 
that provides high probability of demonstrating safety and 
effectiveness of the AtriCure Synergy Ablation System for 
the treatment of permanent atrial fibrillation. The safety 
and effectiveness of the device was compared to 
performance goals derived from historical information. 
The Bayesian adaptive clinical design incorporated interim 
analyses of the data to determine the point of completion 
of trial enrollment. Enrollment was targeted to be between 
50 and 100 subjects at 20 sites. The study was designed to 
have an initial assessment of results at the point that 50 
subjects were enrolled with a minimum of 20 subjects 
completing their six-month follow-up visit. Nine 
investigational sites enrolled 55 subjects. 

153
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Lessons
• Ensure minimum sample size will suffice

– Not just statistical, but impactful
– Company did a continue access protocol to get 

more patients during review, leading to panel
• Ensure data isn’t coded optimistically
• Ensure inclusion / exclusion criteria 

rigorously followed
• Goldilocks gets the size ‘just right’ but that 

means you can be close to ‘just wrong’ if 
some data changes post hoc

154
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Example 3:  SHINE TRIAL
with Karen Johnston, Valerie Durkalski

Kristine Broglio, & Will Meurer

155

• Trial for SOC vs. tight glycemic control after 
stroke

• Designed as Group Sequential
• Run with “Shadow” Bayesian Trial
• Design papers online

• Compares GSD to Goldilocks Trial

155

Platform Trials

& Master Protocols

156
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Woodcock & Lavange, NEJM 2017
• High-quality evidence is what we use to guide medical practice. 

The standard approach to generating this evidence — a series of 
clinical trials, each investigating one or two interventions in a 
single disease — has become ever more expensive and 
challenging to execute. As a result, important clinical questions 
go unanswered. 

• A methodologic innovation responsive to this need involves 
coordinated efforts to evaluate more than one or two treatments 
in more than one patient type or disease within the same overall 
trial structure. Such efforts are referred to as master protocols, 
defined as one overarching protocol designed to answer multiple 
questions. 

157

157

Woodcock & Lavange, NEJM 2017
• Master protocols may involve one or more 

interventions in multiple diseases or a single disease, as 
defined by current disease classification, with multiple 
interventions, each targeting a particular biomarker-
defined population or disease subtype. Included under 
this broad definition of a master protocol are three 
distinct entities: umbrella, basket, and platform trials
(Table 1 and Figs. 1 and 2). All constitute a collection 
of trials or substudies that share key design components 
and operational aspects to achieve better coordination 
than can be achieved in single trials designed and 
conducted independently. 

158
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Master Protocols

• May or may not compare treatment across groups
– One structure, but each TX vs. common control
– Reported as multiple trials (e.g. 1 per intervention)
– Sites have one set of rules, execute like  1 trial

• Intensive pretrial discussion among sponsors 
– data use, publication rights, and the timing of 

regulatory submission 
• Matchmaker

– Therapies to targeted subpopulations

159

159

Master Protocols

160NEJM 377, 1, p63, Table 1 
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Master Protocols
• Master protocols come in different 

sizes and shapes but share many 
commonalities. 

• Increased planning efforts and 
coordination to satisfy the 
objectives of different stakeholders. 

• Maximum information is obtained 
from the research effort

• Infrastructure required for imple-
mentation increases data quality and 
trial efficiencies, as compared with 
those in stand-alone trials. 

• Can last many years, even decades, 
with innovations from the 
laboratory translating quickly to 
clinical evaluation.

161NEJM 377, 1, p63, Figure 3

161

162

Platform Trials

162

Asking the Right Question

• Current Clinical Trials 
Is this drug effective and safe?

More precisely 
What is the probability of the observed 
data assuming the treatment is no good?

163

163

Asking the Right Question

• Current Clinical Trials 
– Is this drug effective and safe compared to a placebo?
– Is this drug effective & safe compared to the SOC

• Correction Question
– What is the best treatment for this Patient?
– What is the best treatment for this type of patient?

164
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165

• Single treatment vs. Control
• Homogenous patient population
• 1 or 2 questions per 1 trial
• Start with assuming a particular control group effect 

and a particular (usually optimistic) treatment group 
effect

• Assume ‘average’ effect relevant to all patients
• Calculate a sample size as if we know the true effect

Traditional Trial Design

165

Platform Trial

• An experimental infrastructure to evaluate multiple 
treatments, often for a group of diseases, and intended 
to function continually and be productive beyond the 
evaluation of any individual treatment
– Designed around a group of related diseases rather than a 

single treatment
– Disease focused not treatment focused
– Dynamic list of available treatments, assigned with response-

adaptive randomization
– Preferred treatments may depend on health system, patient, 

or disease-level characteristics

166
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JAMA. Published online  March 23, 2015. doi:10.1001/jama.2015.2316 167

167

Date of download:  3/24/2015 Copyright © 2015 American Medical 
Association. All rights reserved.

From: The Platform Trial: An Efficient Strategy for Evaluating Multiple Treatments

JAMA. Published online  March 23, 2015. doi:10.1001/jama.2015.2316

General Characteristics of Traditional and Platform Trialsa
Table Title: 
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Platform Trial

169

Time

Control
Drug A
Drug B
Drug C
Drug A+C
Drug D
Drug E
Drug F

169

Platform Trial

170

Time

Control
Drug A
Drug B
Drug C
Drug A+C
Drug D
Drug E
Drug FEach drug only every compared to common control

Never compared to one another

170

Platform Trial

171

Time

Control
Drug A
Drug B
Drug C
Drug A+C
Drug D
Drug E
Drug F

May also use biomarkers at baseline to adaptively

randomize patients to therapies most likely to 

work for them

171

Platform Trial

172

Time

Control
Drug A
Drug B
Drug C
Drug A+C
Drug D
Drug E
Drug F

Result is patients in trial get targeted therapies

Drug labels are targeted to optimal populations

Trials can be smaller 

– not enrolling patients who don’t support treatment effect
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Platform Trial

173

Time

Control
Drug A
Drug B
Drug C
Drug A+C
Drug D
Drug E
Drug F

Compare Drug D 
with Concurrent 
Control Patients

173

Time Machine

174

Time

Control
Drug A
Drug B
Drug C
Drug A+C
Drug D
Drug E
Drug F

Compare Drug D 
with Mostly 

Concurrent Control

Model how controls change over time, if similar, then use 
some controls outside concurrent window

174

Control 
Drug A
Drug B
Drug C
Drug A+C
Drug D
Drug E
Drug F

If controls change little over time, then use more weight
from non-concurrent controls, increases power & efficiency

Time Machine

175

Compare Drug D 
with Mostly 

Concurrent Control

175

I-SPY2

176Used with permission from Dr. Laura Esserman, I-SPY2 PI
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Platform Trials are Happening

• Cancer
– I-SPY2 in Breast Cancer
– GBM AGILE in Glioblastoma multiforme
– LUNG-MAP in Lung Cancer
– PANCAN in Pancreatic Cancer

• Alzheimer’s
– EPAD: European Prevention of Alzheimer’s Dementia
– DIAN: Dominantly Inherited Alzheimer’s  Network 

• ALS
– Healey ALS Platform Trial, Phase 2/3 with 5 drugs

177

177

Platform Trials are Happening
• Infection diseases

– Gates Foundation sponsored Ebola design
– NIH Ebola design
– PREPARE: European Consortium for Disease Preparedness

• Pandemic flu, Butler at al Lancet, Jan 2020

• REMAP CAP (Community Acquired Pneumonia) ongoing, REMAPCAP.org

• COVID-19
– RECOVERY
– ACTT by NIAID -- the Remdesivir trial
– SOLIDARITY by WHO, 4 arms
– REMAP-COVID by International consortium critical care trial
– PRINCIPLE in UK, pre-hospital trial
– ISPY-COVID: UCSF & WISDOM Network, Phase 2
– ACTIV by NIH 
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From Don Berry

179

180

180



7/15/21

46

181

EBOLA

Thanks to: Scott Berry, 
Elizabeth Petzold, 

Chris Woods, David Hoover

182

182

The Problem: Ebola Treatment Trial

• Acknowledge universe of possible treatments
– Will evolve over time
– Recognition that combinations may play an 

important role

• Uncertainty over role of standard of care
• Our Goal: To determine best treatment for 

treating ebola
– Not a trial to determine if a single drug X works

183
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EV-003 Adaptive Platform Design
• Reviewed and approved by:

– Duke University IRB
– University of Sierra Leone ethics committee

• Master Protocol dictates trial behavior, each treatment included as an appendix

• Multiple Agents
– Primary & Secondary agents
– Combination + Single agents

• Response Adaptive Randomization (RAR)
– Run by a single algorithm
– Assigns treatment regimens that are performing better using collection of primary 

endpoint data

• Protocol is built so trial arms evolve (part of the protocol!), trial is perpetual

• Endpoint is 14-day mortality

184
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Primary/Secondary Agents
• All arms receive optimized standard of care (SOC)
• Primary and Secondary agents

– Primary: Expected capability to work as single agent (e.g.
anti-viral efficacy)

– Secondary: Expected to work with other agents (not given 
alone)

185

185

Adaptive Platform Design

186

Analyze
Available Data

Accrue
More

Burn-In 
Enrollment

Remove Agent?

Revise Allocation
Rules

No Analyze 
(report)
Results

Yes

Add Agents

186

Design Details

• Endpoint: Death (Dichotomous, events are bad)
• Start with burn-in period to all 10 regimens

– Equal randomization to 10 arms
– 30 subjects / 3 per arm

• After burn-in
– Response adaptive randomization
– Proportional to probability regimen is optimal

• Adjusted for information

– Continue perpetually (committee can change vote)
187

Burn-In 
Enrollment

187

Decision Criteria (In/Out)
• If there is a less than 0.01 probability an agent is 

part of the optimal regimen
– Candidate for futility

• If the probability an agent is in the optimal regimen 
is greater than 0.95
– Report to the steering committee for public 

dissemination

• If a regimen has at least a 0.95 probability of being 
superior to SOC Alone then SOC Alone is reported 
for removal

188

Analyze 
(report)
Results
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Allocation Rules

• If a SOC it gets minimum of 20%...
• Randomize to regimens with probability 

proportional to:

189

Revise 
Allocation

Rules

rij ~
Pr π ij =max π( )( )

nij +1

189

Statistical Model

• Priors:

• Time:
– Incorporate time “buckets” 
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Statistical Model

• Priors:

• Time:
– Incorporate time “buckets” 
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log p
1− p
⎛

⎝
⎜
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X=1

M

∑ +λTIME

X[ ] ~ N 0,12( ) X,Y[ ] ~ N 0,0.22( )

Analyze
Available Data

N(0,1) has 95% CI from about 1/7 to 7.

191

Statistical Model

• Priors:

• Time:
– Incorporate time “buckets” 
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log p
1− p
⎛

⎝
⎜

⎞

⎠
⎟=α + X[ ]

X=1

M

∑ + X,Y[ ]
Y=X+1

M

∑
X=1

M

∑ +λTIME

X[ ] ~ N 0,12( ) X,Y[ ] ~ N 0,0.22( )

Analyze
Available Data

N(0,0.22) has 95% CI from about 2/3 to 3/2.
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Statistical Model

• Priors:

• Time:
– Incorporate time “buckets” to model time trend or 

‘drift’
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λ[ ] ~ NDLM 0,τ 2( )

193

Example Trial
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Regimens
Agents

1 2 3 4

Agents

1
2
3
4
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New Data
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Scenario 3

Design Mean 
Deaths

Adapt 49.4

Fixed 69.9

A

B

C

D

A B C D

1

2

3

4

1 2 3 4
222

Truth

Mean N

Prob Wins
(fixed)

Mean N
& Fails
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223
1/28/
2016
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Summary
• Incredibly powerful design for finding effective 

therapies and combinations in the universe of 
treatments
– Type III Error (the question never asked!)

• Allows the arms to evolve internally and externally to 
changing science

• Improved Embedded Care: Efficiently and quickly 
identifies best agents, while treating patients more effectively

• Have design ready—on the shelf for next pandemic
– A number of parameters can be optimized quickly
– Protocol ready (add appendices)
– Models + simulations ready

• Need independent committee to decide which 
drugs to plug in

225

225

Platform Example 2

The Role of Biomarkers 
in Treatments & Trials

226

226

Testing a New Treatment

• Standard of Care works in 40%

227

Nothing
Works

SOC Works

Nothing
Works

227

10% of Patients Benefit

• Standard of Care works in 40%
• New therapy works in 50%

228

Nothing
Works

SOC Works

Nothing
Works

Additional Benefit

228
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50% still untreatable

• Standard of Care works in 40%
• New therapy works in 50%
• Nothing works in 50% 

229

SOC Works

Nothing
Works

Additional Benefit

229

50% still untreatable

• Standard of Care works in 40%
• New therapy works in 50%
• Nothing works in 50% 

• How many patients do we need 
to have 90% chance to see a 
‘statistically significant’ 
difference?

230

SOC Works

Nothing
Works

Additional Benefit

230

Need 1036 patients for 90% 
Power

• Standard of Care works in 40%
• New therapy works in 50%
• Nothing works in 50% 
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SOC Works

Nothing
Works

Additional Benefit

231

Need 1036 patients for 90% 
Power

• Standard of Care works in 40%
• New therapy works in 50%
• Nothing works in 50% 

• 90% of patients you enroll tell 
you nothing

232

SOC Works

Nothing
Works

Additional Benefit

232
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Need 1036 patients for 90% 
Power

• Standard of Care works in 40%
• New therapy works in 50%
• Nothing works in 50% 

• 90% of patients you enroll tell 
you nothing

• What if you knew which 10% of 
patients benefited?

233

SOC Works

Nothing
Works

Additional Benefit

233

What if you KNEW which 10% 
Benefit

• If you just enrolled the purple 
patients how many patients do you 
need for 90% power?

234

SOC Works

Nothing
Works

Additional Benefit

234

What if you KNEW which 10% 
Benefit

• If you just enrolled the purple 
patients you need 8 patients for  
100% power

• If you could perfectly predict
– 0/4 on standard of care
– 4/4 on new treatment
– Fisher’s exact test p-value = 0.029

235

SOC Works

Nothing
Works

Additional Benefit

235

What if you^KNEW which 10% 
Benefit

• Enroll 20% to capture the 10%
• 25% cured by SOC
• 25% still not cured
• 50% of enrolled patients benefit

236

sorta

SOC Works

Nothing
Works

Additional Benefit

236
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What if you^KNEW which 10% 
Benefit

• Enroll 20% to capture the 10%
• 25% cured by SOC
• 25% still not cured
• 50% of enrolled patients benefit
• Need 36 patients for 90% power

237

sorta

SOC Works

Nothing
Works

Additional Benefit
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What if you^KNEW which 10% 
Benefit

• Enroll 30% to capture the 10%
• 33% cured by SOC
• 33% not cured
• 33% of enrolled patients benefit

238

kinda sorta

SOC Works

Nothing
Works

Additional Benefit

238

What if you^KNEW which 10% 
Benefit

• Enroll 30% to capture the 10%
• 33% cured by SOC
• 33% not cured
• 33% of enrolled patients benefit
• Need 90 patients for 90% power

239

kinda sorta

SOC Works

Nothing
Works

Additional Benefit

239

Platform Example 2

240
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GBM AGILE
Trial Design  V1

EXAMPLE TRIAL ONLY
TRIAL HAS CHANGED DRAMATICALLY SINCE THIS

Thanks to Todd Graves & Don Berry

Adaptive Global Innovative Learning Environment

241

Statistical Model
• Primary outcome:  Overall Survival
• Time-to-event model including

– Age
– Tumor Size
– Performance Status
– Site (to be defined)

– Drug
– Drug × Biomarker
– Drug × Biomarker × Biomarker

• Flexible to add drugs & biomarkers on the fly

242

242

Biomarkers à Signatures

Newly diagnosed
MGMT-unmethylated

Newly diagnosed
MGMT-methylated

Recurrent GBM
MGMT-unmethylated

Recurrent GBM
MGMT-methylated

243

243

2 × 2 Biomarkers à 4 Signatures

Newly diagnosed
MGMT-unmethylated

Newly diagnosed
MGMT-methylated

Recurrent GBM
MGMT-unmethylated

Recurrent GBM
MGMT-methylated

244
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2 × 2 Biomarkers à 3 Signatures

Newly diagnosed
MGMT-unmethylated

Newly diagnosed
MGMT-methylated

Recurrent GBM
MGMT-unmethylated

Recurrent GBM
MGMT-methylated

245

245

2 × 2 Biomarkers à 1 Signature

Newly diagnosed
MGMT-unmethylated

Newly diagnosed
MGMT-methylated

Recurrent GBM
MGMT-unmethylated

Recurrent GBM
MGMT-methylated

246

246

Response-adaptive randomization
• Randomize separately within signature
• Randomization probability proportional to 

Pr(HR < 0.75)
• If randomization probability < 5%, round to 

0
• If N < 50, min rand prob = 1/ # of drugs
• Probability randomize to control =

Probability randomize to best drug
• Update monthly

247

247

Why proportional to Pr(HR<0.75)?

248Hazard Ratio

0.15 0.25 0.33 0.5 0.75 1 1.5 2 2.5 3 4 6

Control --> 0.32

Pr(HR<0.75) = 0.84 --> 0.45 --> 0.32
Pr(HR<0.75) = 0.50 --> 0.27 --> 0.19
Pr(HR<0.75) = 0.08 --> 0.04 --> 0.00
Pr(HR<0.75) = 0.44 --> 0.24 --> 0.17

248
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Graduation

A drug graduates if, within any signature,
•Pr(HR < 1) > 99%
•Min 75 patients on that drug overall
•Min 300 pt-months exposure on that signature

When a drug graduates
•Drug out of trial 
•Data for all subtypes delivered to sponsor

249

249

Futility

A drug is removed from the trial for futility 
if
• Pr(HR < 0.75) < 5% for all signatures
• At least 50 patients
Or
• Been enrolling for 3 years

Stop at Max N=150 over all signatures
250

250

Identifying the Right 
Target Population

Newly Diagnosed Recurrent

Methylated It works here

Unmethlylated

251

251

Identifying the Right 
Target Population

Newly Diagnosed Recurrent

Methylated It works here But not here

Unmethlylated Or here Or here

252

Identify it works in red lasso:  
We made the right choice

252
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Identifying the Right 
Target Population

Newly Diagnosed Recurrent

Methylated It works here But not here

Unmethlylated Or here Or here

253

Identify it works in red lasso:  
Have we made the right choice?

Is this a Type 1 error?
Call this a SUPERSET error

253

Identifying the Right 
Target Population

Newly Diagnosed Recurrent

Methylated It works here And here

Unmethlylated But not here Or here

254

Identify it works in red lasso:  
We made the right choice

254

Identifying the Right 
Target Population

Newly Diagnosed Recurrent

Methylated It works here And here

Unmethlylated But not here Or here

255

Identify it works in red lasso:  
Did we made the right choice?

We made a “Type 2 error”
Call this a SUBSET error

255

Identifying the Right 
Target Population

Newly Diagnosed Recurrent

Methylated It works here And here

Unmethlylated But not here Or here

256

Identify it works in red lasso:  
Did we made the right choice?

We got one right but made a “Type 1 Error” & “Type 2 error”!
Call this a “MIXED TYPE ERROR”

256



7/15/21

65

Factors We Can Tune
• Max N per drug
• Signatures (Biomarker-drug interactions)
• Randomization algorithm
• Futility rule

– Pr(HR<0.75)
– Min N
– Max time allowed to accrue

• Graduation rule 
– Pr(HR<1)
– Min N, Min Exposure

257

257

258

• Make confirmatory trials dramatically smaller
– Or learn & confirm within a trial

• Lead us toward personalized medicine
– What works best in whom?

• May require larger platforms trials, data sharing & 
adaptive randomization to efficiently identify

• Different drugs work in different types of patients
– Not one trial, one patient type
– Learn, confirm, perpetually

Learn & Confirm Using Biomarkers

258

Challenges in Platform Trials

259

• Complexity in trial implementation and planning 
• Collaborations across sponsors - who initiates the 

planning? 
• Timely communication between participating sites and 

data coordinating units 
• Sponsors sacrifice autonomy in running the trial 
• Determining shared costs 
• Identifying what to report when

– iSpy2 has rules for ‘graduating’
– When to report subgroup results broadly?

259

Platform Trial Efficiencies
• Useful for evaluating combinations of treatments and for direct 

comparisons between competing treatments 
– Decide a prior whether each vs. control or vs. each other

• Do not require a new trial infrastructure for every treatment 
under investigation

• Easier for regulators given evidence comes in common form
• Always new drugs on horizon

– Even if lull, get SOC in the process

• Can build in Phase 2/3 design
– Learn & confirm

• Need to prospectively define control group
– Concurrent controls
– ‘Time machine’
– What if control group changes

260
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Conclusions
• Adaptive trial designs can be used to create a 

seamless process in which new evidence about 
effectiveness is immediately used to improve patient 
care

• A platform trial can extend this process beyond a 
single treatment or few treatments

• Current work is focused on embedding this 
approach into the health care infrastructure

• Patients will benefit if we merge clinical trials and 
decision support into a single, continuous process 
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Thank you!
• Thank you for a great class.

• Please complete evaluations
To access evaluations, log in to 
https://si.biostat.washington.edu/user/login, 
click “My Account” in the upper right, 
the evaluations will appear on your dashboard. 
After you have completed your evaluations, a 
link to download the certificate of completion 
will appear within 24 hours. 
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