

1

3

Definitions, Trial Parameters

MaxAnaz

Priors
$b=$ rep $(1,3), \quad$ Prity
Firstlook $=30001$

$\substack{\text { \# Min to randomized } \\ \text { ming in } \\ \# \text { simulations }}$ Timing of Looks
\# sinmulations
nsims $=1000$,
badim $=0.25$, for 'best
$\#$ critv to
(b) for 'worst'
\#
\#
$\#$

Critical values for stopping
4
simtrials <- function(v) 1
co <- ppcutoffs(vscritv[3])
\#out.mat
\#out.mat
\# (2-4) N per group
$\#(5-7)$ Rank
\# (5-7) Rank as 1, 2, 3 (according to prob best)
$\begin{array}{l}\text { \# (8) } \quad \text { Sig best (} 122 \text { or } 3 \text { or } 0 \text { if none) } \\ \text { \# (9) } \\ \text { Sig worst (1 } \\ 12\end{array}$ or 3 or 0 if none) $)$
\# (10) Final conclusion
\# $\quad 1=$ overall futility stop,
$2=$ stop early for winner
$3=$ stop early for winner $\&$ loser
$4=$ stop early for loser and futility (not possible in ours)
$5=$ max overall futility
$6=\max$ and loser
$7=\max$ and winner
$8=\max \&$ winner $\&$ loser
(11-13) Final Pr(best)
(14-16) Final Pr(2nd)
\# (20-22) Successes per group
\# (23-25) Ever drop arm? (rand goes to 0 at any pt
Creates a big matrix to store simulation results

```
out.mat <- matrix(NA, nrow=v$nsims, ncol=25) Simulate group assignment
    for(s in 1:v$nsims){ & response to tx
```

 ad <- \(\mathrm{c}(1,1,1)\)
 $\#$ \# Rand assignment for first FirstLook pts \& generate outcome
group <- rep (NA, v\$MaxN)
group [1:v§firstlook] <- rand.new(vsfirstlook, $c(1,1,1))$

lookl <- interim(vsfirstlook, y, group, v, co)
print(round(look 1,3))
\# Track if arm every dropped
ad <- ad * as. numeric
n. now $<-$ vsfirstiook
print(c(s,n.now))
\#\# Now loop through stage $1 \quad$ Simulate group assignment

look1 <- interim(n. nowtnew, y, group, v, co)
\# $\quad \begin{gathered}\text { print(round(lookl, 3) }) \\ \text { ad }<- \text { ad } * \text { as.numeric (look }[12: 14]>0)\end{gathered} \quad$ Do interim looks
n. now <- n.now+new
print(c(s, n. now))
\}

5
6

```
mx <- look1[3:5]; mn <- look1[6:8]
winner <- ifelse(max(mx)>vscritv[1], (1:3)[mx=max (mx)],0
    losen<- ifelse(max(mn)> vscritv[2],(1:3)[mn==max(mn)], o)
if(look1[2]==1){}\begin{array}{c}{\mathrm{ whystop <- 1 ## futility}}
        whystop <- 1 ## futility
        }else if (look1[2]==3){
            if(loser>0){
            whystop <- 3
            }else{
            }elsef whytop <- 2
            }else if(look1[2]=2){
        if(winner==0& & loser==0) { { whystop <- 5}
        else if (winner>0)
        else if(loser>0)
        *)
        else{print("error why stop tat max?")}See if best or worst identified
            whystop <- -
            See if stopping rules met
                Print out simulation
                results
out.mat[s,1:25] <- c(n.now, look1[18:20],order(mx),winner, loser,
                whystop,1ook1[c(3,4,5,9,10,11,6,7,8,15,16,17)],1-ad)
data.frame(out.mat)
l
return(out.mat)
See if best or worst identified
```

\}

```
rand.new <- function(N, p,minp) {
    ### Returns randomization codes (1:3) for N patients
    #### requires prob vector, p, of lenght 3.
    ### req
    If}(\operatorname{prod}(\textrm{p}==\textrm{c}(1,1,1))==1)
        out <- rep(sample(1:3,3), ceiling(N/3))
        out <- out[1:N]
        out <- r
        out <- rep(sample(1:3, N, prob=p, replace=T))
        }}\mp@subsup{}{\mathrm{ return(out)}}{
}
```

Takes how many patients
to simulate, N
Rand prob, p
And Min rand prob minp

```
\#\# Simulates data for new patients using inputs group assignement and success rate (length 3)
sim.endoint <- function(group, successrate),
out <- rbinom(length(group), 1 , successrate[group])
Simulate a success or failure for each based given their group assignment group is vector of 1,2 or 3 successrate is length 3
```

[^0]
Predictive Probability Cutoffs Lookup Matrix

```
### Creates a lookup matrix to make the predictive probability stopping algorithm
l
ppcutoffs <- function(critv) {
    whenstop <- cbind(rit(0,1000), rep(0,1000))
    for(i in 50:1000){
    while(as.numeric(binom.test(x,i,conf.level=0.999)$conf.int[1])<critv)
    x<- x+1
    whenstop[i,1] <- x
    whenstop[1:49,1] <- whenstop[50,1]
    for(i in 50:1000){
    <- ceiling(critv*i)
    x <-celing(critv*i)
    x<- x-1
    whenstop[i,2] <- x
    return(whenstop)
}
```

9
sumtrial $<-$ function (outmat)
mat $<-$ matrix $($ nrow $=4$, ncol $=9$)
out $<-\operatorname{table}($ factor (outmat $[, 1$
out <- table(factor (outmat [, 10], levels=1:8))

\# fPht
LVT
VPA
Takes the results of 'simtrials' and
Produces prettier output
mat $[1: 3,1]<-\operatorname{apply}$ (outmat $[, 2: 4], 2$, mean) \#\#\# Average Patients per arm
mat $[1: 3,2]<-$ apply (outmat $[, 2: 4], 2$, sd) \#\#\# sD patients per arm

mat [1,4:6] <- table(factor(outmat[,5], levels=3:1))/dim(outmat)[1] \#\# Avg Pr Best
nat $[2,4: 6]<-$ table(factor(outmat $[, 6]$, levels $=3: 1$))/dim(outmat) [1] \#\# Avg Pr middle
mat $[3,4: 6]<-$ table(factor (outmat $[, 7]$, levels $=3: 1$) /dim(outmat) $[1]$ \#\# Avg Pr Worst
nat $[1: 3,8]<-$ table(factor(outmat $[, 91$, levels=1:3))/dim(outmat) [1] \#\# Pr Sig wors
mat $[1: 3,9]<-\operatorname{apply}($ outmat $[, 23: 25], 2$, mean)
mat $[4,1]<-$ mean (outmat $[1,1]$) \#\#\# Mean total sample size
mat $[4,2]<-\operatorname{sd}($ outmat $[, 1])$ \#\#\# SD total sample size
$\operatorname{mat}[4,3]<-$ mean(rowSums (outmat[,20:22])/rowSums (outmat[2:4])) \#\#\# Mean response rate
$\operatorname{mat}[4,4: 6]<-\mathrm{NA}$
$\operatorname{mat}[4,7]<-\operatorname{sum}(\operatorname{mat}[1: 3,7]) \quad$ \#\#\# Total prob ID a sig best
$\operatorname{mat}[4,8]<-\operatorname{sum}(\operatorname{mat}[1: 3,8])$
mat $[4,8]<-\operatorname{sum}(\operatorname{mat}[1: 3,8])$ \#\#\# Total prob ID a sig worst
mat $[4,9]<-$ NA
nat <- data.frame(mat)
names(mat) $<-c($ "N", "SD", "Phat", "Best", "Mid", "worst", "SigBest", "Sigworst", "Drop")
dimnames(mat)[[1]] <- c("fPHT", "LVT", "VPA", "Total")
return(list(out, mat))

```
interim <- function(N, y, group, v, co)\
    ## Runs trial returns:
    # (1) go (0=stop, 1=keep going)
    # (2) why stop ( 1=3-way fut, 2=max n, 3=1 winner)
    # (3-5) Pr each is best
    # (3-5) Pr each is best
    # (9-11) x/ each for each group
    # (9-11) x/N for each
    ns <- table(factor(group[1:N], levels=1:3)
    tab <- table(factor(group[1:N],levels=1:3), factor(y[1:N], levels=0:1)
    post1 <- rbeta(10000, vsa[1]+tab[1,2], v$b[1]+tab[1,1])
    post2 <- rbeta(10000, v$a[2]+tab[2,2],vsb[2]+tab[2,1]) Calc posteriors
    vr<- as.numeric(((v$a+tab[,2])*(v$b+tab[,1]))/((v$a+v$b+ns)^2 * (v$a+v$b+ns+1)))
    bot <- apply(cbind(post1,post2,post3), 1, min)
    best <- c(mean(post1==top), mean(post2==top), mean(post3==top)
    worst <- c(mean(post1==bot), mean(post2==bot), mean(post3==bot))}\mathrm{ Calc prob each is
    middle <- 1-best-wors
        best & worst
    toobad <- 1-c(pbeta(v$badlim, v$a[1]+tab[1,2],v$b[1]+tab[1,1])
        p.ceta(v$badlim, v$a[2]+tab[2,2],v$b[2]+tab[2,1]),
    wt <- sqrt(best * vr / as.numeric(ns)); wt <- wt/sum(w)
    wt[wt <vsminpr] <- 0; wt[toobad < vscritv[4]] <- 0
    if(sum(wt)>0)f
    }
                            Calc new rand prob
```

10

if $((\mathbb{N}>=\mathrm{vsfirststop)} \mathrm{\&(N<vSMaxN)} \mathrm{\&(} \mathrm{\operatorname{prod}(w t>0)>0))!}$
drop <- 0
left $<-\mathrm{v}$ §Maxn -N
left <- ceiling(rep(left/3, 3))
left <- ceiling(rep
ns.total <- ns + left
winlose <- 0
counter <-
Calc pred prob of success
 y .end $<-\operatorname{tab}[, 2]+$ rbetabin.ab $(3$, left, v $\$$ a+tab $[, 2]$, v $\$ b+$ tab $[, 1])$
 post2f <- rbeta(10000, v\$a[2]+y.end[2], v\$b[2]+ns.total[2]-y.end[2]) post3f <- rbeta(10000, v\$a[3]+y.end [3], v\$b[3]+ns.total[3]-y.end[3])

botf <- apply (cbind(post1f, post2f,post3f), 1, min)
bestf $<-c$ (mean(post1f==topf), mean(post $2 f=$ topf $)$

,\quad winlose $<-$ winlose + ifelse($(\max ($ bestf $)>v s c r i t v[1]) \quad \mid(\max (\operatorname{worstf})>v S c r i t v[2])$,
1, 0)
counter <- counter +1
print(c(winlose/counter, counter))
ppwin <- winlose/counter
\}elsef
drop <- 1
ppwin <- vscritv[3]+1 \# If missing just make bigger than the crit value.
$\}^{\text {ppw }}$

12

13

Power vs. Prob of Success

- Doctor comes to you.
- Claims her treatment increases IQ by 5 points
- $\mathrm{SD}=10$
- "How many patients do I need to have 90% power to demonstrate superiority?"

14

16

17

19

18

Probability of success < Power due to Jensen's inequality
20

Simple Trial

- Binomial data
- One-armed trial
- $\mathrm{n}=100$
- Need to show $\mathrm{p}>0.5$
- $\mathrm{H}_{\mathrm{o}}: \mathrm{p} \leq 0.5$
- $\mathrm{H}_{\mathrm{a}}: \mathrm{p}>0.5$
- FYI: 59/100 \rightarrow Frequentist p-value $=0.044$

$$
\text { \& 1-sided } 95 \% \text { CI (0.503-1.00) }
$$

Phase 3 \& Priors

- Simple Trial:
- Binary data. Observe x $\sim \operatorname{Bin}(100, \mathrm{p})$
- Need to show $\operatorname{Pr}(\mathrm{p}>0.5 \mid \mathrm{x}$ out of 100$)>0.95$
- Assume p ~ Beta $(1,1)$ prior
$-\operatorname{Pr}(\mathrm{p}>0.5 \mid 59$ out of 100$)=0.963$
$-\operatorname{Pr}(\mathrm{P}>0.5 \mid 58$ out of 100$)=0.944$
- $\operatorname{Pr}(\mathrm{X} \geq 59 \mid \mathrm{p}=0.50)=0.044$
- Simple binomial calculation
- This is Type I error and is $<5 \%$
- Bayesian trial
- Good frequentist properties

Phase 3 \& Priors

- Simple Trial:
- Binary data. Observe x $\sim \operatorname{Bin}(100, p)$
- Need to show $\operatorname{Pr}(\mathrm{p}>0.5 \mid \mathrm{x}$ out of 100$)>0.95$
- Assume p ~ Beta $(1,1)$ prior
$-\operatorname{Pr}(\mathrm{p}>0.5 \mid 59$ out of 100$)=0.963 \quad$ 1-sided p-value <0.05
$-\operatorname{Pr}(\mathrm{P}>0.5 \mid 58$ out of 100$)=0.944 \quad$ approx posterior >0.95

22

Predictive Probabilities

- Simple Trial:
- Binary data. Observe $x \sim \operatorname{Bin}(100, p)$
- Need to show $\operatorname{Pr}(p>0.5 \mid x$ out of 100$)>0.95$
- Assume $p \sim \operatorname{Beta}(1,1)$ prior
$-\operatorname{Pr}(p>0.5 \mid 59$ out of 100$)=0.963$
$-\operatorname{Pr}(p>0.5 \mid 58$ out of 100$)=0.944$
- Observe data half way through
- See 28/50 successes
- Need to see 31/50 to meet threshold
- What is predictive probability of trial success?

25

27

Predictive Probabilities

- Know we need $x \geq 59$ at trial's end
- Have $x_{1}=28$
- Need $x_{2} \geq 31$
- $p \sim \operatorname{Beta}(1+28,1+22)$
- $x_{2} \sim \operatorname{Binomial}(50, p)$
- $\left.x_{2} \sim \operatorname{Beta-\operatorname {binomial}(50,\alpha =29,~} \beta=23\right)$
$\operatorname{Pr}($ Win Trial $)=\sum_{x_{2}=31}^{50}\left\{\binom{50}{x_{2}} \frac{B\left(x_{2}+29,50-x_{2}+23\right)}{B(29,22)}\right\}=0.301$

26

28

R code for predictive probability

> \#\#\# VIA SIMULATION
$>$ alpha <- 1 ; beta <-
$>\mathrm{x}<-28 ; \mathrm{N}<-50$
> p <- rbeta(1000000 , alpha+x, beta+N-x
$>x . n e w<-r b i n o m(1000000,50, p)$
$>$ mean(x.new >= 31)
[1] 0.301132
\gg
> \#\#\# VIA DIRECT CALCULATION
$>$ N. new <- 50
$>$
x. new $<-0: 50$
$>$ prob <- choose(N.new,x.new) *
$+\quad$ beta(alpha $+x+x \cdot$ new, $($ beta $+N-x)+(N-x . n e w)) /$
$+\quad$ be
$>$
$>$
${ }_{>}^{[1]} 1$
[1] 0.3010906
$>$ barplot(prob, names.arg=0:50, col=c(rep $(2,31)$, rep $(3,20))$,
main="Predictive Distribution for Remaining 50 patients")

31

30

32

33

34

36

37

38

Predictive Probabilities

- Observe 12 / 20 (60%)
- Need 47 / 80 successes; 59% or better rest of way
- p-value $=0.25, \operatorname{Pr}(p>0.5)=0.81$
- Predictive probability of success @ $100=0.54$

Predictive Probabilities

- Observe 12 / 20 (60%)
- Need 47 / 80 successes; 59% or better rest of way
- p-value $=0.25, \operatorname{Pr}(p>0.5)=0.81$
- Predictive probability of success @ $100=0.54$
- Observe $28 / 50$ (56%)
- Need 31/50 successes; 62% or better rest of way
- p-value $=0.24, \operatorname{Pr}(p>0.5)=0.80$
- Predictive probability of success @ $100=0.30$

41

Predictive Probabilities

- Observe 12 / 20 (60%)
- Need 47 / 80 successes; 59% or better rest of way
- p-value $=0.25, \operatorname{Pr}(p>0.5)=0.81$
- Predictive probability of success @ $100=0.54$
- Observe $28 / 50$ (56%)
- Need 31/50 successes; 62% or better rest of way
- p-value $=0.24, \operatorname{Pr}(p>0.5)=0.80$
- Predictive probability of success @ $100=0.30$
- Observe 41 / 75 (54.7\%)
- Need 18/25 successes; 72% or better rest of way
- p-value $=0.24, \operatorname{Pr}(p>0.5)=0.79$
- Predictive probability of success @ $100=0.086$

Predictive Probabilities

- Observe 12 / 20 (60%)
- Need 47 / 80 successes; 59% or better rest of way
- p-value $=0.25, \operatorname{Pr}(p>0.5)=0.81$
- Predictive probability of success @ $100=0.54$
- Observe 28 / 50 (56%)
- Need 31/50 successes; 62% or better rest of way
- p-value $=0.24, \operatorname{Pr}(p>0.5)=0.80$
- Predictive probability of success @ $100=0.30$
- Observe 41 / 75 (54.7\%)
- Need 18/25 successes; 72% or better rest of way
- p-value $=0.24, \operatorname{Pr}(p>0.5)=0.79$
- Predictive probability of success @ $100=0.086$

42

Another trial

- $N_{G}=100$ in Treatment \& Control Group
- Testing $p_{t}>p_{c}$ using Fisher' s Exact Test @ 0.025
- Observe
- 34/50 in Control Group
- 41/50 in Treatment Group
- What is predictive probability of success?

Predictive Probability

```
ta <-
xc <- 34; nc <- 50
pc <- rbeta(100000, alpha+xc, beta+nc-xc)
pt <- rbeta(100000, alpha+xt, beta+nt-xt)
xc.total <- xc + rbinom(100000, 50, pc
xt.total <- xt + rbinom(100000, 50, pt
p.values <- rep(NA,100000)
p.values <- rep(NA,
    p.values[i] <- fisher.test
        matrix(c(xc.total[i], 100-xc.total[i],
            xt.total[i],"100-xt.total[i]),nrow=2),
            alternative="less")$p.value
}
> mean(p.value<0.025)
[1] 0.549
```


GREEN numbers are when it's statistically superior RED are cases not significant
 Predictive Probability $\mathbf{= 0 . 5 4 9}$

46

Phase 2 Trials

- Early phase results
- Animal studies showed promise for disease
- Phase 1 showed non-toxic in healthy humans
- Questions for Phase 2
- Does the treatment work in humans
- Which dose is best
- Which dose(s) to take to Phase 3
- Is an dose with promising efficacy also safe
- What is likelihood of Phase 3 success

Adaptive Randomization Strategies

- Bandits
- Play the Winner
- Randomized Play the Winner
- Randomize $\sim \operatorname{Pr}($ Best Treatment $)$
- Randomize $\sim f(\operatorname{Pr}($ Best Treatment $))$
- Randomize \sim Dose that gives the most information
- One of these with constraints

Example In Uterine Cancer

- Phase 2 dose finding trial
- 3-armed RCT
- Control chemotherapy
- Control + experimental treatment q 2 w
- Control + experimental treatment q 1 w
- Goals
- Treat patients effectively \& ethically
- Learn about experimental treatment
- Explore adaptive designs
- This company's first attempt at an adaptive design

Adaptation

- Multiple trial characteristics may be changed during the course of the trial based on accumulating data
- Must pre-prescribe changes
- Available Doses
- Randomization proportions
- Time of interim analyses
- Maximum sample size
- Dose dropping rules
- Allow doses to re-enter?

50

Trial Setup

- Primary Outcome
- Progression Free Survival (PFS)
$-\lambda_{c}=$ Rate of PFS in Control population
$-\lambda_{2}=$ Rate of PFS in Control +q 2 w population
$-\lambda_{1}=$ Rate of PFS in Control +q 1 w population
- Expectation
- Control mean PFS $=303$ days, median $=210$
- Accrual
- 1 patient every 3 days for first 45 pts (135 days)
- 1 patient every 2 days thereafter
- Need to beat control by 10% to be marketable

Factors to Consider

- Statistical Model
- Parametric dose-response curve, non-parametric, independent arms
- Historical vs. vague priors
- How many doses
- Maximum sample size
- Timing of first interim analysis
- Timing of subsequent interim analyses
- Time based or patient based
- Randomization scheme
- Rules to drop doses
- Rules to allow doses to re-enter
- Rules to stop for futility
- Rules to stop for success
- How long to track patients after last patient enrolled

Statistical Model

- Assume time-to-progression exponential
- Priors on rates:
$\lambda_{\mathrm{c},} \lambda_{2}, \lambda_{1} \sim \Gamma(1,303$ days $)$
- Posteriors
$\lambda_{d} \mid$ Data $\sim \Gamma(1+\#$ Progressors, 303+Exposure Time)
- Also calculate probability each dose is best
_ "best" = has lowest PFS rate
$-p_{c}=\operatorname{Pr}\left(\lambda_{c}<\lambda_{2} \& \lambda_{c}<\lambda_{1}\right)$
$-p_{2}=\operatorname{Pr}\left(\lambda_{2}<\lambda_{\mathrm{c}} \& \lambda_{2}<\lambda_{1}\right)$
$-p_{1}=\operatorname{Pr}\left(\lambda_{1}<\lambda_{c} \& \lambda_{1}<\lambda_{2}\right)$

54

56

Statistical Summary

- Primary Outcome: Progression free survival
$-\lambda_{\mathrm{t}}=$ PFS rate for Treatment $t, t=\mathrm{A}, \mathrm{B}, \mathrm{C}$
- Statistical Assumptions and Modeling
- PFS distributed $y_{\mathrm{i}, \mathrm{t}} \sim \operatorname{Exp}\left(\lambda_{\mathrm{t}}\right) ; t=\mathrm{A}, \mathrm{B}, \mathrm{C}$
- Priors: $\lambda_{\mathrm{A}}, \lambda_{\mathrm{B}}, \lambda_{\mathrm{C}} \sim \Gamma(1,303)$

Equals 1 subject with mean 303 days
median $=210$ days
Median $=$ Mean $\times \log (2)$ for gamma dist

- Posteriors:

$$
\lambda_{\mathrm{t}} \mid \text { data } \sim \Gamma\left(1+\# \text { Events }_{\mathrm{t}}, 303+\text { Exposure }_{\mathrm{t}}\right)
$$

57

Complication I'll ignore

- In fact there were 2 types of patients platinum sensitive \& platinum refractory
- Expect mean TTP shorter for refractory TTP in refractory $=2 / 7$ that of sensitive
- Model event rates as $\gamma \lambda_{\mathrm{d}}$ for refractory assume γ same across groups
- Prior on $\log (\gamma) \sim \mathrm{N}\left(0,10^{2}\right)$
- Means we no longer have conjugate priors must use Metropolis-Hastings algorithm

58

60

Maximum Sample Size

- Oftentimes determined by company resources
- Considered 150 \& 195

61

Randomization

- Randomize first 45 patients 15:15:15
- Start interim analysis after 45 th patient enrolled
- Repeat interim analyses every 15 patients
- Approximately every 1 month with expected accrual
- This timing worked logistically
- Allowed blocks of 15 to ensure patients on each dose
- Open question: How to randomize?

Timing of interim analyses

- Expected accrual rate $=3$ days per patient
- 45 patients take 135 days
- With expected $\lambda_{c}=1 / 303$
- Expect 8.5 events by 135 days
- Median 8, IQR 7-10

62

Randomization Options

- Let $r_{d}=$ randomization probability to dose d
- Let $p_{d}=$ probability arm d has lowest (best) progression rate
- Randomization weighting by C

$$
r_{d}=\frac{p_{d}^{C}}{p_{1}^{C}+p_{2}^{C}+p_{3}^{C}+\ldots+p_{D}^{C}}
$$

64

Randomization Options
 $$
r_{d}=\frac{p_{d}^{c}}{p_{1}^{c}+p_{2}^{c}+p_{3}^{c}+\ldots+p_{D}^{c}}
$$

- $C=0$, equal randomization ($r_{d}=1 /$ Number of Groups)
- $C=1$, proportional to probability best $\left(r_{d}=p_{d}\right)$
- $C \geq 1$
- strongly favor 1 arm earlier in the trial, even when treatments are equal
- more subjects likely assigned to the best treatment
- $\mathrm{C} \rightarrow$ big means assign all to best treatment, play the leader
- $0<C<1$
- weakly favor better
- fewer subjects likely assigned to best treatment
- more even distribution early in trials
- randomization less affected by early events
- $C=n / N$, trial begins with $\mathrm{c}=0$ and ends with $\mathrm{c}=1$

65

Rules to Stop

- When to Stop for Success?
- If $p_{2}>0.95$, stop for success
- If $p_{1}>0.95$, stop for success
- Take successful dose to Phase III
- What if experimental doses equally effective?
- Instead use if $p_{C}<0.10$ or 0.05 to success stop?

Rules to Stop

- When to Stop for Success?
- If $p_{2}>0.95$, stop for success
- If $p_{1}>0.95$, stop for success
- Take successful dose to Phase III
- What if experimental doses equally effective?

66

Rules to Stop

- When to Stop for Futility?
- If $p_{2}<0.05$ drop q2w arm
- If $p_{1}<0.05$ drop q1w arm
- If both arms dropped, trial ends
- Allow dropped arms to re-enter?

Rules to Stop

- When to Stop for Futility?

Post Accrual Tracking

- Choose to track patients for 1-year post accrual
- 70% chance last patient will have event

$$
1-\mathrm{e}^{-365 / 303}=0.70
$$

- Under assumed accrual rates \& $\mathrm{N}=195,83 \%$ of patients will have events if $\lambda=1 / 303$.

At each interim analysis

1. Calculate:

Posteriors $\lambda_{\mathrm{t}} \mid$ data; $t \in \mathrm{~A}, \mathrm{~B}, \mathrm{C}$
$p_{t}=\mathrm{P}($ Treatment t is 'Best' treatment \mid data $)$
e.g. $p_{B}=\mathrm{P}\left(\lambda_{\mathrm{B}} \leq \lambda_{\mathrm{A}} \& \lambda_{\mathrm{C}} \mid\right.$ data $)$

P (Treatment t is $\geq 10 \%$ better than $\mathrm{A} \mid$ data $)$
2. Check superiority and futility stopping/dropping rules
3. Randomize next 15 subjects with probability p_{t}
4. Repeat steps $1-4$ up to 195 subjects

74


```
Max N = 195, Firstlook=45
```



```
M,
    M
Doing case =
Noing case= Mean TTP = 303.00
```



```
M,
lullllllll
    M Total N= N=at(180.345)
```

$\underset{\text { Doing Case }}{\operatorname{Max}} \underset{\sim}{\mathrm{N}}=195$, Firstlook $=90$

75

77

78

Design Parameters

- First look@45
- Interim analyses every 15 patients
- Maximum $=195$ patients
- Success
- If $P_{2}>0.95$, stop for success
- If $P_{1}>0.95$, stop for success
- Take successful dose to Phase III
- Futility
- If $\operatorname{Pr}\left(\lambda_{c} / \lambda_{2}>1.10 \mid\right.$ Data) <0.05 drop q2w arm
- If $\operatorname{Pr}\left(\lambda_{c} / \lambda_{1}>1.10 \mid\right.$ Data) <0.05 drop q1w arm
- If both arms dropped, trial ends

Show Individual Trials

- Best way to illustrate the adaptive design is to show example trials to collaborators
- GREAT for debugging!

Show Individual Trials

- Best way to illustrate the adaptive design is to show example trials to collaborators

82

84

Output I Shared (Make it prettier)							
Treatment	Mean PFS	$\% \Delta$	Mean N	SD	Pr(Best)	Pr(Win)	Pr(Beat Control)
Control	303		59.7	25.3	0.343	0.000	------
+q2w	303	No Δ	59.7	28.4	0.322	0.007	0.054
+q1w	303	No Δ	60.0	28.5	0.335	0.008	0.053
Fully Adaptive Trial			179.4	38.7	$\begin{aligned} & \operatorname{Pr}(\text { Stop for Success })=0.071 \\ & \operatorname{Pr}(\text { Stop for Futility })=0.117 \\ & \operatorname{Pr}(\text { Stop for Max })=0.813 \\ & \operatorname{Pr}(\text { Either Beats Control })=0.090 \\ & \hline \end{aligned}$		
Treatment	Mean PFS	\% Δ	$\begin{gathered} \text { Mean } \\ \mathrm{N} \end{gathered}$	SD	Pr (Best)	$\operatorname{Pr}(\mathrm{Win})$	Pr(Beat Control)
Control	303		34.0	14.2	0.001	0.000	---
+q2w	455	+50\%	56.9	27.0	0.099	0.002	0.462
+q1w	606	+100\%	79.4	28.6	0.900	0.351	0.881
Fully Adaptive Trial			170.3	43.2	$\begin{aligned} & \operatorname{Pr}(\text { Stop for Success })=0.345 \\ & \operatorname{Pr}(\text { Stop for Futility })=0.004 \\ & \operatorname{Pr}(\text { Stop for Max })=0.650 \\ & \operatorname{Pr}(\text { Either Beats Control })=0.907 \\ & \hline \end{aligned}$		
85							

85

86

88

89

91

90

92

93

95

94

96

102

104

105

Original Study Design

- Sponsor seeks $510(\mathrm{k})$ approval
- Maximum of 318 subjects
- Hypotheses:
- Efficacy superiority (2.5% Type I error)
- Safety noninferiority 10% margin (5% Type I error)
- OBF interim analysis at 33% information

EXCITE Trial Background

- Patients with peripheral artery disease and instent restenosis
- Randomized trial of
- Control: Balloon angioplasty
- Treatment: Laser ablation
- Primary Efficacy: Freedom from target lesion revascularization at 6 months
- Primary Safety: Freedom from major adverse events at 30 days

106

Adjunct Analysis

- Randomized trial had slow enrollment
- PATENT: A single arm trial of the laser ablation in Europe completed
- Sponsor asks: can we use the single arm trial to supplement the randomized trial?

PATENT Trial

- One arm trial
- Efficacy
- 80 evaluable patients
- 79% success rate $(63 / 80)$
- Safety
- 90 evaluable patients
-4.4% event rate (4/90)

109

Hierarchical Borrowing

- τ^{2} is between study variability
$-\tau^{2}=0$ corresponds to $\gamma_{0}=\gamma_{1}$ or simple pooling
$-\tau^{2}=$ gigantic corresponds to no borrowing
- τ^{2} estimated based on the observed data
- Estimating τ^{2} with 2 studies is hard \& means the prior is always informative
- Allows for a dynamic amount of borrowing
- $\tau^{2} \sim \operatorname{IG}(0.025,0.0000025)$.
- Today I'd use $\tau^{2} \sim \mathrm{U}(0,5)$ or $\tau^{2} \sim \mathrm{U}(0,20)$

Hierarchical Borrowing

- Define p_{0} as the proportion successes in EXCITE and p_{1} as the proportion successes in PATENT
- Model the log-odds of success

$$
\gamma_{i}=\log \left(\frac{p_{i}}{1-p_{i}}\right) i=0,1
$$

- Assume $\gamma_{i} \sim \mathrm{~N}\left(\mu, \tau^{2}\right)$
- Place hyperpriors on μ and τ^{2}

110

112

113

115

114

116

117

119

118

120

Adjunct Analysis Plan

- Simulations explored
- Amount of borrowing (Weaker \rightarrow Stronger)
- Thresholds for claiming success at each look
- Accrual rates
- Simulations showed control of overall onesided Type I error $<5 \%$ (both endpoints)

123

122

124

129

Conclusions

- Study met the adjunct analysis success criteria in Feb 2014
- 510K approval given in July 2014
- Randomized data showed a benefit in terms of efficacy and safety
- Borrowing from prior data increased precision
- Borrowing via prospectively defined rule
- Borrowing dependent on similarity of new trial with previous trial
- Allowed stopping earlier than an OBF bound

Compare to the O'Brien Fleming

Interim Analysis	\% Information	Nominal P-Value	Observed P-Value
200 Pts	44%	0.0011	0.1005
250 Pts	60%	0.0043	0.006
300 Pts	78%	0.0105	--
Final	100%	0.0208	--

Woodcock \& Lavange, NEJM 2017

- High-quality evidence is what we use to guide medical practice. The standard approach to generating this evidence - a series of clinical trials, each investigating one or two interventions in a single disease - has become ever more expensive and challenging to execute. As a result, important clinical questions go unanswered.
- A methodologic innovation responsive to this need involves coordinated efforts to evaluate more than one or two treatments in more than one patient type or disease within the same overall trial structure. Such efforts are referred to as master protocols, defined as one overarching protocol designed to answer multiple questions.

Master Protocols

- May or may not compare treatment across groups
- One structure, but each TX vs. common control
- Reported as multiple trials (e.g. 1 per intervention)
- Sites have one set of rules, execute like 1 trial
- Intensive pretrial discussion among sponsors
- data use, publication rights, and the timing of regulatory submission
- Matchmaker
- Therapies to targeted subpopulations

Woodcock \& Lavange, NEJM 2017

- Master protocols may involve one or more interventions in multiple diseases or a single disease, as defined by current disease classification, with multiple interventions, each targeting a particular biomarkerdefined population or disease subtype. Included under this broad definition of a master protocol are three distinct entities: umbrella, basket, and platform trials (Table 1 and Figs. 1 and 2). All constitute a collection of trials or substudies that share key design components and operational aspects to achieve better coordination than can be achieved in single trials designed and conducted independently.

Master ProtOCOlS	
Table 1. Types of Master Protocols. Type of Trial Umbrella Basket To study multiple targeted therapies in the context of a single disease	To study a single targeted therapy in the context of multiple diseases or disease subtypes
To study multiple targeted therapies in the context of a single disease in a perpetual manner, with therapies allowed to enter or leave the platform on the basis of a decision algo- rithm	

137

Asking the Right Question

- Current Clinical Trials

Is this drug effective and safe?

More precisely
What is the probability of the observed data assuming the treatment is no good?

Platform Trials

Asking the Right Question

- Current Clinical Trials
- Is this drug effective and safe compared to a placebo?
- Is this drug effective \& safe compared to the SOC
- Correction Question
- What is the best treatment for this Patient?
- What is the best treatment for this type of patient?

Traditional Trial Design

Platform Trial

- An experimental infrastructure to evaluate multiple treatments, often for a group of diseases, and intended to function continually and be productive beyond the evaluation of any individual treatment
- Designed around a group of related diseases rather than a single treatment
- Disease focused not treatment focused
- Dynamic list of available treatments, assigned with responseadaptive randomization
- Preferred treatments may depend on health system, patient, or disease-level characteristics

144

145

147

146

148

149

151

152

Platform Trials are Happening

- Cancer
- I-SPY2 in Breast Cancer
- GBM AGILE in Glioblastoma multiforme
- LUNG-MAP in Lung Cancer
- PANCAN in Pancreatic Cancer
- Alzheimer's
- EPAD: European Prevention of Alzheimer's Dementia
- DIAN: Dominantly Inherited Alzheimer's Network
- ALS
- Healey ALS Platform Trial, Phase $2 / 3$ with 5 drugs

153

155

Platform Trials are Happening

- Infection diseases
- Gates Foundation sponsored Ebola design
- NIH Ebola design
- PREPARE: European Consortium for Disease Preparedness
- Pandemic flu, Butler at al Lancet, Jan 2020
- remap cap (Community Acquired Pneumonia) ongoing, RemAPCAP.org
- COVID-19
- RECOVERY
- ACTT by NIAID -- the Remdesivir trial
- SOLIDARITY by WHO, 4 arms
- REMAP-COVID by International consortium critical care trial
- PRINCIPLE in UK, pre-hospital trial
- ISPY-COVID: UCSF \& WISDOM Network, Phase 2
- ACTIV by NIH

Benjamin R Saville ${ }^{1,2}$ and Scott M Berry ${ }^{1,3}$

Abstract

Background: A "platform trial" is a clinical trial with a single master protocol in which multiple treatments are evaluated simultaneously. Adaptive plafform designs offer flexible features such as dropping treatments for futility, declaring one or more treatments superior, or adding new treatments to be tested during the course of a trial.
Methods: A simulation study explores the efficiencies of various platform trial designs relative to a traditional two-arm
strategy. Pl
greater probability of success than a traditional two-arm strategy.
Conclusion: In an era of modern treatments.

Keywords
Keywords
Platform trial, master protocol, multi-arm, adaptive, Bayesian, clinical trial design
156

157

The Problem: Ebola Treatment Trial

- Acknowledge universe of possible treatments
- Will evolve over time
- Recognition that combinations may play an important role
- Uncertainty over role of standard of care
- Our Goal: To determine best treatment for treating ebola
- Not a trial to determine if a single drug X works

EBOLA

Thanks to: Scott Berry, Elizabeth Petzold, Chris Woods, David Hoover

EV-003 Adaptive Platform Design

- Reviewed and approved by:
- Duke University IRB
- University of Sierra Leone ethics committee
- Master Protocol dictates trial behavior, each treatment included as an appendix
- Multiple Agents
- Primary \& Secondary agents
- Combination + Single agents
- Response Adaptive Randomization (RAR)
- Run by a single algorithm
- Assigns treatment regimens that are performing better using collection of primary endpoint data
- Protocol is built so trial arms evolve (part of the protocol!), trial is perpetual
- Endpoint is 14-day mortality

Primary/Secondary Agents

- All arms receive optimized standard of care (SOC)
- Primary and Secondary agents
- Primary: Expected capability to work as single agent (e.g. anti-viral efficacy)
- Secondary: Expected to work with other agents (not given alone)

161

Design Details

Burn-In Enrollment

- Endpoint: Death (Dichotomous, events are bad)
- Start with burn-in period to all 10 regimens
- Equal randomization to 10 arms
- 30 subjects / 3 per arm
- After burn-in
- Response adaptive randomization
- Proportional to probability regimen is optimal
- Adjusted for information
- Continue perpetually (committee can change vote)

162

Decision Criteria (In/Out)

- If there is a less than 0.01 probability an agent is part of the optimal regimen
- Candidate for futility
- If the probability an agent is in the optimal regimen is greater than 0.95
- Report to the steering committee for public dissemination
- If a regimen has at least a 0.95 probability of being superior to SOC Alone then SOC Alone is reported for removal

165

166

$$
\begin{aligned}
& \text { Statistical Model } \\
& \text { Analyze } \\
& \text { Available Data } \\
& \log \left(\frac{p}{1-p}\right)=\alpha+\sum_{X=1}^{M}[X]+\sum_{X=1}^{M} \sum_{Y=X+1}^{M}[X, Y]+\lambda_{\text {TIME }}
\end{aligned}
$$

- Priors:

$$
[X] \sim N\left(0,1^{2}\right) \quad[X, Y] \sim N\left(0,0.2^{2}\right)
$$

$\mathrm{N}\left(0,0.2^{2}\right)$ has $95 \% \mathrm{Cl}$ from about $2 / 3$ to $3 / 2$.

169

171

Example Trial

Regimens	Agents				
	1	2	3	4	
Agents	1				
	2				
	3				
	4				

197

199

198

200

Summary

- Incredibly powerful design for finding effective therapies and combinations in the universe of treatments
- Type III Error (the question never asked!)
- Allows the arms to evolve internally and externally to changing science
- Improved Embedded Care: Efficiently and quickly identifies best agents, while treating patients more effectively
- Have design ready-on the shelf for next pandemic - A number of parameters can be optimized quickly
- Protocol ready (add appendices)
- Models + simulations ready
- Need independent committee to decide which drugs to plug in

Testing a New Treatment

- Standard of Care works in 40\%

10% of Patients Benefit

- Standard of Care works in 40%
- New therapy works in 50%

205

207

50% still untreatable

- Standard of Care works in 40%
- New therapy works in 50%
- Nothing works in 50%
- How many patients do we need to have 90% chance to see a 'statistically significant' difference?

206

Need 1036 patients for 90% Power

SOC Works

- 90% of patients you enroll tell you nothing
- Standard of Care works in 40%
- New therapy works in 50%
- Nothing works in 50%

What if you KNEW which 10%

Benefit

- If you just enrolled the purple patients how many patients do you need for 90% power?

210
 Benefit

- Enroll 20\% to capture the 10%
- 25% cured by SOC
- 25% still not cured
- 50% of enrolled patients benefit

213

215

214

Platform Example 2

GBM AGILE
 Adaptive Global Innovative Learning Environment Trial Design V1

EXAMPLE TRIAL ONLY TRIAL HAS CHANGED DRAMATICALLY SINCE THIS

Thanks to Todd Graves \& Don Berry

217

219

Statistical Model

- Primary outcome: Overall Survival
- Time-to-event model including
- Age
- Tumor Size
- Performance Status
- Site (tobededined
- Drug
- Drug \times Biomarker
- Drug \times Biomarker \times Biomarker
- Flexible to add drugs \& biomarkers on the fly

218

220

221

Response-adaptive randomization

- Randomize separately within signature
- Randomization probability proportional to $\operatorname{Pr}(\mathrm{HR}<0.75)$
- If randomization probability $<5 \%$, round to 0
- If $\mathrm{N}<50$, min rand prob $=1 / \#$ of drugs
- Probability randomize to control =

Probability randomize to best drug

- Update monthly

2×2 Biomarkers $\rightarrow 1$ Signature

Newly diagnosed MGMT-unmethylated	Newly diagnosed MGMT-methylated
Recurrent GBM MGMT-unmethylated	Recurrent GBM MGMT-methylated

222

224

Graduation

A drug graduates if, within any signature,
$\cdot \operatorname{Pr}(\mathrm{HR}<1)>99 \%$
-Min 75 patients on that drug overall

- Min 300 pt-months exposure on that signature

When a drug graduates
-Drug out of trial
-Data for all subtypes delivered to sponsor

225

227

Futility

A drug is removed from the trial for futility if

- $\operatorname{Pr}(\mathrm{HR}<0.75)<5 \%$ for all signatures
- At least 50 patients

Or

- Been enrolling for 3 years

Stop at Max $\mathrm{N}=150$ over all signatures

226

228

229

231

230

232

Factors We Can Tune

- Max N per drug
- Signatures (Biomarker-drug interactions)
- Randomization algorithm
- Futility rule
$-\operatorname{Pr}(\mathrm{HR}<0.75)$
- Min N
- Max time allowed to accrue
- Graduation rule
$-\operatorname{Pr}(H R<1)$
- Min N, Min Exposure

233

Challenges in Platform Trials

- Complexity in trial implementation and planning
- Collaborations across sponsors - who initiates the planning?
- Timely communication between participating sites and data coordinating units
- Sponsors sacrifice autonomy in running the trial
- Determining shared costs
- Identifying what to report when
- iSpy2 has rules for 'graduating'
- When to report subgroup results broadly?

Learn \& Confirm Using Biomarkers

- Make confirmatory trials dramatically smaller
- Or learn \& confirm within a trial
- Lead us toward personalized medicine
- What works best in whom?
- May require larger platforms trials, data sharing \& adaptive randomization to efficiently identify
- Different drugs work in different types of patients
- Not one trial, one patient type
- Learn, confirm, perpetually

234

Platform Trial Efficiencies

- Useful for evaluating combinations of treatments and for direct comparisons between competing treatments
- Decide a prior whether each vs. control or vs. each other
- Do not require a new trial infrastructure for every treatment under investigation
- Easier for regulators given evidence comes in common form
- Always new drugs on horizon
- Even if lull, get SOC in the process
- Can build in Phase $2 / 3$ design
- Learn \& confirm
- Need to prospectively define control group
- Concurrent controls
- 'Time machine'
- What if control group changes

Conclusions

- Adaptive trial designs can be used to create a seamless process in which new evidence about effectiveness is immediately used to improve patient care
- A platform trial can extend this process beyond a single treatment or few treatments
- Current work is focused on embedding this approach into the health care infrastructure
- Patients will benefit if we merge clinical trials and decision support into a single, continuous process

239

Thank you!

- Thank you for a great class.
- Please complete evaluations

To access evaluations, log in to https://si.biostat.washington.edu/user/login, click "My Account" in the upper right, the evaluations will appear on your dashboard.
After you have completed your evaluations, a link to download the certificate of completion will appear within 24 hours.

238

Background

- Medical device to treat atrial fibrillation (AF)
- Used during open cardiac surgery
- Only used when surgery being done for other reason
- e.g., CABG, Valve replacement
- Label was to 'ablate cardiac tissue' not 'treat AF'
- Trial needed to produce evidence of safety and efficacy for treatment of AF
- Controlled trial not possible due to extensive use

Background

- Early safety study with matched controls failed to enroll
- Matched control having same cardiac surgery without AF treatment component
- Stopped@32 months when 39 cases \& just 5 controls enrolled
- FDA suggested to company to explore Bayesian adaptive trial with safety \& efficacy OPCs

Statistical Endpoints

- Show $\operatorname{Pr}\left(p_{E}>0.60\right)>0.975$
$-70 \%-\delta_{\mathrm{E}}=70 \%-10 \%=60 \%$
- Show $\operatorname{Pr}\left(p_{S}<0.1895\right)>0.95$
$-13.95 \%+\delta_{\mathrm{S}}=13.95 \%+5 \%=18.95 \%$
- Achievable in 100 patients if
- observed efficacy $\geq 70 \%$
- observed safety $\leq 12 \%$
- basically point estimates have to match or beat OPCs
- $p_{E}, p_{S} \sim \operatorname{Beta}(1,1)$ priors for both endpoints

Objective Performance Criteria

- Efficacy OPC (6m)
- AF free \& off AF drugs at 6 months
- Goal: $70 \%, \delta_{\mathrm{E}}=10 \%$
- Based upon published rates of this procedure
- 10 papers had 60.1% efficacy
- Safety OPC (1m)
- Free of significant adverse event
- Goal: 13.95%, $\delta_{\mathrm{S}}=5 \%$
- Based upon published SAE rates in Cut \& Sew MAZE

242

Goldilocks Design

- Enroll 50-100 patients
- Must have 20 patients at 6 months or skip analysis
- Interim analyses every 5 patients
- Final sample size based upon predictive probabilities
- Expect to enroll 5 patients per month
~ 30 patients enrolled without complete 6 m data

Stopping Decisions

- $P_{n}=\operatorname{Pr}($ Meet Efficacy \& Safety Goals with current sample size $n \mid$ Current Data)
- If $P_{n} \geq S_{n}$ then stop accrual for predicted success
$-\mathrm{S}_{\mathrm{n}}=0.90$ for $\mathrm{n}=50-65$
$-\mathrm{S}_{\mathrm{n}}=0.85$ for $\mathrm{n}=70-80$
$-\mathrm{S}_{\mathrm{n}}=0.80$ for $\mathrm{n}=85-95$
- $P_{\text {max }}=\operatorname{Pr}($ Meet Efficacy @ Safety Goals with 100 patients | Current Data)
- If $P_{n} \leq F_{n}$ then stop trial for futility
$-\mathrm{F}_{\mathrm{n}}=0.05$ for $\mathrm{n}=50-70$
$-\mathrm{F}_{\mathrm{n}}=0.10$ for $\mathrm{n}=75-95$

245

per	$\begin{gathered} \text { ng } \mathrm{Cl} \\ p_{T}= \end{gathered}$	$\begin{aligned} & \text { racte } \\ & 0.84 \end{aligned}$	tics for $=0.0$	Tria	
$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$	Proportion Of Trials	Stop for Futility	Stop Early For Success	\& Lose	\& Win
50	0.440	0.008	0.432	0.011	${ }_{0} .421$
55	0.150	${ }^{0.003}$	0.147	0.007	0.140
60	${ }^{0.109}$	${ }^{0.006}$	${ }^{0.102}$	0.005	0.097
65	${ }_{0} 0.033$	${ }_{0} 0.004$	0.029	0.002	0.027
70	${ }^{0.063}$	0.002	0.061	0.002	0.058
75	0.034	${ }^{0.006}$	0.027	0.002	0.025
80	0.031	0.011	0.020	0.000	0.020
85	0.042	0.002	0.040	0.000	0.040
90	0.009	0.006	0.003	0.000	0.003
95	0.019	0.003	0.016	0.000	0.016
100	0.070	---	0.070	0.011	0.058
Total	1.000	0.053	0.947	0.042	0.906
Mean Sample Size $=61.6, \mathrm{SD}=15.6$					
247					

Mean Sample Size $=61.6, \mathrm{SD}=15.6$

Longitudinal Model

- Efficacy outcome is AF-free and off AADs at 6 m
- Interim outcome at 3-months is whether patients are AF-free already
- Predict 6m outcomes using Beta-Binomial

```
Group
No 3m data
    5 1 1 83%
In AF
    4.2 1.8 70%
AF-free
    5.4 0.6 90%
```

Efficacy $=84 \%$ Safety $=6 \%$

248

253

Interim Analysis

- $\mathrm{x}_{\mathrm{o}}=5$ enrolled with <3 mo follow-up
$-\mathrm{x}_{\mathrm{o}} \sim \operatorname{Beta}-\operatorname{Bin}\left(n_{0}=5, \alpha=5+24, \beta=1+5\right)$
- x - $=3$ enrolled not AF-free at 3mo
$-\mathrm{x} \sim \operatorname{Beta}-\operatorname{Bin}\left(n_{-}=3, \alpha=4.2+3, \beta=1.8+1\right)$
- $\mathrm{x}+=13$ enrolled AF-free at 3 mo
$-\mathrm{x}+\sim \operatorname{Beta}-\operatorname{Bin}(\mathrm{n}+=13, \quad=5.4+17$, $=0.6+3$)
- $\operatorname{Pr}\left(24+x_{o}+x_{-}+x_{+} \geq 37\right)=0.988$

Interim Analysis

- No look at 50 patients
- At 55-patients August 24, 2009
- All patients through 30-day safety, 5/55 had SAEs
- 24/29 efficacy successes at 6 -months
- 21 subjects remain under surveillance
- $37 / 50$ successes would show

$$
\operatorname{Pr}\left(p_{t}>0.60 \mid 37 \text { of } 50\right)=0.978>0.975
$$

- Total number of efficacy successes

$$
\mathrm{X}=24+\mathrm{x}_{\mathrm{o}}+\mathrm{x}_{+}+\mathrm{x}
$$

Interim Analysis

- $\mathrm{x}_{\mathrm{o}}=5$ enrolled with $<3 \mathrm{mo}$ follow-up $\begin{gathered}\text { Longitudinal Priors } \\ \text { were right on }\end{gathered}$
$-x_{0} \sim \operatorname{Beta}-\operatorname{Bin}\left(n_{0}=5, \alpha=5+24, \beta=1+5\right) \quad 5 / 6=.83$
- $\mathrm{x}-=3$ enrolled not AF-free at $3 \mathrm{mo} \quad 24 / 29=.83$
$-x_{-} \sim \operatorname{Beta}-\operatorname{Bin}\left(n_{-}=3, \alpha=4.2+3, \beta=1.8+1\right) \quad 4.2 / 6=.70$
- $\mathrm{x}+=13$ enrolled AF-free at $3 \mathrm{mo} \quad 3 / 4=.75$
$-\mathrm{x}+\sim \operatorname{Beta-\operatorname {Bin}(\mathrm {n}+=13,\quad =5.4+17,\quad 5.4/6=.90}$ $\begin{array}{ll}=0.6+3) & 17 / 20=.85\end{array}$
- $\operatorname{Pr}\left(24+x_{o}+x_{-}+x_{+} \geq 37\right)=0.988$

Prediction of 21 remaining pts based on 29 observed pts

257

Stopped Accrual for
 Predicted Success

- Accrual stopped with 55 patients in
- Continue to follow 21 enrolled patients
- Perform final analysis on complete data
- Final Data
$-5 / 55$ SAEs
- 37/50 AF-free and off AADs

Sample Size Analysis at 55 pts
Current Patients Enrolled: 55
Current patients not contributing to efficacy: 5
Current Safety Events: 5 of 55 patients
Current Efficacy Success: 24 of 29 patients
Current Efficacy Successes: 3 of 4 Efficacy Failures at 3 months
Current Efficacy Successes: 17 of 20 Efficacy Successes at 3 months
0 enrolled patients to predict for 1 lmo safety outcomes
45 future patients to predict for 1 mo safety outcomes
5 enrolled patients with <3mo to predict for efficacy outcomes
3 enrolled patients with AF at 3 mo to predict for 6 mo efficacy

13 enrolled patients without AF at 3 mo to predict for 6 no
45 future patients to predict for 6 mo efficacy outcomes
Predicted Safety Events with Current Accrual: 5 (5-5) of 55 patients
Predicted Safety Events with Maximum Accrual: $9.7(6-16)$ of 100 patients 12 or fewer needed for safety success
 Predicted Efficary Suceasses wift Maxy mum Accrual: $78.8(69-86)$ of 95 patient
67 or more needed for efficacy success
Decision Rule: Stop Enrolling Due to Predicted Success
 predicted success

258

260

Post Trial Discussion with FDA

- Efficacy barely won
- One less success would have failed to meet primary endpoint
- Not a robust win, in part due to post-hoc changes related to inc/excl criteria
- Some concern with $\mathrm{n}=55$
- But this was possible based upon design
- Safety OPC $=0.1395$, observed 0.091
- Efficacy OPC $=0.70$, observed 0.74

261

Efficacy: Compare Stopping at $\mathrm{n}=50$ to Maximum Trial Size $n=100$

263

Safety: Compare Stopping at $\mathrm{n}=55$ to

 Maximum Trial Size $n=100$

262

FDA Advisory Panel Vote Oct 2011

- Is there reasonable assurance that the AtriCure Synergy Ablation System is effective ...? - 9 for, 0 against
- Is there reasonable assurance that the AtriCure Synergy Ablation System is safe...?
- 5 for, 4 against, 1 abstain (chair broke $4-4$ tie)
- Largely due to patients needing pacemakers
- Do the benefits ... outweigh the risks ...?
- 5 for, 3 against, 1 abstain

[heartwire]

AtriCure AF ablation system gets cautious thumbs-up from FDA advisors

```
OCTOBER 26,2011 Michael O'Riordan
0 Coment
Read later
```



```
FRecommend 0 YTweot 4
```


Rockville, MD (updated) - The AtriCure Synergy Ablation System squeaked by today in a meeting of the
Food and Drug Administration
five panel members believed the benefits of the ablation system outweighed the risks when used in the
reatment of atrial-fibrillation (AF) patients undergoing open concomitant coronary artery bypass graft
reatment of atrial-fibrillation (AF) patients undergoing open concomitant coronary artery bypass graft
(CABC) surgery and /or valve replacements or reparir. Three panelists expressed doubts about the system and
cautioned gaainst device approval, voting that they did not believe the benefits outweighed the risks.
cautioned against device approval, voting that they did not believe the bene
In a vote on efficaccy alone, all panelists believed the ablation system is effective in restoring sinus rhythm,
but they were split for the vote on saferty Chair on the addivons panel., er Jochn Hircshtofld (Univiersity of
Pennsylvania, Philadelphia), cast the deciding vote on safety, saying he believes there is reasonable
assurance the device is safe for use in patients who meet the indication criteria. overall, the panel voted 9 to
0 on efficacy and 5 to 4 on safety (with one abstention).
Panel member Dr David Slotwiner (Long Island Jewish Medical Center, New Hyde Park, NY) voted in favor of
Panel member Dr David Slotwiner (Long Island Jewish Medical Center, New
the ablation system, saying that he believes the benefits outweigh the risks.
"I think it's effective at creating these ablation lesions, and I think it's effective in many people for
maintaining sinus rhythm, although what that means [clinically] for many patients remains unanswered," he
said. "But I hope, mostly, that if an approval is granted, it will allow us to get more information and to
ducate more surgeons so that the procedure becomes more widely available and we understand better who
educate more surgeon
will benefit the most."

FDA Approved Dec 14, 2011

- Study Design (from device label)
- ABLATE was a multi-center, prospective, nonrandomized study based on a Bayesian adaptive design that provides high probability of demonstrating safety and effectiveness of the AtriCure Synergy Ablation System for the treatment of permanent atrial fibrillation. The safety and effectiveness of the device was compared to performance goals derived from historical information. The Bayesian adaptive clinical design incorporated interim analyses of the data to determine the point of completion of trial enrollment. Enrollment was targeted to be between 50 and 100 subjects at 20 sites. The study was designed to have an initial assessment of results at the point that 50 subjects were enrolled with a minimum of 20 subjects completing their six-month follow-up visit. Nine investigational sites enrolled 55 subjects.

Lessons

- Ensure minimum sample size will suffice
- Not just statistical, but impactful
- Company did a continue access protocol to get more patients during review, leading to panel
- Ensure data isn't coded optimistically
- Ensure inclusion / exclusion criteria rigorously followed
- Goldilocks gets the size 'just right' but that means you can be close to 'just wrong' if some data changes post hoc

[^0]: 7

