Bayes:

lan Adaptive

Clinica

| 'Trial Design

Jason Connor

ConfluenceStat

Jason@ConfluenceStat.com
412-860-3113

Day 2






ESSET Code



Deftinitions, Trial Parameters

rm(list=1s())

## All times in months

library(VGAM)

v = list(
### Event, success probabilities for IV, IV+2nd therapy, Oral, Oral + 2nd therapy
S3 = c(## There are success rates for the three groups

0:50 giif Response Rates

)/

MaXNdaximum sample size & max sample size for Stage 1
MaxN = 795,

# Priors

a = rep(l, 3), F) I

b = rep(1, 3), rIC)rSS
# First look and look every

firstlook = 300,
firststop = 400

lookevery = 100, Sample Size &

# Min to randomized . .

minpr = 0.05, T g f L k
# simulations IrT]Ir] () C)() ES
nsims = 1000,

badlim = 0.25,

# critv to (a) for 'best'

# (b) for 'worst'
# (c) to stop for futility (i.e Pred prob a winner or loser id'd)
# (d) for worse than 25%

critv = c(.975, .975, 0.05, 0.05)
)

Critical values for stopping



simtrials <- function(v){

co <- ppcutoffs(vScritv([3])

dout .mat Creates a big matrix to
(1) N store simulation results

(2-4) N per group
(5-7) Rank as 1, 2, 3 (according to prob best)
(8) Sig best (1 2 or 3 or 0 if none)
(9) Sig worst (1 2 or 3 or 0 if none)
(10) Final conclusion
= overall futility stop,
= stop early for winner
= stop early for winner & loser

1
2
3
4 = stop early for loser and futility (not possible in ours)
5 = max overall futility
6 = max and loser
7 = max and winner
8 = max & winner & loser
(11-13) Final Pr(best)
(14-16) Final Pr(2nd)
(17-19) Final Pr(worst)
(20-22) Successes per group

FhoF o OFH W OFH O W OFHHFH W OH WO FH K OH H W

(23-25) Ever drop arm? (rand goes to 0 at any pt)



out.

Simulate group assignment

mat <- matrix(NA, nrow=v$nsims, ncol=25)

for(s in l:v$nsims){ & response to tx

##

ad <- c(1,1,1)
## Rand assignment for first FirstLook pts & generate outcome
group <- rep(NA, vS$MaxN)
group[l:v$firstlook] <- rand.new(v$firstlook, c(1,1,1))
y <- rep(NA, v$MaxN)
y[l:v$Sfirstlook] <- sim.endpoint(group[l:v$Sfirstlook], v$S3)
lookl <- interim(v$firstlook, y, group, Vv, coO)
print (round(lookl,3)) . . ]
# Track if arm every dropped FlrSt |nter|m IOOk
ad <- ad * as.numeric(lookl[12:14]1>0)
n.now <- v$firstlook

print(c(s,n.now))

Now loop through Stage 1 Simulate group assignment
white(lookll11==1) & response to tx

new <- min(v$MaxN-n.now, v$lookevery)
group[ (n.now+l):(n.now+new)] <- rand.new(new, lookl[12:14])

y[(n.now+l):(n.now+new)] <- sim.endpoint(group[ (n.now+l):(n.nowtnew)], v$S3)
lookl <- interim(n.now+new, y, group, V, CO)
print (round(lookl,3))

ad <- ad * as.numeric(lookl[12:14]>0)

n.now <- n.nowt+new

Do interim looks

print(c(s,n.now))



mx <- lookl[3:5]; mn <- lookl[6:8]
winner <- ifelse(max(mx) > vS$critv[1l], (1l:3)[mx==max(mx)], 0)
loser <- ifelse(max(mn) > v$critv[2], (1l:3)[mn==max(mn)], 0)
if(lookl[2]==1){
whystop <- 1 ## futility See if best or worst identified
}else if(lookl[2]==3){
if(loser>0){
whystop <- 3
telse{
whystop <- 2
b See if stopping rules met
telse if(lookl[2]==2){
if (winner==0 & loser==0) { whystop <- 5}
else if(winner>0 & loser>0){ whystop <- 8}

else if(winner>0) { whystop <- 7}
else if(loser>0) { whystop <- 6}
else{print("error why stop at max?”)} Prlnt OUt Slmulatlon

else{print("error, why did trial stop?”)}

results

out.mat[s,1:25] <- c(n.now, lookl[18:20], order(mx), winner, loser,
whystop, lookl[c(3,4,5,9,10,11,6,7,8,15,16,17)],1-ad)

out.mat <- data.frame(out.mat)
names (out.mat) <- c("N","N1",6"N2","N3",..

return(out.mat)



rand.new <- function(N, p, minp){
### Returns randomization codes (1:3) for N patients
### requires prob vector, p, of lenght 3.

### 1f
if(prod(p ==c(1,1,1))==1){ .
out <- rep(jample(1:3,3), ceiling(N/3)) Takes hOW many patlents
out <- out[1l:N] .
Yelse( to simulate, N
out <- rep(sample(l:3, N, prob=p, replace=T))
} p(samp probTR, TeP Rand prob , P |
return (out) And Min rand prob minp
}

## Simulates data for new patients using inputs group assignement and success rate
(length 3)

sim.endpoint <- function(group, successrate)(
out <- rbinom(length(group), 1, successrate[group])

}
Simulate a success or
failure for each based
given their group assignment
group is vector of 1,2 or 3
successrate is length 3



Predictive Probability Cutotts
Lookup Matrix

### Creates a lookup matrix to make the predictive probability stopping algorithm
go faster.

### Creates a 99.9% confidence interval, then basically sees if its' highly
likely that the stop rate is less than the cutoff

ppcutoffs <- function(critv)/{
whenstop <- cbind(rep(0,1000),rep(0,1000))
for(i in 50:1000){
X <- ceiling(critv*i)
while(as.numeric(binom.test(x,i,conf.level=0.999)Sconf.int[1l])<critv){

X <- x+1

}

whenstop[i, 1] <- x
}

whenstop[1:49,1] <- whenstop[50,1]

for(i in 50:1000){
X <- ceiling(critv*1i)
while(as.numeric(binom.test(x,i,conf.level=0.999)Sconf.int[1l])>=critv){

X <- x-1

}

whenstop[i,2] <- x
}

return(whenstop)



interim <- function(N, y, group, Vv, co){

## Runs trial returns: Does Interlm analySIS
# (1) go (0=stop, lkeep going) o Calc posteriors, new

# (2) why stop (l=3-way fut, 2=max n, 3=1 winner)

# (3-5) Pr each is best rand prObS,

# (6-8) Pr each is worst

# (9-11) x/N for each group Pred prOb Of SUCCESS
# (12-14) rand probs Eit max

ns <- table(factor(group[l:N], levels=1:3))

tab <- table(factor(group[l:N],levels=1:3), factor(y[l:N], levels=0:1))

postl <- rbeta(10000, v$Sa[l]+tab[l,2], vSb[l]+tab[1l,1])

post2 <- rbeta(10000, vSa[2]+tab[2,2], vSb[2]+tab[2,1]) i
post3 <- rbeta(10000, v$a[3]+tab[3,2], vSb[3]+tab[3,1]) CaIC pOSterlorS
vr <- as.numeric(( (vSat+tab[,2])*(vSb+tab[,1])) / ((vSa+tv$b+ns)"2 * (v$Sa+vSb+ns+1l)))
top <- apply(cbind(postl,post2,post3), 1, max)

bot <- apply(cbind(postl,post2,post3), 1, min)

best <- c(mean(postl==top), mean(post2==top), mean(post3==top))

worst <- c(mean(postl==bot), mean(post2==bot), mean(post3==bot)) .
middle <- l-best-worst CalC prOb eaCh IS
best & worst

toobad <- l-c(pbeta(v$badlim, vS$a[l]+tab[l,2], vSb[1l]+tab[1l,1]),
pbeta(v$Sbadlim, vS$a[2]+tab[2,2], vSb[2]+tab[2,1]),
pbeta(vS$badlim, vS$a[3]+tab[3,2], v$Sb[3]+tab[3,1]))

Calc Pr(p<0.25)

wt <- sqrt(best * vr / as.numeric(ns)); wt <- wt/sum(wt)

wt[wt < vSminpr] <- 0; wt[toobad < vS$critv[4]] <- 0

if(sum(wt) > 0){

W <= w/sum(wt) Calc new rand prob

}



sumtrial <- function(outmat) {
mat <- matrix(nrow=4, ncol=9)
out <- table(factor(outmat[,10], levels=1:8))

# Ntotal SDN phat Rankl Rank2 Rank3 SigBest SigWorst Drop
# fPHT ] ]
4 v Takes the results of ‘simtrials’ and
VPA - .
Lo Produces prettier output
mat[l:3,1] <- apply(outmat([,2:4], 2, mean) ### Average Patients per arm
mat[l:3,2] <- apply(outmat([,2:4], 2, sd) ### SD patients per arm
mat[1l:3,3] <- c(mean(outmat[,20]/outmat[,2]), mean(outmat[,21]/outmat[,3]),
mean(outmat([,22]/outmat[,4])) ### Average successes per arm

mat[l,4:6] <- table(factor(outmat[,5], levels=3:1))/dim(outmat)[l] ## Avg Pr Best
mat[2,4:6] <- table(factor(outmat[,6], levels=3:1))/dim(outmat)[l] ## Avg Pr middle
mat[3,4:6] <- table(factor(outmat[,7], levels=3:1))/dim(outmat)[l] ## Avg Pr Worst
mat[l:3,7] <- table(factor(outmat[,8], levels=1:3))/dim(outmat)[l] ## Pr Sig Best
mat[l:3,8] <- table(factor(outmat[,9], levels=1:3))/dim(outmat)[l] ## Pr Sig Worst

mat[l:3,9] <- apply(outmat[,23:25], 2, mean) ## Pr Ever Dropped
mat[4,1] <- mean(outmat[,1l]) ### Mean total sample size
mat[4,2] <- sd(outmat([,1]) ### SD total sample size

mat[4,3] <- mean(rowSums (outmat[,20:22]) / rowSums(outmat[2:4])) ### Mean response rate
per arm

mat[4,4:6] <- NA

mat[4,7] <- sum(mat[l:3,7]) ### Total prob ID a sig best

mat[4,8] <- sum(mat[l:3,8]) ### Total prob ID a sig worst

mat[4,9] <- NA

mat <- data.frame(mat)

names (mat) <- c("N","SD","Phat", "Best","Mid", "Worst", "SigBest", "SigWorst", "Drop")
dimnames(mat)[[1]] <- c("fPHT","LVT","VPA","Total")

return(list(out, mat))



#####PRED PROBS; only do if all 3 arms left

if((N >= v$Sfirststop) & (N < v$MaxN) & (prod(wt>0)> 0)){

drop <- 0
lefi <- v$MaxN - N
left <- ceiling(rep(left/3, 3)) CaIC pred prOb Of SUccess

ns.total <- nst+left
winlose <- 0 At MaX N

counter <- 1

while((winlose < co[counter,l]) & (winlose >= co[counter,2]) & (counter < 1000)){
y.end <- tab[,2] + rbetabin.ab(3, left, vS$a+tab[,2], vS$b+tab[,1])
postlf <- rbeta(10000, v$a[l]+y.end[1l], vSb[l]+ns.total[l]-y.end[1l])
post2f <- rbeta(10000, v$a[2]+y.end[2], vSb[2]+ns.total[2]-y.end[2])
post3f <- rbeta(10000, vSa[3]ty.end[3], vSb[3]+ns.total[3]-y.end[3])
topf <- apply(cbind(postlf,post2f,post3f), 1, max)
botf <- apply(cbind(postlf,post2f,post3f), 1, min)
bestf <- c(mean(postlf==topf), mean(post2f==topf), mean(post3f==topf))
worstf <- c(mean(postlf==botf), mean(post2f==botf), mean(post3f==botf))

winlose <- winlose + ifelse((max(bestf)>v$critv[1l]) | (max(worstf)>vScritv[2]),
0)
counter <- counter + 1
print(c(winlose/counter, counter))
}
ppwin <- winlose/counter
telse{
drop <- 1

ppwin <- v$critv[3]+1l # If missing just make bigger than the crit value.



## Stopping:
if(N < vsfirststop) {

so =~ 1 Track IF stop

whystop <- NA
}else if (N >= v$MaxN) { And WHY Stop
go <- 0
whystop <- 2
}else if(max(best) > vScritv[1l]){
go <- 0
whystop <- 3
}else if(ppwin < vS$critv[3]){
go <- 0
whystop <- 1
}else if(wt[1l]==0 & wt[2]==0 & wt[3]==0){

go <- 0

whystop <- 1
telse{

go <-1

whystop <- NA

return(as.numeric(c(go, whystop, best, worst, middle, wt, tab[,2], ns, ppwin, drop)))



Predictive Probabilities
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Power vs. Prob of Success

Doctor comes to you.
Claims her treatment increases 1QQ by 5 points
SD =10

“How many patients do I need to have 90%
power to demonstrate superiority?



Power

02 03 04 05 06 07 08 09 1.0

00 0.1

n=168,0=10

Power if Treatment Effect = 5 with 84 pts/grp

0.025=Type | error

Treatment Effect




Power

02 03 04 05 06 07 08 09 1.0

00 0.1

n=168,0=10

Power if Treatment Effect = 5 with 84 pts/grp

0.025=Type | error

Treatment Effect
A =6 > Power=97% (1 7%)
A=4 > Power=73% (] 17%)




Power

02 03 04 05 06 07 08 09 1.0

00 0.1

n=168,0=10

Power if Treatment Effect = 5 with 84 pts/grp

0.025=Type | error

Treatment Effect
A =7 > Power =99% (1 9%)
A =3 > Power =49% (| 41%)




We've ignored the error in the pilot data

SE=4.0

-2 -1 0 1 2 3 4 5 6 7 8 9 10

Treatment Effect

Estimate 5.0 (95% CI -3 to 13)



Power

02 03 04 05 06 07 08 09 1.0

00 0.1

n=168,0=10

Power if Treatment Effect = 5 with 84 pts/grp

SE=4.0; Power= 0.68

Treatment Effect

Probability of success < Power due to Jensen’s inequality



Simple Trial

Binomial data
One-armed trial

n = 100

Need to show p > 0.5
H:p =05
H_:p>0.5

FYT: 59/100 = Frequentist p-value = 0.044
& 1-sided 95% CI (0.503 — 1.00)



Phase 3 & Priors

* Simple Trial:

— Binary data. Observe x ~ Bin(100,p)

— Need to show Pr(p > 0.5 | x out of 100) > 0.95

— Assume p ~ Beta(1,1) prior

— Pr(p > 0.5 | 59 out of 100) = 0.963  1-sided p-value < 0.05
_Pr(P > 0.5 | 58 out of 100) = 0.944 TR

Beta(59,43) Beta(60,42)
Beta(1+58, 1+42) \ Beta(1+59, 1+41)
I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0
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Phase 3 & Priors

* Simple Trial:
— Binary data. Observe x ~ Bin(100,p)
— Need to show Pr(p > 0.5 | x out of 100) > 0.95
— Assume p ~ Beta(1,1) prior
— Pr(p > 0.5 | 59 out of 100) = 0.963
— Pr(P > 0.5 | 58 out of 100) = 0.944
¢ Pr(X=59 | p =0.50) = 0.044
— Simple binomial calculation
— This 1s Type I error and is < 5%
— Bayesian trial

— Good frequentist properties

23



Predictive Probabilities

* Simple Trial:
— Binary data. Observe x ~ Bin(100, p)
— Need to show Pr(p > 0.5 | x out of 100) > 0.95
— Assume p ~ Beta(1,1) prior
— Pr(p> 0.5 | 59 out of 100) = 0.963
— Pr(p > 0.5 | 58 out of 100) = 0.944

* Observe data half way through
— See 28 /50 successes

— Need to see 31/50 to meet threshold
— What is predictive probability of trial success?

24



0.02 0.04 0.06 0.08 0.10 0.12

0.00

Predictive Distribution for Remaining 50 Patients
Binomial

X ~ Bin(50, 0.506) X ~ Bin(50, 0.506)
Pr(x) < 30 Pr(x) = 31
0.761 ‘ ‘ 0.239
_-.III“ ‘llll.-

0 2 4 6 8 13
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Predictive Probabilities

Know we need x > 59 at trial s end

Have x, = 28
Need x, = 31

b~ Beta(1+28, 1+22)
x, ~ Binomial(50, p)
x, ~ Beta-binomial (50, a=29, =23)

50
Pr(Win Trial) = E

x2=31

{(

50

Xy

B(x, +29,50 - x, +23)

B(29.,22)

}=O.301

26



0.02 0.04 0.06 0.08 0.10 0.12

0.00

Predictive Distribution for Remaining 50 Patients
Beta-Binomial

‘ ‘l‘lllll--_

0.699

0 2 4 6 8
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0.02 0.04 0.06 0.08 0.10 0.12

0.00

Predictive Distribution for Remaining 50 Patients
Binomial

0.761

‘ ‘lll..
25 31 37

43

_..||I‘
19

0 2 4 6 8 13
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R code for predictive probability

### VIA SIMULATION
alpha <- 1; beta <-1
X <= 28; N <- 50

p <- rbeta(1000000, alphat+x, beta+N-x)
X.new <- rbinom(1000000, 50, p)

mean(x.new >= 31)
1] 0.301132

### VIA DIRECT CALCULATION
N.new <- 50
xXx.new <- 0:50
prob <- choose(N.new,x.new) *
beta(alpha+x+x.new, (beta+N-x)+(N-x.new)) /
beta(alpha+x, (betat+N-x))
> sum(prob)
[1] 1
> sum(prob[x.new >= 31])
[1] 0.3010906
> barplot(prob, names.arg=0:50, col=c(rep(2,31), rep(3,20)),
+ main="Predictive Distribution for Remaining 50 patients")

++VVVVVVV—VVVYVVYVVYV
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Predicted

1.0

0.8

0.6

04

0.2

0.0

Pred Probs After 0 Observations

Prior=0.42
o

_________________________________________________________________________

_________________________________________________________________________

Observed
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Predicted

1.0

0.8

0.6

04

0.2

0.0

Pred Probs After 1 Observations

—————————————————————————————————————————————————————————————————————————

_________________________________________________________________________

Observed
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Predicted

1.0

0.8

0.6

04

0.2

0.0

Pred Probs After 2 Observations

_________________________________________________________________________

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Observed
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Predicted

1.0

0.8

0.6

04

0.2

0.0

Pred Probs After 5 Observations

_________________________________________________________________________

5
4
3
A
| | | 1 | |
0.0 0.2 04 0.6 0.8 1.0

Observed
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Predicted

1.0

0.8

0.6

04

0.2

0.0

Pred Probs After 10 Observations

____________________________________________________________

Observed

34



Predicted

Pred Probs After 20 Observations

Observed
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Predicted

Pred Probs After 50 Observations

Observed

0.8

1.0
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Predicted

1.0

0.8

0.6

04

0.2

0.0

Pred Probs After 95 Observations

Observed

0.8

1.0
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Predicted

1.0

0.8

0.6

04

0.2

0.0

Pred Probs After 98 Observations

0.2

04 0.6

Observed

0.8

1.0
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Predicted

1.0

0.8

0.6

04

0.2

0.0

|

|

Pred Probs After 99 Observations

0.2

04 0.6

Observed

0.8

1.0
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Predictive Probabilities

* Observe 12 / 20 (60%)
— Need 47 / 80 successes; 59% or better rest of way
— p-valne = 0.25, Pr(p>0.5) = 0.81
— Predictive probability of success @ 100 = 0.54

40



Predictive Probabilities

* Observe 12 / 20 (60%)
— Need 47 / 80 successes; 59% or better rest of way
— p-valne = 0.25, Pr(p>0.5) = 0.81
— Predictive probability of success @ 100 = 0.54

* Observe 28 / 50 (56%)
— Need 31/50 successes; 62% or better rest of way
— pvalue = 0.24, Pr(p>0.5) = 0.80
— Predictive probability of success @ 100 = 0.30
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Predictive Probabilities

* Observe 12 / 20 (60%)
— Need 47 / 80 successes; 59% or better rest of way
— p-valne = 0.25, Pr(p>0.5) = 0.81
— Predictive probability of success @ 100 = 0.54

* Observe 28 / 50 (56%)
— Need 31/50 successes; 62% or better rest of way
— pvalue = 0.24, Pr(p>0.5) = 0.80
— Predictive probability of success @ 100 = 0.30

* Observe 41 / 75 (54.7%)
— Need 18/25 successes; 72% or better rest of way
— p-valne = 0.24, Pr(p>0.5) = 0.79
— Predictive probability of success @ 100 = 0.086

42



Predictive Probabilities

* Observe 12 / 20 (60%)
— Need 47 / 80 successes; 59% or better rest of way
— pevale = 0.25, Pe(p>0.5) = 0.81
— Predictive probability of success @ 100 = 0.54

* Observe 28 / 50 (56%)
— Need 31/50 successes; 62% or better rest of way
— pevalue = 0.24, Pr(p>0.5) = 0.80
— Predictive probability of success @ 100 = 0.30

* Observe 41 / 75 (54.7%)
— Need 18/25 successes; 72% or better rest of way
— pevale = 0.24, Pr(p>0.5) = 0.79
— Predictive probability of success @ 100 = 0.086

43



Another trial

N-= 100 1n Treatment & Control Group

Testing p, > p. using Fisher s Exact Test @ 0.025

Observe
— 34/50 in Control Group
— 41/50 in Treatment Group

What is predictive probability of success?

44



Predictive Probability

alpha <- 1; beta <-1
Xc <- 34; nc <- 50
Xt <- 41; nt <- 50

pc <- rbeta(100000, alphat+xc, beta+t+nc-xc)
pt <- rbeta(100000, alpha+xt, beta+nt-xt)

xc.total <- xc + rbinom(100000, 50, pc)
xt.total <- xt + rbinom(100000, 50, pt)

p.values <- rep(NA,100000)
for(i in 1:100000){
p.values[i] <- fisher.test(
matrix(c(xc.total[i], 100-xc.total[i],
xt.total[i], 100-xt.total[i]),nrow=2),
alternative="“less”)S$p.value

}

> mean(p.value<0.025)
[1] 0.549



GREEN numbers are when it’'s statistically superior

RED are cases not significant
Predictive Probability = 0.549

80
|

Treatment
70

50 60 70 80

Control

90

46



Example:
Phase 2 Trials

47



Phase 2 Trials

* Barly phase results

— Animal studies showed promise for disease

— Phase 1 showed non-toxic in healthy humans

* Questions for Phase 2
— Does the treatment work in humans
— Which dose is best
— Which dose(s) to take to Phase 3

— Is an dose with promising efficacy also safe
— What is likelihood of Phase 3 success

48



Adaptive Randomization Strategies

* Bandits

* Play the Winner

* Randomized Play the Winner

* Randomize ~ Pr(Best Treatment)

* Randomize ~ f[Pr(Best Treatment))

* Randomize ~ Dose that gives the most
information

e One of these with constraints



Adaptation

* Multiple trial characteristics may be changed
during the course of the trial based on
accumulating data

* Must pre-prescribe changes
— Available Doses
— Randomization proportions
— Time of interim analyses
— Maximum sample size
— Dose dropping rules

— Allow doses to re-enter?

J0



Example In Uterine Cancer

* Phase 2 dose finding trial
* 3-armed RCT

— Control chemotherapy

— Control + experimental treatment q2w

— Control + experimental treatment qlw

e Goals
— Treat patients effectively & ethically

— Learn about experimental treatment

— Explore adaptive designs

* This company’s first attempt at an adaptive design

J1



Trial Setup

* Primary Outcome
— Progression Free Survival (PES)
— A. = Rate of PES in Control population
— A, = Rate of PFS in Control + q2w population

— A; = Rate of PFS in Control + qlw population

* Expectation
— Control mean PFS = 303 days, median = 210

— Accrual
* 1 patient every 3 days for first 45 pts (135 days)
* 1 patient every 2 days thereafter

* Need to beat control by 10% to be marketable

J2



Factors to Consider

Statistical Model

— Parametric dose-response curve, non-parametric, independent arms

— Historical vs. vague priors
How many doses
Maximum sample size
Timing of first interim analysis

Timing of subsequent interim analyses

— Time based or patient based
Randomization scheme
Rules to drop doses
Rules to allow doses to re-enter
Rules to stop for futility
Rules to stop for success

How long to track patients after last patient enrolled

J3



Statistical Model

Assume time-to-progression exponential
Priors on rates:

he by Ay ~ (1, 303 days)

Posteriors

Ayq|Data ~ I'(1+ # Progressors, 303+Exposure Time)

Also calculate probability each dose 1s best
— “best” = has lowest PFS rate

— 5= Pr(L <, & A<A)

— P = Pr(A, <A & A,<A))

— Py = Pr(n <A & A <Ay)

54



Example

laml <- rgamma (100000, 1, 100)
lam2 <- rgamma (100000, 10, 1000)
lam3 <- rgamma (100000, 100, 10000)
par (mfrow=c(3,1))

V V. V V

> mean(laml < lam2 & laml < lam3)
[1] 0.5738

> mean(lam2 < laml & lam2 < lam3)
[1] 0.24854

> mean(lam3 < laml & lam2 > lam3)
[1] 0.17766

>hist(laml,breaks=seq(0,.12, length=250),
x1lim=c(0,.06), ylim=c(0,20000),
main="Gamma(1l,100)")

> hist(lam2,breaks=seq(0,.12, length=250),
x1lim=c(0,.06), ylim=c(0,20000),
main="Gamma(10,1000)")

> hist(lam3,breaks=seq(0,.12, length=250),
x1lim=c(0,.06), ylim=c(0,20000),
main="Gamma(100,10000)")

Frequency

Frequency

Frequency

15000

0 5000

15000

0 5000

15000

0 5000
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| MMMMMMMW—-

[ I I I I I 1
0.00 001 0.02 003 0.04 005 0.06

lam1

Gamma(10,1000)

T T T T T T |
0.00 0.01 0.02 0.03 0.04 0.05 0.06

lam2

Gamma(100,10000)

[ I I I I I 1
0.00 001 002 003 004 005 0.06

lam3

)



0.8

0.6

04

0.2

0.0

Priors

Events / Pt-Year

J6



Statistical Summary

* Primary Outcome: Progression free survival

— A, = PFES rate for Treatment 4 = A, B, C

* Statistical Assumptions and Modeling
— PIS distributed y, ~ Exp(A); 7= A, B, C
— Priors: Ay Ag Ac ~ I'(1, 303)
Equals 1 subject with mean 303 days
median = 210 days
Median = Mean X log(2) for gamma dist
— Posteriors:

A | data ~ T'(1 + # Events, 303 + Exposure,)



0.8

0.6

04

0.2

0.0

Posteriors

Control 6 events, 3.3 pt-yrs

Low Dose 4 events, 3.5 pt-yts
High Dose 5 events, 3.5 pt-yrs
5. =0.192, p, =0.513, p, = 0.295

Events / Pt-Year
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Complication I'll ignore

In fact there were 2 types of patients

platinum sensitive & platinum refractory

Expect mean TTP shorter for refractory

TTP in refractory = 2/7 that of sensitive

Model event rates as YA, for refractory

assume Y same across groups
Prior on log(y) ~N(0,102)

Means we no longer have conjugate priors

must use Metropolis-Hastings algorithm
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Simulation Plan

Scenarios

« Statistical dose-response models:

* null case
* base case

» extreme cases

* Longitudinal mod

Virtual
Subjects

!

Performance Metrics

* Mean Number of subjects
* Mean Study duration

» Mean Dose Allocation

» Target Selection

» Fitted Dose-response
 Final Decisions

» Final Analysis

Trial Execution Models

Trial
Simulator

* Recruitment profile

* Drop out models
» Compliance
« Data contamination

General Trial Specifications

Operating
Characteristics

Adaptive Designs

* Phase

* Endpoints

» Controls

* Doses

» Targets

« Visit schedule
» Constraints

» Available Doses

+ Sampling Rule

+ Allocation Rule

» Stopping Rules

» Design Working Model
* Longitudinal Model

Deliverables

» Design Engine
» Simulation Report
* Report for DMC

Thanks Brenda Gaydos
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Maximum Sample Size

* Oftentimes determined by company resources

e Considered 150 & 195
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Timing of interim analyses

Expected accrual rate = 3 days per patient
— 45 patients take 135 days

— With expected A, = 1/303

— Expect 8.5 events by 135 days

— Median 8, IQR 7-10

15—- —

10 = u

Percent of Total

| |
0 5 10 15 20

Events at First Analysis
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Randomization

Randomize first 45 patients 15:15:15
Start interim analysis after 45th patient enrolled

Repeat interim analyses every 15 patients
— Approximately every 1 month with expected accrual
— This timing worked logistically

— Allowed blocks of 15 to ensure patients on each
dose

Open question: How to randomize?
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Randomization Options

* Let 7, = randomization probability to dose 4

* Let p, = probability arm 4 has lowest (best)
progression rate

* Randomization weighting by C

C
_— Py
d

—C C C C
p, +p, + P +..+Pp
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Randomization Options

C

. Pa
d — _C C C C
Py tp, +tp; +..+Pp

C = 0, equal randomization (r, = 1/Number of Groups)

C =1, proportional to probability best (r, = p,)

C=1

— strongly favor 1 arm earlier in the trial, even when treatments are equal
— more subjects likely assigned to the best treatment

— C => big means assign all to best treatment, play the leader
0<C<1

— weakly favor better

— fewer subjects likely assigned to best treatment

— more even distribution early in trials

— randomization less affected by early events

C = n/N, trial begins with ¢ = 0 and ends with ¢ = 1
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Rules to Stop

* When to Stop for Success?

— If p, > 0.95, stop tor success
— If p, > 0.95, stop tor success
— Take successtul dose to Phase 111

* What if experimental doses equally effectiver
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Rules to Stop

* When to Stop for Success?

— If p, > 0.95, stop tor success
— If p, > 0.95, stop tor success
— Take successtul dose to Phase 111

* What if experimental doses equally effectiver

* Instead use if p- < 0.10 or 0.05 to success stop?
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Rules to Stop

* When to Stop for Futility?
— If p, < 0.05 drop 2w arm
— If p, < 0.05 drop qlw arm
— If both arms dropped, trial ends

— Allow dropped arms to re-enter?
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Rules to Stop

* When to Stop for Futility?
— If p, < 0.05 drop 2w arm
— If p, < 0.05 drop qlw arm
— It Pr(\,/ A,> 1.10 | Data) < 0.05 drop g2w arm

— It Pr(A,/ A, > 1.10 | Data) < 0.05 drop qlw arm
— If both arms dropped, trial ends

— Allow dropped arms to re-enter? Yes
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Post Accrual Tracking

* Choose to track patients for 1-year post accrual
* 70% chance last patient will have event
1-e-365/303 = ()70

e Under assumed accrual rates & N=195, 83% of
patients will have events if A = 1/303.
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Simulation Plan

Scenarios

« Statistical dose-response models:

* null case
* base case

» extreme cases

* Longitudinal mod

Virtual
Subjects

!

Performance Metrics

* Mean Number of subjects
* Mean Study duration

» Mean Dose Allocation

» Target Selection

» Fitted Dose-response
 Final Decisions

» Final Analysis

Trial Execution Models

Trial
Simulator

* Recruitment profile

* Drop out models
» Compliance
« Data contamination

General Trial Specifications

Operating
Characteristics

Adaptive Designs

* Phase

* Endpoints

» Controls

* Doses

» Targets

« Visit schedule
» Constraints

» Available Doses

+ Sampling Rule

+ Allocation Rule

» Stopping Rules

» Design Working Model
* Longitudinal Model

Deliverables

» Design Engine
» Simulation Report
* Report for DMC

Thanks Brenda Gaydos
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At each interim analysis

1. Calculate:
Posteriors A, | data; + € A, B, C
1, = P(Treatment tis Best treatment | data)
e.g. pp = P(Ag = Ay & A | data)
P(Treatment #is 210% better than A | data)

2. Check supetiority and futility stopping/dropping

rules
3. Randomize next 15 subjects with probability p,
4. Repeat steps 1-4 up to 195 subjects



Simulation Output

Doing Case = 9
Control Mean TTP =
Control + gq2w Mean TTP =
Control + gqlw Mean TTP =

Stop for Success 0.168
Stop for Futility 0.004

Stop for Cap 0.828
Name Mean N % N

Control 30.4850 0.214
Control + g2w 55.8790 0.392
Control + glw 56.2410 0.394

Total N = 142.605
Pr(Either Beats Placebo)

303.00
606.00
606.00

10.

19
19

SD N Best

8927 0.003
.5526 0.492
.0859 0.505

SD= 20.247
0.853

Win
0.000
0.059
0.057

Beat P
0.000
0.682
0.690
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.00
.00
.00

SD N
.0027
.2468
.3273

SD=
0.08

.00
.00
.00

SD N
.8927
.5526
.0859

Best
0.342
0.310
0.348

22.106
1

Best
0.003
0.492
0.505

Win Beat P
0.000 0.000
0.006 0.051
0.008 0.052

Win Beat P
0.000 0.000
0.059 0.682
0.057 0.690

Max N = 150
Doing Case = 1
Control Mean TTP = 303
Control + g2w Mean TTP = 303
Control + glw Mean TTP = 303
Stop for Success 0.049
Stop for Futility 0.073
Stop for Cap 0.878
Name Mean N % N
Control 47.6570 0.334 18
Control + g2w 47.0040 0.330 19
Control + glw 47.9440 0.336 19
Total N = 142.605
Pr(Either Beats Placebo) =
Doing Case = 9
Control Mean TTP = 303
Control + g2w Mean TTP = 606
Control + glw Mean TTP = 606
Stop for Success 0.168
Stop for Futility 0.004
Stop for Cap 0.828
Name Mean N % N
Control 30.4850 0.214 10
Control + g2w 55.8790 0.392 19
Control + glw 56.2410 0.394 19
Total N = 142.605

Pr(Either Beats Placebo) =

SD=
0.85

20.247
3

Win Beat P
0.000 0.000
0.009 0.063
0.006 0.061

Win Beat P
0.000 0.000
0.047 0.757
0.053 0.766

Max N = 195
Doing Case = 1
Control Mean TTP = 303
Control + g2w Mean TTP = 303
Control + glw Mean TTP = 303
Stop for Success 0.070
Stop for Futility 0.103
Stop for Cap 0.827
Name Mean N % N
Control 60.3100 0.333 25
Control + g2w 60.9040 0.336 28.
Control + glw 59.9710 0.331 27
Total N = 181.185
Pr(Either Beats Placebo) =
Doing Case = 9
Control Mean TTP = 303
Control + g2w Mean TTP = 606
Control + glw Mean TTP = 606
Stop for Success 0.208
Stop for Futility 0.002
Stop for Cap 0.790
Name Mean N % N
Control 35.1840 0.195 13
Control + g2w 72.1780 0.400 27
Control + glw 72.9830 0.405 27.
Total N = 180.345
Pr(Either Beats Placebo) =

.00
.00
.00
SD N Best
.4370 0.331
1304 0.346
.7830 0.323
SD= 35.625
0.102
.00
.00
.00
SD N Best
.7992 0.001
.5021 0.491
1835 0.508
SD= 33.923
0.907
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Max N = 195, Firstlook=45
Doing Case = 1
Control Mean TTP = 303.00
Control + g2w Mean TTP = 303.00
Control + glw Mean TTP = 303.00
Stop for Success 0.070
Stop for Futility 0.103
Stop for Cap 0.827
Name Mean N % N SD N Best Win Beat P
Control 60.3100 0.333 25.4370 0.331 0.000 0.000
Control + g2w 60.9040 0.336 28.1304 0.346 0.009 0.063
Control + glw 59.9710 0.331 27.7830 0.323 0.006 0.061
Total N = 181.185 SD= 35.625
Pr(Either Beats Placebo) = 0.102
Doing Case = 9
Control Mean TTP = 303.00
Control + g2w Mean TTP = 606.00
Control + glw Mean TTP = 606.00
Stop for Success 0.208
Stop for Futility 0.002
Stop for Cap 0.790
Name Mean N % N SD N Best Win Beat P
Control 35.1840 0.195 13.7992 0.001 0.000 0.000
Control + g2w 72.1780 0.400 27.5021 0.491 0.047 0.757
Control + glw 72.9830 0.405 27.1835 0.508 0.053 0.766
Total N = 180.345 SD= 33.923
Pr(Either Beats Placebo) = 0.907

Max N = 195, Firstlook=90
Doing Case = 1
Control Mean TTP = 303.00
Control + g2w Mean TTP = 303.00
Control + glw Mean TTP = 303.00
Stop for Success 0.057
Stop for Futility 0.089
Stop for Cap 0.854
Name Mean N % N SD N Best Win Beat P
Control 61.4750 0.332 19.4908 0.348 0.000 0.000
Control + g2w 62.2340 0.336 21.2199 0.322 0.005 0.042
Control + glw 61.6460 0.333 21.2751 0.330 0.006 0.041
Total N = 185.355 SD= 27.081
Pr(Either Beats Placebo) = 0.071
Doing Case = 9
Control Mean TTP = 303.00
Control + g2w Mean TTP = 606.00
Control + glw Mean TTP = 606.00
Stop for Success 0.199
Stop for Futility 0.000
Stop for Cap 0.801
Name Mean N % N SD N Best Win Beat P
Control 41.0450 0.224 9.0906 0.001 0.000 0.000
Control + g2w 70.8100 0.387 20.6464 0.499 0.044 0.806
Control + glw 71.1900 0.389 20.7805 0.500 0.046 0.809
Total N = 183.045 SD= 28.766
Pr(Either Beats Placebo) = 0.931
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Max N = 195, ¢ =1 Max N = 195, ¢ =0

Doing Case = 1 Doing Case = 1
Control Mean TTP = 303.00 Control Mean TTP = 303.00
Control + g2w Mean TTP = 303.00 Control + g2w Mean TTP = 303.00
Control + glw Mean TTP = 303.00 Control + glw Mean TTP = 303.00
Stop for Success 0.070 Stop for Success 0.063
Stop for Futility 0.103 Stop for Futility 0.118
Stop for Cap 0.827 Stop for Cap 0.819
Name Mean N % N SD N Best Win Beat P Name Mean N % N SD N Best Win Beat P
Control 60.3100 0.333 25.4370 0.331 0.000 0.000 Control 60.0350 0.333 12.3501 0.352 0.000 0.000
Control + g2w 60.9040 0.336 28.1304 0.346 0.009 0.063 Control + g2w 60.0350 0.333 12.3501 0.331 0.009 0.044
Control + glw 59.9710 0.331 27.7830 0.323 0.006 0.061 Control + glw 60.0350 0.333 12.3501 0.317 0.008 0.048
Total N = 181.185 SD= 35.625 Total N = 180.105 Sh= 37.050
Pr(Either Beats Placebo) = 0.102 Pr(Either Beats Placebo) = 0.083
Doing Case = 9 Doing Case = 9
Control Mean TTP = 303.00 Control Mean TTP = 303.00
Control + g2w Mean TTP = 606.00 Control + g2w Mean TTP = 606.00
Control + glw Mean TTP = 606.00 Control + glw Mean TTP = 606.00
Stop for Success 0.208 Stop for Success 0.195
Stop for Futility 0.002 Stop for Futility 0.004
Stop for Cap 0.790 Stop for Cap 0.801
Name Mean N % N SD N Best Win Beat P Name Mean N % N SD N Best Win Beat P
Control 35.1840 0.195 13.7992 0.001 0.000 0.000 Control 60.3950 0.333 11.0779 0.003 0.000 0.000
Control + g2w 72.1780 0.400 27.5021 0.491 0.047 0.757 Control + g2w 60.3950 0.333 11.0779 0.488 0.046 0.828
Control + glw 72.9830 0.405 27.1835 0.508 0.053 0.766 Control + glw 60.3950 0.333 11.0779 0.509 0.047 0.828
Total N = 180.345 SD= 33.923 Total N = 181.185 SD= 33.234

Pr(Either Beats Placebo) = 0.907 Pr(Either Beats Placebo) = 0.931



Max N = 195, ¢ =1 Max N = 195, ¢ = ©

Doing Case = 1 Doing Case = 1
Control Mean TTP = 303.00 Control Mean TTP = 303.00
Control + g2w Mean TTP = 303.00 Control + g2w Mean TTP = 303.00
Control + glw Mean TTP = 303.00 Control + glw Mean TTP = 303.00
Stop for Success 0.070 Stop for Success 0.047
Stop for Futility 0.103 Stop for Futility 0.092
Stop for Cap 0.827 Stop for Cap 0.861
Name Mean N % N SD N Best Win Beat P Name Mean N % N SD N Best Win Beat P
Control 60.3100 0.333 25.4370 0.331 0.000 0.000 Control 60.4500 0.330 43.6835 0.347 0.000 0.000
Control + g2w 60.9040 0.336 28.1304 0.346 0.009 0.063 Control + g2w 61.6800 0.336 45.8555 0.339 0.009 0.061
Control + glw 59.9710 0.331 27.7830 0.323 0.006 0.061 Control + glw 61.2900 0.334 45.4790 0.314 0.002 0.057
Total N = 181.185 SD= 35.625 Total N = 183.420 SD= 32.733
Pr(Either Beats Placebo) = 0.102 Pr(Either Beats Placebo) = 0.092
Doing Case = 9 Doing Case = 9
Control Mean TTP = 303.00 Control Mean TTP = 303.00
Control + g2w Mean TTP = 606.00 Control + g2w Mean TTP = 606.00
Control + glw Mean TTP = 606.00 Control + glw Mean TTP = 606.00
Stop for Success 0.208 Stop for Success 0.201
Stop for Futility 0.002 Stop for Futility 0.003
Stop for Cap 0.790 Stop for Cap 0.796
Name Mean N % N SD N Best Win Beat P Name Mean N % N SD N Best Win Beat P
Control 35.1840 0.195 13.7992 0.001 0.000 0.000 Control 24.1950 0.134 18.5007 0.004 0.000 0.000
Control + g2w 72.1780 0.400 27.5021 0.491 0.047 0.757 Control + g2w 78.3450 0.435 51.8603 0.498 0.049 0.570
Control + glw 72.9830 0.405 27.1835 0.508 0.053 0.766 Control + glw 77.7000 0.431 50.7603 0.498 0.043 0.561
Total N = 180.345 SD= 33.923 Total N = 180.240 SD= 34.519

Pr(Either Beats Placebo) = 0.907 Pr(Either Beats Placebo) = 0.772



Max N = 195, ¢ = o Max N = 195, ¢ = o, every 1

Doing Case = 1 Doing Case = 1
Control Mean TTP = 303.00 Control Mean TTP = 303.00
Control + g2w Mean TTP = 303.00 Control + g2w Mean TTP = 303.00
Control + glw Mean TTP = 303.00 Control + glw Mean TTP = 303.00
Stop for Success 0.047 Stop for Success 0.099
Stop for Futility 0.092 Stop for Futility 0.120
Stop for Cap 0.861 Stop for Cap 0.781
Name Mean N N SD N Best Win Beat P Name Mean N % N SD N Best Win Beat P
Control 60.4500 0.330 43.6835 0.347 0.000 0.000 Control 55.6170 0.319 40.6723 0.311 0.000 0.000
Control + g2w 61.6800 0.336 45.8555 0.339 0.009 0.061 Control + g2w 61.1370 0.350 45.0447 0.352 0.006 0.047
Control + glw 61.2900 0.334 45.4790 0.314 0.002 0.057 Control + glw 57.8350 0.331 44.5945 0.337 0.006 0.049
Total N = 183.420 SD= 32.733 Total N = 174.589 SD= 44.094
Pr(Either Beats Placebo) = 0.092 Pr(Either Beats Placebo) = 0.081
Doing Case = 9 Doing Case = 9
Control Mean TTP = 303.00 Control Mean TTP = 303.00
Control + g2w Mean TTP = 606.00 Control + g2w Mean TTP = 606.00
Control + glw Mean TTP = 606.00 Control + glw Mean TTP = 606.00
Stop for Success 0.201 Stop for Success 0.263
Stop for Futility 0.003 Stop for Futility 0.004
Stop for Cap 0.796 Stop for Cap 0.733
Name Mean N % N SD N Best Win Beat P Name Mean N % N SD N Best Win Beat P
Control 24.1950 0.134 18.5007 0.004 0.000 0.000 Control 23.5280 0.136 17.2205 0.004 0.000 0.000
Control + g2w 78.3450 0.435 51.8603 0.498 0.049 0.570 Control + g2w 75.4290 0.435 49.9018 0.514 0.043 0.582
Control + glw 77.7000 0.431 50.7603 0.498 0.043 0.561 Control + glw 74.5200 0.430 50.4509 0.482 0.046 0.581
Total N = 180.240 SD= 34.519 Total N = 173.477 SD= 42.012

Pr(Either Beats Placebo) = 0.772 Pr(Either Beats Placebo) = 0.770



Max N = 195, ¢ =1 Max N = 195, ¢ = n/N

Doing Case = 1 Doing Case = 1
Control Mean TTP = 303.00 Control Mean TTP = 303.00
Control + g2w Mean TTP = 303.00 Control + g2w Mean TTP = 303.00
Control + glw Mean TTP = 303.00 Control + glw Mean TTP = 303.00
Stop for Success 0.070 Stop for Success 0.070
Stop for Futility 0.103 Stop for Futility 0.106
Stop for Cap 0.827 Stop for Cap 0.824
Name Mean N % N SD N Best Win Beat P Name Mean N % N SD N Best Win Beat P
Control 60.3100 0.333 25.4370 0.331 0.000 0.000 Control 61.3110 0.340 19.6030 0.335 0.000 0.000
Control + g2w 60.9040 0.336 28.1304 0.346 0.009 0.063 Control + g2w 59.4440 0.330 22.8840 0.344 0.006 0.048
Control + glw 59.9710 0.331 27.7830 0.323 0.006 0.061 Control + glw 59.6200 0.331 22.5230 0.321 0.007 0.049
Total N = 181.185 SD= 35.625 Total N = 180.375 SD= 36.095
Pr(Either Beats Placebo) = 0.102 Pr(Either Beats Placebo) = 0.083
Doing Case = 9 Doing Case = 9
Control Mean TTP = 303.00 Control Mean TTP = 303.00
Control + g2w Mean TTP = 606.00 Control + g2w Mean TTP = 606.00
Control + glw Mean TTP = 606.00 Control + glw Mean TTP = 606.00
Stop for Success 0.208 Stop for Success 0.212
Stop for Futility 0.002 Stop for Futility 0.001
Stop for Cap 0.790 Stop for Cap 0.787
Name Mean N % N SD N Best Win Beat P Name Mean N % N SD N Best Win Beat P
Control 35.1840 0.195 13.7992 0.001 0.000 0.000 Control 40.8990 0.226 12.3915 0.000 0.000 0.000
Control + g2w 72.1780 0.400 27.5021 0.491 0.047 0.757 Control + g2w 70.4020 0.389 21.1026 0.523 0.055 0.810
Control + glw 72.9830 0.405 27.1835 0.508 0.053 0.766 Control + glw 69.4940 0.384 20.5548 0.477 0.063 0.804
Total N = 180.345 SD= 33.923 Total N = 180.795 SD= 33.749

Pr(Either Beats Placebo) = 0.907 Pr(Either Beats Placebo) = 0.937



Max N = 195, ¢ =1 Max N = 195, ¢ = n/N

Doing Case = 1 Doing Case = 1
Control Mean TTP = 303.00 Control Mean TTP = 303.00
Control + g2w Mean TTP = 303.00 Control + g2w Mean TTP = 303.00
Control + glw Mean TTP = 303.00 Control + glw Mean TTP = 303.00
Stop for Success 0.070 Stop for Success 0.070
Stop for Futility 0.103 Stop for Futility 0.106
Stop for Cap 0.827 Stop for Cap 0.824
Name Mean N % N SD N Best Win Beat P Name Mean N % N SD N Best Win Beat P
Control 60.3100 0.333 25.4370 0.331 0.000 0.000 Control 61.3110 0.340 19.6030 0.335 0.000 0.000
Control + g2w 60.9040 0.336 28.1304 0.346 0.009 0.063 Control + g2w 59.4440 0.330 22.8840 0.344 0.006 0.048
Control + glw 59.9710 0.331 27.7830 0.323 0.006 0.061 Control + glw 59.6200 0.331 22.5230 0.321 0.007 0.049
Total N = 181.185 SD= 35.625 Total N = 180.375 SD= 36.095
Pr(Either Beats Placebo) = 0.102 Pr(Either Beats Placebo) = 0.083
Doing Case = 9 Doing Case = 9
Control Mean TTP = 303.00 Control Mean TTP = 303.00
Control + g2w Mean TTP = 606.00 Control + g2w Mean TTP = 606.00
Control + glw Mean TTP = 606.00 Control + glw Mean TTP = 606.00
Stop for Success 0.208 Stop for Success 0.212
Stop for Futility  0.002 Stop for Futility 0.001 Fixed was 60
Stop for Cap 0.790 Stop for Cap 0.787
Name Mean N % N SD N Best Win Beat P Name Mean N % N SD N Best Win Beat P
Control 35.1840 0.195 13.7992 0.001 0.000 0.000 Control 40.89907 0.226 12.3915 0.000 0.000 0.000
Control + g2w 72.1780 0.400 27.5021 0.491 0.047 0.757 Control + g2w 70.4020 0.389 21.1026 0.523 0.055 0.810
Control + glw 72.9830 0.405 27.1835 0.508 0.053 0.766 Control + glw 69.4940 0.384 20.5548 0.477 0.063 0.804
Total N = 180.345 SD= 33.923 Total N = 180.795 SD= 33.749

Pr(Either Beats Placebo) = 0.907 Pr(Either Beats Placebo) = 0.937



Design Parameters

First look (@ 45

Interim analyses every 15 patients
Maximum = 195 patients

Success

— It P, > 0.95, stop for success

— It P; > 0.95, stop for success

— Take successful dose to Phase 111

Futility

— If Pr(h,/ A,> 1.10 | Data) < 0.05 drop q2w arm
— If Pr(h,/ ;> 1.10 | Data) < 0.05 drop qlw arm
— If both arms dropped, trial ends
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Show Individual Trials

* Best way to illustrate the adaptive design

is to show example trials to collaborators
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Show Individual Trials

* Best way to illustrate the adaptive design

is to show example trials to collaborators

* GREAT for debugging!
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“Flat” Prior

(Vague, Non-informative)

Interim
Posterior Distributions
& Posterior Probabilities

Final

Posterior Distributions
& Posterior Probabilities

Days of Trial

135

165

195

225

255

285

650

Posterior Distribution

for Mean PFS

Prcb Each TX Best

Number Randomized to

n per block

Interim Ns

A B C A B C
0333 0333 0333 0 0 0
+15 +15 +15
0279 0543 0178 15 15 15
+4 +8 +3
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+3 +6 +6
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+3 +3 +9
A 0045 0.085 087 25 a2 33
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N
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A
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Output I Shared (Make it prettier)

Mean Mean Pr(Beat

Treatment PFS %A N SD Pr(Best)  Pr(Win)  Control)
Control 303 59.7 253 0.343 0.000 -
+q2w 303 NoA  59.7 284 0.322 0.007 0.054
+qlw 303 NoA  60.0 285 0.335 0.008 0.053
Pr(Stop for Success) = 0.071
Fully Adaptive Trial 179.4 387 g’; gzg g Eﬁlg _ 83;137,

Pr(Either Beats Control) = 0.090

Mean Mean Pr(Beat

Treatment PES %A N SD Pr(Best)  Pr(Win)  Control)
Control 303 340 142 0.001 0.000 -
+q2w 455  +50% 569  27.0 0.099 0.002 0.462
+qlw 606  +100% 794  28.6 0.900 0.351 0.881
Pr(Stop for Success) = 0.345
Fully Adaptive Trial 1703 432 CrGtop for Futhity) = 0.004

Pr(Stop for Max N) = 0.650
Pr(Either Beats Control) = 0.907
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1000 simulations from A. = A2 = 303, A; =455 1000 simulations from A; = Az = 303, A{ = 606

T T T T T T T
200 300 400 500 600 200 400 600 800 1000

Mean Progression Free Survival Overall All Trial Patients

C=1 C=0 C=1 C=0
141.0 1404 N 135.3 1355
404 403 Pr(qlw Beat Placebo) 752 75.2
472 33.0 % to Best Dose 51.7 33.0

374 354 Overall Mean PFS 460 404

60.3 39.7 Pr(Avg. Patient Lives Longer) 64.3 35.7
86



The trial 1s over!

This 1s how 1t really went.
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Expected @ Day 135; Actual Day 67
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Expected @ Day 165; Day 87
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Expected @ Day 195; Day 106
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Subject (randomization order)

Accrual Rate
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Probability
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Lessons I.earned

Pl +DPy+ Dy + .t Dg

R; : randomization probability of treatment ;

R.

J

p;: posterior probability treatment / is the best treatment.

¢ = 0, equal randomization (R, = 1/G)

c = 1, proportional randomization (R, = p))

c=1

— more likely to favor 1 arm earlier in the trial, even when treatments are equal

— more subjects likely assigned to the best treatment

c <1
— randomization less likely to favor one arm earlier in the trial

—  fewer subjects likely assigned to best treatment

c = n/N, trial begins with ¢ = 0 and ends with ¢ = 1
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Probability Best Treatment

Randomization Assignments
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Probability Best Treatment

Randomization using ¢ = n/N
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Summary
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Example:

A Prospective Bayesian Adaptive
Trial with Hierarchical Borrowing
from a Prior Single Arm Study

With Kristine Broglio



EXCITE Trial Background

Patients with peripheral artery disease and in-
stent restenosis
Randomized trial of

— Control: Balloon angioplasty

— Treatment: Laser ablation

Primary Efficacy: Freedom from target lesion
revascularization at 6 months

Primary Safety: Freedom from major adverse
events at 30 days



Original Study Design

Sponsor seeks 510(k) approval
Maximum of 318 subjects

Hypotheses:
— Eftficacy superiority (2.5% Type 1 error)
— Safety noninferiority 10% margin (5% Type 1

error)

OBF interim analysis at 33% information



Adjunct Analysis

e Randomized trial had slow enrollment

* PATENT: A single arm trial of the laser

ablation in Europe completed

* Sponsor asks: can we use the single arm trial
to supplement the randomized trial?



PATENT Trial

e One arm trial

* BEfficacy

— 80 evaluable patients

— 79% success rate (63/80)
* Safety

— 90 evaluable patients
— 4.4% event rate (4/90)



Hierarchical Borrowing

Detine p, as the proportion successes in

EXCITE and p, as the proportion successes
in PATENT

Model the log-odds of success

yi=log(1 by )i=0,1

Assume y; ~ N(u, 7°)

Place hyperpriors on z and 72




Hierarchical Borrowing

* 7% is between study variability
— 72 = 0 cotresponds to y, = y; ot simple pooling
— 7 = gigantic corresponds to no borrowing
* 7% estimated based on the observed data
» Estimating 7 with 2 studies is hard &

means the prior is always informative

* Allows for a dynamic amount of borrowing

o 72~ 1G(0.025,0.0000025).
* Today I'd use 22 ~ U(0,5) or 2 ~ U(0,20)
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Adjunct Analysis Plan

* Simulations explored
— Timing of adjunct analyses
— Amount of borrowing (Weaker = Stronger)
— Thresholds for claiming success at each look

— Accrual rates

e Simulations showed control of overall one-

sided Type I error < 5% (both endpoints)



Adjunct Analysis Plan

* Adjunct analyses based on the number of patients
enrolled

Analysis Expected Expected Probability of Probability of
Completers: Completers: Superiority Non-
Laser Balloon for Efficacy Inferiority for
Safety
200 Patients 89 44 0.998 0.998
250 Patients 119 58 0.9975 0.9975
300 Patients 149 74 0.995 0.995

Final Analysis 190 95 0.979 0.979



ACTUAL TRIAL EXECUTION
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Compare to the O’Brien Fleming

Interim % Information Nominal Observed
Analysis P-Value P-Value

200 Pts 44%0 0.0011 0.1005
250 Pts 60%0 0.0043 0.006
300 Pts 78%0 0.0105 -

Final 100%o 0.0208 -



Conclusions

Study met the adjunct analysis success criteria in

Feb 2014
510K approval given in July 2014

Randomized data showed a benefit in terms of
efficacy and safety

Borrowing trom prior data increased precision
Borrowing via prospectively defined rule

Borrowing dependent on similarity of new trial with
previous trial

Allowed stopping earlier than an OBF bound



Platform Trials

& Master Protocols
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Woodcock & Lavange, NEJM 2017

* High-quality evidence is what we use to guide medical practice.
The standard approach to generating this evidence — a series of
clinical trials, each investigating one or two interventions in a
single disease — has become ever more expensive and
challenging to execute. As a result, important clinical questions
oo unanswered.

* A methodologic innovation responsive to this need involves
coordinated etforts to evaluate more than one or two treatments
in more than one patient type or disease within the same overall
trial structure. Such efforts are referred to as master protocols,
defined as one overarching protocol designed to answer multiple
questions.
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Woodcock & Lavange, NEJM 2017

* Master protocols may involve one or more
interventions in multiple diseases or a single disease, as
defined by current disease classification, with multiple
interventions, each targeting a particular biomarker-

defined population or disease subtype. Included under

this broad definition of a master protocol are three

distinct entities: umbrella, basket, and platform trials
(Table 1 and Figs. 1 and 2). All constitute a collection
of trials or substudies that share key design components
and operational aspects to achieve better coordination
than can be achieved in single trials designed and
conducted independently.
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Master Protocols

* May or may not compare treatment across groups
— One structure, but each TX vs. common control
— Reported as multiple trials (e.g. 1 per intervention)
— Sites have one set of rules, execute like 1 trial

* Intensive pretrial discussion among sponsors

— data use, publication rights, and the timing of
regulatory submission

e Matchmaker

— Therapies to targeted subpopulations



Master Protocols

Table 1. Types of Master Protocols.

Type of Trial Objective

Umbrella To study multiple targeted therapies in the context of a single
disease

Basket To study a single targeted therapy in the context of multiple

diseases or disease subtypes

Platform To study multiple targeted therapies in the context of a single
disease in a perpetual manner, with therapies allowed to
enter or leave the platform on the basis of a decision algo-
rithm

NEJM 377, 1, p63, Table 1 136




Master Protocols

Areas of Innovation

Infrastructure
Common screening platform for biomarker identification
Governance
Steering committee
Adjudication committee
Data monitoring committee
Central institutional review board
Trial networks and clinical centers
Processes
Randomization
Data and safety capture and management
Quality-control oversight

Trial Design
Adaptive randomization and other adaptive design features
Longitudinal modeling to determine probabilities of success
or failure
Shared control patients
Natural-history cohort
Biomarker qualification

Figure 3. Areas of Innovation in Master Protocols.

NEJM 377, 1, p63, Figure 3

Master protocols come in different
sizes and shapes but share many
commonalities.

Increased planning efforts and
coordination to satisfy the
objectives of different stakeholders.

Maximum information is obtained
from the research effort

Infrastructure required for imple-
mentation increases data quality and
trial efficiencies, as compared with
those in stand-alone trials.

Can last many years, even decades,
with innovations from the

laboratory translating quickly to
clinical evaluation.
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Platform Trials



Asking the Right Question

e Current Clinical Trials

Is this drug effective and safe?

More precisely
What is the probability of the observed

data assuming the treatment is no good?



Asking the Right Question

e Current Clinical Trials

— Is this drug etffective and safe compared to a placebo?

— Is this drug effective & safe compared to the SOC

* Correction Question
— What 1s the best treatment for this Patient?
— What is the best treatment for this type of patient?



Traditional Trial Design

Single treatment vs. Control
Homogenous patient population
1 or 2 questions per 1 trial

Start with assuming a particular control group effect
and a particular (usually optimistic) treatment group
effect

Assume ‘average’ effect relevant to all patients

Calculate a sample size as if we know the true effect



Plattorm Trial

* An experimental infrastructure to evaluate multiple
treatments, often for a group of diseases, and intended
to function continually and be productive beyond the
evaluation of any individual treatment

— Designed around a group of related diseases rather than a
single treatment

— Disease focused not treatment focused

— Dynamic list of available treatments, assigned with response-
adaptive randomization

— Preferred treatments may depend on health system, patient,
or disease-level characteristics
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The Platform Trial

Opinion

An Efficient Strategy for Evaluating

Multiple Treatments

The drug development enterprise isstruggling. The de-
velopment of new therapies is limited by high costs, slow
progress, and a high failure rate, even in the late stages
of development. Clinical trials are most commonly based
on a "one population, one drug, one disease” strategy,
in which the clinical trial infrastructure is created to test
a single treatment in 3 homogeneous population.

This approach has been largely unsuccessful for mul-
tiple diseases, including sepsis, dementia, and stroke. De-
spite promising preclinical and early human trials, there
have been numerous negative phase 3 trials of treat-
ments for Alzheimer disease' and more than 40 nega-
tive phase 3 trials of neuroprotectants for stroke.” Ef-
fective treatments for such diseases will likely require
combining treatments to affect multiple targets incom-
plex cellular pathways and, perhaps, tailoring treat-
ments to subgroups defined by genetic, proteomic,
metabolomic, or other markers.>

There has been increasing interest in efficient trial
strategies designed to evaluate multiple treatmentsand

romhinatinne nf treatmentc in heternoanennic natient

JAMA. Published online March 23, 2015. doi:10.1001/jama.2015.2316

benefits when evaluating potentially synergistic com-
bination treatments (eg, treatment A, treatment B, treat-
ment C, and all combinations) if the starting pointisthe
testing of each treatment in isolation.

What Is a Platform Trial?

A platform trial is defined by the broad goal of finding the
best treatment for a disease by simultaneously investigat-
ing multiple treatments, using specialized statistical tools
for allocating patients and analyzing results. The focusison
thedisease rather thanany particular experimental therapy.
A platform trial is often intended to continue beyond the
evaluation of the initial treatments and toinvestigate treat-
ment combinations, to quantify differences in treatment
effects insubgroups, andto treat patients as effectively as
possible within the trial. Although some of the statistical
tools used in platform trials are frequently usedinotherset-
tingsandsome less so, itis theintegrated application of mul-
tiple tools that allows a platform trial to address its multiple
goals. The Table summarizes the general differences be-

tween a traditinnal clinical trial and a nlatfarm trial
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@ e JAMA Network

From: The Platform Trial: An Efficient Strategy for Evaluating Multiple Treatments

JAMA. Published online March 23, 2015. doi:10.1001/jama.2015.2316

Table. General Characteristics of Traditional and Platform Trials®

Characteristic Traditional Trial Platform Trial

Scope Efficacy of a single agent in a homogeneous population  Evaluating efficacy of multiple agents in a heterogeneous population;
explicitly assumes treatment effects may be heterogeneous

Duration Finite, based on time required to answer the single Potentially long-term, as long as there are suitable treatments

primary question requiring evaluation

No. of treatment groups Prespecified and generally limited Multiple treatment groups; the number of treatment groups and the
specific treatments may change over time

Stopping rules The entire trial may be stopped early for success or Individual treatment groups may be removed from the trial, based on

futility or harm, based on the apparent efficacy of the

single experimental treatment
Allocation strategy Fixed randomization

Sponsor support Supported by a single federal or industrial sponsor

demonstrated efficacy or futility or harm, but the trial continues,
perhaps with the addition of new experimental treatment(s)

Response-adaptive randomization

The trial infrastructure may be supported by multiple federal
or industrial sponsors or a combination

4 Platform trials and similar trials may also be called basket, bucket, umbrella, or standing trials.

Table Title:

General Characteristics of Traditional and Platform Trials2

Date of download: 3/24/2015

Copyright © 2015 American Medical
Association. All rights reserved.
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Plattorm Trial

Control
Drug A
Drug B
Drug C
Drug A+C
Drug D
Drug E
Drug F
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Plattorm Trial

Contro I
Drug A
Drug B -

Drug C
Drug A+C
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Plattorm Trial
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Plattorm Trial

148



Plattorm Trial

Drug A
Drug B
Drug C
Drug A+C
Drug E
Drug F

Compare Drug D
with Concurrent
Control Patients

Time ==
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Time Machine

Model how controls change over time, if similar, then use
some controls outside concurrent window

Drug A

Compare Drug D
Drug B with Mostly
Drug C Concurrent Control
Drug A+C
Drug E
Jrug F Time
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Time Machine

If controls change little over time, then use more weight
from non-concurrent controls, increases power & efficiency

Drug A
Drug B
Drug C
Drug A+C
Drug E
Drug F

Compare Drug D
with Mostly
Concurrent Control
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[-SPY2

I-SPY 2 Agent History

TRILACICUB + PD-1 = TRASTUZUMAB
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Used with permission from Dr. Laura Esserman, I-SPY2 PI 152



Platform Trials are Happening

e Cancer

— I-SPY?2 in Breast Cancer

— GBM AGILE in Glioblastoma multiforme
— LUNG-MAP in Lung Cancer

— PANCAN in Pancreatic Cancer

e Alzheimer’s

— EPAD: European Prevention of Alzheimer’s Dementia
— DIAN: Dominantly Inherited Alzheimer’s Network

* ALS
— Healey ALS Platform Ttrial, Phase 2/3 with 5 drugs



Platform Trials are Happening

e Infection diseases

— Gates Foundation sponsored Ebola design

— NIH Ebola design
— PREPARE: European Consortium for Disease Preparedness

* Pandemic flu, Butler at al Lancet, Jan 2020
« REMAP CAP (Community Acquired Pheumonia) ongoing, REMAPCAP.org

« COVID-19

— RECOVERY

— ACTT by NIAID -- the Remdesivir trial

— SOLIDARITY by WHO, 4 arms

— REMAP-COVID by International consortium critical care trial
— PRINCIPLE in UK, pre-hospital trial

— ISPY-COVID: UCSF & WISDOM Network, Phase 2

— ACTIV by NIH



From Don Berry

Cancer Trials »
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Efficiencies of platform clinical trials: Reprint and permissions:
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®SAGE

Benjamin R Saville"'? and Scott M Berry'"*

Abstract

Background: A “platform trial” is a clinical trial with a single master protocol in which multiple treatments are evalu-
ated simultaneously. Adaptive platform designs offer flexible features such as dropping treatments for futility, declaring
one or more treatments superior, or adding new treatments to be tested during the course of a trial.

Methods: A simulation study explores the efficiencies of various platform trial designs relative to a traditional two-arm
strategy.

Results: Platform trials can find beneficial treatments with fewer patients, fewer patient failures, less time, and with
greater probability of success than a traditional two-arm strategy.

Conclusion: In an era of personalized medicine, platform trials provide the innovation needed to efficiently evaluate
modern treatments.

Keywords
Platform trial, master protocol, multi-arm, adaptive, Bayesian, clinical trial design
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Ebola virus treatments: A model for ®SAGE

pandemic response

Scott M Berry'?, Elizabeth A Petzold®, Peter Dull*, Nathan M Thielman®,
Coleen K Cunningham®, G Ralph Corey®, Micah T McClain®, David L Hoover’,
James Russell®, ] McLeod Griffiss’ and Christopher W Woods***"®

Abstract

The outbreak of Ebola virus disease in West Africa is the largest ever recorded. Numerous treatment alternatives for
Ebola have been considered, including widely available repurposed drugs, but initiation of enrollment into clinical trials
has been limited. The proposed trial is an adaptive platform design. Multiple agents and combinations will be investigated
simultaneously. Additionally, new agents may enter the trial as they become available, and failing agents may be removed.
In order to accommodate the many possible agents and combinations, a critical feature of this design is the use of
response adaptive randomization to assign treatment regimens. As the trial progresses, the randomization ratio evolves
to favor the arms that are performing better, making the design also suitable for all-cause pandemic preparedness plan-
ning. The study was approved by US and Sierra Leone ethics committees, and reviewed by the US Food and Drug
Administration. Additionally, data management, drug supply lines, and local sites were prepared. However, in response
to the declining epidemic seen in February 2015, the trial was not initiated. Sierra Leone remains ready to rapidly acti-
vate the protocol as an emergency response trial in the event of a resurgence of Ebola. (ClinicalTrials.gov Identifier:
NCT02380625.) In summary, we have designed a single controlled trial capable of efficiently identifying highly effective or
failing regimens among a rapidly evolving list of proposed therapeutic alternatives for Ebola virus disease and to treat the
patients within the trial effectively based on accruing data. Provision of these regimens, if found safe and effective, would
have a major impact on future epidemics by providing effective treatment options.
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The Problem: Ebola Treatment Trial

* Acknowledge universe of possible treatments
— Will evolve over time

— Recognition that combinations may play an
important role

* Uncertainty over role of standard of care

e Our Goal: To determine best treatment for
treating ebola

— Not a trial to determine if a single drug X works



EV-003 Adaptive Platform Design

Reviewed and approved by:
— Duke University IRB
— University of Sierra Leone ethics committee

Master Protoco/ dictates trial behavior, each treatment included as an appendix

Multiple Agents
— Primary & Secondary agents
— Combination + Single agents

Response Adaptive Randomization (RAR)
— Run by a single algorithm

— Assigns treatment regimens that are performing better using collection of primary
endpoint data

Protocol is built so trial arms evolve (part of the protocol!), trial is perpetual

Endpoint is 14-day mortality



Primary/Secondary Agents

* All arms receive optimized standard of care (SOC)

* Primary and Secondary agents

— Primary: Expected capability to work as single agent (e.g.
anti-viral efficacy)

— Secondary: Expected to work with other agents (not given
alone)

Treatments
Pl | P2 | P3| P4 | S1 | S2

Regimens

Treatments




Adaptive Platform Design

Burn-In
Enroliment
Remove Agent? ﬁ
Accrue
More
Yes

NO Analyze

(teport)

Results

Revise Allocation
Rules

Add Agents
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Design Details Burn-In

Enroliment

* Endpoint: Death (Dichotomous, events are bad)

 Start with burn-in period to all 10 regimens
— Equal randomization to 10 arms

— 30 subjects / 3 per arm

e After burn-in

— Response adaptive randomization

— Proportional to probability regimen is optimal

* Adjusted for information

— Continue perpetually (committee can change vote)



Decision Criteria (In/Out)

Analyze

(teport)
Results

 If there is a less than 0.01 probability an agent is

part of the optimal regimen
— Candidate for futility

* If the probability an agent 1s in the optimal regimen

is greater than 0.95

— Report to the steering committee for public
dissemination

* If a regimen has at least a 0.95 probability of being
superior to SOC Alone then SOC Alone 1s reported

for removal




Revise
Allocation

Allocation Rules Rules

e If a SOC it gets minimum of 20%...

* Randomize to regimens with probability
proportional to:

Pr (7, = max 7))

li ™~

nU+1



Statistical Model | uiitom

M

M M
log( P )=a+2 +2 | XY |+ A

1 p X=1 XlYXl

e Priors:

[x]~N(0.)  [X.Y]~N(0,02°)



[x]~N(0.2)|  [X.Y]~N(0,02})

N(0,1) has 95% CI from about 1/7 to 7.
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e Priors:

[x]~N(0.2)  |[X.Y]~N(0,02?)

N(0,0.22%) has 95% CI from about 2/3 to 3/2.
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e Priors:

[x]~N(0.2)  [X.Y]~N(0,02})

e Time:
- Incorporate time “buckets” to model time trend or
‘drift’ -

[A]~NDLM (0,7%)
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Example Trial

Regimens

Agents

2 3

Agents
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New Data Cumulative Data @10 Model Estimates
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New Data Cumulative Data @20 Model Estimates
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New Data Cumulative Data @30 Model Estimates
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New Data Cumulative Data @40 Model Estimates
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New Data Cumulative Data @50 Model Estimates
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New Data Cumulative Data @60 Model Estimates
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New Data Cumulative Data @70 Model Estimates
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New Data Cumulative Data @80 Model Estimates
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New Data Cumulative Data @90 Model Estimates
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New Data Cumulative Data @100 Model Estimates
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New Data Cumulative Data @110 Model Estimates
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New Data Cumulative Data @120 Model Estimates
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New Data Cumulative Data @130 Model Estimates
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New Data Cumulative Data @140 Model Estimates
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New Data Cumulative Data @150 Model Estimates
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New Data Cumulative Data @160 Model Estimates
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New Data Cumulative Data @180 Model Estimates

S _ Q _
® Deaths T O Survivors — Model CI (©)
Survivors B Deaths Prob Optimal o
O Factor in Best
[ee]
8 i o 7
= ©
c o | > o 7
= 10% e
c — Q
.2 [}
& e -]
o _| o
< 23%
17% o . 0B
< - 28% 26% 26% < . o
40% 0
2 67% 67% 25% 1) o}
[} [} [} [} :E =Y — - :
T T T T T T T T 1 © - ° I T T T T T T T T 1
142 143 144 2 243 244 3 3+4 4 1 142 143 144 2 243 244 3 3+4 4 1 142 143 144 2 243 244 3 3+4 4

188



New Data Cumulative Data @190 Model Estimates
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New Data Cumulative Data @210 Model Estimates
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New Data Cumulative Data @200 Model Estimates
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New Data Cumulative Data @220 Model Estimates
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New Data Cumulative Data @250 Model Estimates
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Summary

Incredibly powerful design for finding effective
therapies and combinations in the universe of
treatments

— Type III Error (the question never asked!)

Allows the arms to evolve internally and externally to
changing science

Improved Embedded Care: Efficiently and quickly
identifies best agents, while treating patients more effectively

Have design ready—on the shelf for next pandemic
— A number of parameters can be optimized quickly
— Protocol ready (add appendices)

— Models + simulations ready

Need inde en.dent committee to decide which
drugs to plug in




Plattorm Example 2

The Role of Biomarkers
in Treatments & Trials



Testing a New Treatment

e Standard of Care works in 40%

SOC Works



10% of Patients Benefit

e Standard of Care works in 40%

* New therapy works in 50%o

‘ Additional Benefit [

SOC Works
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50% still untreatable

e Standard of Care works in 40%

* New therapy works in 50%o
* Nothing works 1n 50%

SOC Works
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50% still untreatable

e Standard of Care works in 40%

* New therapy works in 50%o

* Nothing works in 50%

* How many patients do we need
to have 90% chance to see a

SOC Works ‘statistically significant’

differencer
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Need 1036 patients tor 90%

Power

e Standard of Care works in 40%

* New therapy works in 50%o

* Nothing works in 50%

SOC Works
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Need 1036 patients tor 90%

SOC Works

Power

Standard of Care works in 40%

New therapy works in 50%o
Nothing works in 50%o

90% ot patients you enroll tell

you nothing
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Need 1036 patients tor 90%

Power

e Standard of Care works in 40%

* New therapy works in 50%o

* Nothing works in 50%

* 90% of patients you enroll tell
you nothing

>0¢ Workes * What if you knew which 10% of
patients benefited?
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What 1t you KNEW which 10%
Benefit

* If you just enrolled the purple
patients how many patients do you
need for 90% power?

SOC Works
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What 1t you KNEW which 10%
Benefit

* If you just enrolled the purple

patients you need 8 patients for
100% power

* If you could pertectly predict

— 0/4 on standard of care

— 4/4 on new treatment

— Fisher’s exact test p-value = 0.029

SOC Works
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What 190" KNEW which 10%

SOC Works

Benefit

Enroll 20% to capture the 10%
25%0 cured by SOC

25%o still not cured

50% of enrolled patients benefit
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What 190" KNEW which 10%

SOC Works

Benefit

Enroll 20% to capture the 10%
25%0 cured by SOC

25%o still not cured

50% of enrolled patients benefit
Need 36 patients for 90% power
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WhatIEgsatd<NEW which 10%

SOC Works

Benefit

Enroll 30% to capture the 10%
33% cured by SOC

33% not cured

33% of enrolled patients benefit
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WhatIEgsatd<NEW which 10%

SOC Works

Benefit

Enroll 30% to capture the 10%
33%0 cured by SOC

33% not cured

33% of enrolled patients benefit
Need 90 patients for 90% power
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GBM AGILE

Adaptive Global Innovative Learning Environment

Trial Design V1

EXAMPLE TRIAL ONLY
TRIAL HAS CHANGED DRAMATICALLY SINCE THIS

Thanks to Todd Graves & Don Berry



Statistical Model

* Primary outcome: Overall Survival

* Time-to-event model including
— Age
— Tumor Size
— Performance Status
— S1te (o be defined)
— Drug
— Drug X Biomarker

— Drug X Biomarker X Biomarker

* Flexible to add drugs & biomarkers on the fly
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Biomarkers = Signatures

Newly diagnosed

Newly diagnosed

MGMT-unmethylated MGMT-methylated
Recurrent GBM Recurrent GBM
MGMT-unmethylated MGMT-methylated




2 X 2 Biomarkers = 4 Signatures

Newly diagnosed Newly diagnosed
MGMT-unmethylated MGMT-methylated

Recurrent GBM Recurrent GBM
MGMT-unmethylated MGMT-methylated
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2 X 2 Biomarkers = 3 Signatures

Newly diagnosed Newly diagnosed
MGMT-unmethylated MGMT-methylated

Recurrent GBM Recurrent GBM
MGMT-unmethylated MGMT-methylated
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2 X 2 Biomarkers = 1 Signature

Newly diagnosed Newly diagnosed
MGMT-unmethylated MGMT-methylated

Recurrent GBM Recurrent GBM
MGMT-unmethylated MGMT-methylated
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Response-adaptive randomization

Randomize separately within signature

Randomization probability proportional to
Pr(HR < 0.75)

It randomization probability < 5%, round to
0

If N < 50, min rand prob = 1/ # of drugs
Probability randomize to control =

Probability randomize to best drug

Update monthly



Why proportional to Pr(HR<0.75)?

: Pr(HR<0.75) = 0.84 --> 0.45 --> 0.32
I Pr(HR<0.75) = 0.50 --> 0.27 --> 0.19
|
|
|
| Pr(HR<0.75) = 0.44 --> 0.24 --> 0.17
: Control --> 0.32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
|
|
|
|
! \
|
|
|
|
| \\
|
|
: —
I i i i i i i T i I
0.15 0.25 0.33 0.5 0.75 1 1.5 2 25 3 4 6
Hazard Ratio 224



Graduation

A drug graduates if, within any signature,
*Pr(HR < 1) > 99%
*Min 75 patients on that drug overall

*Min 300 pt-months exposure on that signature

When a drug graduates
*Drug out of trial
*Data for all subtypes delivered to sponsor



Futility
A drug 1s removed from the trial for futility
if
* Pr(HR < 0.75) < 5% for all signatures

* At least 50 patients
Or

* Been enrolling for 3 years

Stop at Max N=150 over all signatures



Identifying the Right
Target Population

Methylated It works here

Unmethlylated

227



Identitying the Right
Target Population

Methylated But not here
Unmethlylated Or here Or here

|dentify it works in red lasso:
We made the right choice
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Identitying the Right
Target Population

Methylated It works here But not here
Unmethlylated Or here Or here

|dentify it works in red lasso:
Have we made the right choice?

Is this a Type 1 error?
Call this a SUPERSET error
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Identitying the Right
Target Population

Methylated It works here And here
Unmethlylated But not here Or here

|dentify it works in red lasso:
We made the right choice
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Identitying the Right
Target Population

Methylated And here
Unmethlylated But not here Or here

|dentify it works in red lasso:
Did we made the right choice?

We made a “Type 2 error”
Call this a SUBSET error
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Identitying the Right
Target Population

Methylated It works here And here

But not here Or here

Unmethlylated

|dentify it works in red lasso:
Did we made the right choice?
We got one right but made a “Type 1 Error” & “Type 2 error”!
Call this a “MIXED TYPE ERROR”
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Factors We Can Tune

Max N per drug

Signatures (Biomarker-drug interactions)
Randomization algorithm

Futility rule

_ Pr(HR<0.75)

— Min N

— Max time allowed to accrue

Graduation rule
— Pr(HR<1)
— Min N, Min Exposure



Learn & Confirm Using Biomarkers

Make confirmatory trials dramatically smaller

— Or learn & confirm within a trial

Lead us toward personalized medicine

— What works best in whom?
May require larger platforms trials, data sharing &
adaptive randomization to efficiently identify
Ditferent drugs work in different types of patients

— Not one trial, one patient type

— Learn, confirm, perpetually



Challenges 1n Platform Trials

Complexity in trial implementation and planning
Collaborations across sponsors - who initiates the
planning?

Timely communication between participating sites and
data coordinating units

Sponsors sacrifice autonomy in running the trial

Determining shared costs

Identitying what to report when
— 1Spy2 has rules for ‘graduating’
— When to report subgroup results broadly?



Platform Trial Efficiencies

Useful for evaluating combinations of treatments and for direct
comparisons between competing treatments

— Decide a prior whether each vs. control or vs. each other

Do not require a new trial infrastructure for every treatment
under 1nvestigation

Easier for regulators grven evidence comes in common form

Always new drugs on horizon

— Even if lull, get SOC in the process
Can build in Phase 2/3 design

— learn & confirm

Need to prospectively define control group
— Concurrent controls
— “Iime machine’

— What if control group changes



Conclusions

Adaptive trial designs can be used to create a
seamless process in which new evidence about
effectiveness is immediately used to improve patient
care

A platform trial can extend this process beyond a
single treatment or few treatments

Current work 1s focused on embedding this
approach into the health care infrastructure

Patients will benefit if we merge clinical trials and
decision support into a single, continuous process



Thank youl

* Thank you for a great class.

* Please complete evaluations

To access evaluations, log in to
https:/ /si.biostat.washington.edu/user/login,

click “My Account” in the upper right,

the evaluations will appear on your dashboard.

After you have completed your evaluations, a
link to download the certificate of completion
will appear within 24 hours.
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Example:

Goldilocks Trial with 2 Endpoints
& Informative Prior on
Longitudinal Model



Background

Medical device to treat atrial fibrillation (AF)

Used during open cardiac surgery

— Only used when surgery being done for other reason

— e.g., CABG, Valve replacement

IL.abel was to ‘ablate cardiac tissue’ not ‘treat AF’

Trial needed to produce evidence of safety and
etficacy for treatment of AF

Controlled trial not possible due to extensive use



Background

* Harly safety study with matched controls
failed to enroll

— Matched control having same cardiac surgery
without AF treatment component

— Stopped @ 32 months when 39 cases &

just 5 controls enrolled

* FDA suggested to company to explore
Bayesian adaptive trial with safety & efficacy

OPCs



Objective Performance Criteria

* Efficacy OPC (6m)
— AF free & off AF drugs at 6 months
— Goal: 70%, oy = 10%
— Based upon published rates of this procedure
* 10 papers had 60.1% efficacy

* Safety OPC (1m)
— Free of significant adverse event
— Goal: 13.95%, 05 = 5%
— Based upon published SAE rates in Cut & Sew MAZE




Statistical Endpoints

Show Pr(p > 0.60) > 0.975

— 70% - o = 70% - 10% = 60%

Show Pr(p, < 0.1895) > 0.95

— 13.95% + 05 = 13.95% + 5% = 18.95%
Achievable 1n 100 patients if

— observed efficacy = 70%

— observed safety = 12%

— basically point estimates have to match or beat OPCs

be, ps ~ Beta(1,1) priors for both endpoints



Goldilocks Design

* Enroll 50 - 100 patients

— Must have 20 patients at 6 months or skip
analysis

* Interim analyses every 5 patients

* Final sample size based upon predictive
probabilities

* Expect to enroll 5 patients per month

~30 patients enrolled without complete 6m data



Stopping Decisions

* P = Pr(Meet Efficacy & Satety Goals with
current sample size 7| Current Data)
— It P, =2 §, then stop accrual for predicted success
_ S, =0.90 for n=50-65
_ S, = 0.85 for n=70-80
_ S, = 0.80 for n=85-95

e P = Pr(Meet Efficacy @ Safety Goals with
100 patients | Current Data)
— If P, = F, then stop trial for futility
_F. = 0.05 for n=50-70
_F. = 0.10 for n=75-95




Longitudinal Model

* Efficacy outcome 1s AF-free and off AADs at 6m

* Interim outcome at 3-months i1s whether patients

are AF-free already

* Predict 6m outcomes using Beta-Binomial

IH

No 3m data 1 83%
In AF 42 1.8 70%
AF-free 54 0.6 90%



Operating Characteristics for Trial with
pr=0.84, p. = 0.08

Sample Proportion Stop for Stop Early

Size Of Trials Futility For Success & Lose & Win
50 0.440 0.008 0.432 0.011 0.421
55 0.150 0.003 0.147 0.007 0.140
60 0.109 0.006 0.102 0.005 0.097
65 0.033 0.004 0.029 0.002 0.027
70 0.063 0.002 0.001 0.002 0.058
75 0.034 0.006 0.027 0.002 0.025
80 0.031 0.011 0.020 0.000 0.020
85 0.042 0.002 0.040 0.000 0.040
90 0.009 0.006 0.003 0.000 0.003
95 0.019 0.003 0.016 0.000 0.016
100 0.070 - 0.070 0.011 0.058

Total 1.000 0.053 0.947 0.042 0.906

Mean Sample Size = 61.6, SD = 15.6
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Efficacy = 84% Safety = 6%
Mean N = 55.8 Power = 0.969
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0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Efficacy = 84% Safety = 8%
Mean N = 61.4 Power = 0.905

50 55 60 65 70 75 80 85 90 95 100



0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Efficacy = 79% Safety = 8%
Mean N = 63.6 Power = 0.855

50 55 60 65 70 75 80 85 90 95 100



0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Efficacy = 74% Safety = 8%
Mean N = 65.7 Power = 0.69

50 55 60 65 70 75 80 85 90 95 100
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0.4
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Efficacy = 60% Safety =8%
Mean N = 57.5 Power = 0.016
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0.7
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Efficacy =79% Safety =19%
Mean N= 60 Power = 0.039

50 55 60 65 70 75 80 85 90 95 100



Interim Analysis

* No look at 50 patients

* At 55-patients August 24, 2009

— All patients through 30-day safety, 5/55 had
SAEs

— 24/29 efficacy successes at 6-months
— 21 subjects remain under surveillance
— 37/50 successes would show

Pr(p,> 0.60 | 37 of 50) = 0.978 > 0.975

— Total number of efficacy successes
X=24+x, +x; +x



Interim Analysis

x, = 5 enrolled with < 3mo follow-up
— x, ~ Beta-Bin(n, = 5, a=5+24, f=1+5)
x- = 3 enrolled not AF-free at 3mo

_ x_~ Beta-Bin(n. = 3, 0=4.2+3, B=1.8+1)
x+ = 13 enrolled AF-free at 3mo

— x+ ~ Beta-Bin(n+ = 13,1 =5.4+17,
L1 =0.6+3)

Pr(24+x_+x +x, = 37) = 0.988




Interim Analysis

. ‘ Longitudinal Priors
x, = 5 enrolled with < 3mo follow-up  were righton

— X, ™~ Beta—Bin(ﬂO — 5, (X:5+24, 3:1+5) 5/6 = 83

x- = 3 enrolled not AF-free at 3mo 24/29 = .83

— x_~ Beta-Bin(z. = 3, a=4.2+3, B=1.8+1) 49/56= 70

x+ = 13 enrolled AF-free at 3mo 3/4 = .75

— x+ ~ Beta-Bin(n+ = 13,[1=5.4+17, 54/6 = 90
1 =0.6+3) 17/20 = .85

Pr(24+x_+x +x, = 37) = 0.988



Prediction of 21 remaining pts based on 29 observed pts
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Sample Size Analysis at 55 pts

Current Patients Enrolled: 55

Current patients not contributing to efficacy: 5

Current Safety Events: 5 of 55 patients

Current Efficacy Success: 24 of 29 patients

Current Efficacy Successes: 24 of 29 patients

Current Efficacy Successes: 3 of 4 Efficacy Failures at 3 months
Current Efficacy Successes: 17 of 20 Efficacy Successes at 3 months

0 enrolled patients to predict for 1lmo safety outcomes

45 future patients to predict for 1lmo safety outcomes

5 enrolled patients with <3mo to predict for efficacy outcomes

3 enrolled patients with AF at 3mo to predict for 6mo efficacy outcomes

13 enrolled patients without AF at 3mo to predict for 6mo efficacy outcomes
45 future patients to predict for 6mo efficacy outcomes

Predicted Safety Events with Current Accrual: 5 ( 5 - 5 ) of 55 patients
5 or fewer needed for safety success
Predicted Safety Events with Maximum Accrual: 9.7 ( 6 - 16 ) of 100 patients
12 or fewer needed for safety success
Predicted Efficacy Successes with Current Accrual: 41.5 ( 37 - 45 ) of 50 patients

37 or more needed for efficacy success
Predicted Efficacy Successes with Maximum Accrual: 78.8 ( 69 - 86 ) of 95 patients

67 or more needed for efficacy success
Decision Rule: Stop Enrolling Due to Predicted Success

Prob Win Efficacy Prob Win Safety Prob Wj ot 988 > 90
Now 0.988 1.000 0.988 /° —
Max N 0.992 0.846 . Stop for

predicted success




Stopped Accrual for

Predicted Success

Accrual stopped with 55 patients in
Continue to follow 21 enrolled patients

Perform final analysis on complete data

Final Data
— 5/55 SAEs
— 37/50 AF-free and off AADs



Safety

ABLATE OBSERVED
RATE =5/55=91%

Performance Goal < 0.1895

] ] ] ] ]
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ABLATE STUDY
96.7% Probability Rate <0.1895

Efficacy

Performance Goal = 0.60
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ABLATE OBSERVED
RATE =37/50 = 74%
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ABLATE STUDY
97 .8% Probability Rate > 0.60



Post Trial Discussion with FDA

* Eftficacy barely won
— One less success would have failed to meet
primary endpoint
— Not a robust win, in part due to post-hoc
changes related to inc/excl criteria

* Some concern with n=>55
— But this was possible based upon design
— Safety OPC = 0.1395, observed 0.091
— Efficacy OPC = 0.70, observed 0.74



Safety: Compare Stopping at n=55 to
Maximum Trial Size n=100

Smallest win

— 100 Observed MAEs: 5/55 =9.1%
Pr(g,<0.1895) = 0.967 > 0.95

If Observed MAEs: 12/100 = 12%
Observ Pr(g,<0.1895) = 0.960 > 0.95

Trial stopped very early because the
observed MAE rate was much lower.

0.0 0.2 0.4 0.6 0.8 1.0

Gt



Eftficacy: Compare Stopping at n=50 to

Maximum Trial Size n=100

Observed Success: 37/50= 74%
Pr(p;> 0.60) = 0.978 > 0.975

If Observed Success: 70/100 = 7|
Pr(p;> 0.60) = 0.979 > 0.95

Trial stopped very early because
the observed Success rate
was higher.

_/

Smallest win @ 100

Observed

0.0 0.2 0.4 0.6

Pt

0.8 1.0



FDA Advisory Panel Vote Oct 2011

e [s there reasonable assurance that the AtriCure
Synergy Ablation System is effective ...?

— 9 for, 0 against
* Is there reasonable assurance that the AtriCure
Synergy Ablation System is safe...?
— 5 for, 4 against, 1 abstain (chair broke 4-4 tie)
— Largely due to patients needing pacemakers
* Do the benefits ... outweigh the risks ...?

— 5 for, 3 against, 1 abstain



‘heartwire
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AtriCure AF ablation system gets cautious thumbs-up from FDA
advisors
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Rockville, MD (updated) - The AtriCure Synergy Ablation System squeaked by today in a meeting of the
Food and Drug Administration's Circulatory System Devices advisory panel when panelists gave a cautious
nod of approval for the device.

Five panel members believed the benefits of the ablation system outweighed the risks when used in the
treatment of atrial-fibrillation (AF) patients undergoing open concomitant coronary artery bypass graft
(CABQ) surgery and/or valve replacement or repair. Three panelists expressed doubts about the system and
cautioned against device approval, voting that they did not believe the benefits outweighed the risks.

One panelist abstained from voting on the benefit/risk trade-off question.

In a vote on efficacy alone, all panelists believed the ablation system is effective in restoring sinus rhythm,
but they were split for the vote on safety. Chair of the advisory panel, Dr John Hirschfeld (University of
Pennsylvania, Philadelphia), cast the deciding vote on safety, saying he believes there is reasonable
assurance the device is safe for use in patients who meet the indication criteria. Overall, the panel voted 9 to
0 on efficacy and 5 to 4 on safety (with one abstention).

Panel member Dr David Slotwiner (Long Island Jewish Medical Center, New Hyde Park, NY) voted in favor of
the ablation system, saying that he believes the benefits outweigh the risks.

"I think it's effective at creating these ablation lesions, and | think it's effective in many people for
maintaining sinus rhythm, although what that means [clinically] for many patients remains unanswered,"” he
said. "But | hope, mostly, that if an approval is granted, it will allow us to get more information and to
educate more surgeons so that the procedure becomes more widely available and we understand better who
will benefit the most."



FDA Approved Dec 14, 2011

* Study Design (from device label)

 ABLATE was a multi-center, prospective, non-
randomized study based on a Bayesian adaptive design
that provides hlgh probability of demonstrating safety and
effectiveness of the AtriCure Synergy Ablation System for
the treatment of permanent atrial fibrillation. The safety
and effectiveness of the device was compared to
performance goals derived from historical information.
The Bayesian adaptive clinical design incorporated interim
analyses of the data to determine the point of completion
of trial enrollment. Enrollment was targeted to be between
50 and 100 subjects at 20 sites. The study was designed to
have an initial assessment of results at the point that 50
subjects were enrolled with a minimum of 20 subjects
completing their six-month follow-up visit. Nine
investigational sites enrolled 55 subjects.



l.essons

Ensure minimum sample size will suttice
— Not just statistical, but impactful

— Company did a continue access protocol to get
more patients during review, leading to panel

Ensure data isn’t coded optimistically

Ensure inclusion / exclusion criteria
rigorously followed

Goldilocks gets the size 9ust right’ but that
means you can be close to ‘just wrong’ 1f
some data changes post hoc



