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Decision Problem 1: Pandemic!

* A pandemic just hit the USAI!

* Patients are dying from a deadly disease

* 7-day survival rate is estimated to be less
than 50% with standard care

* Patients who are alive at 7 days after initial
symptoms typically have full recovery



Decision Problem 1: Pandemic!

* We need to determine best treatment of infected
people

* Currently available therapies
— Standard care with aforementioned ~50% mortality
— 3 experimental anti-virals are ready to go

— Fach experimental arm is a novel anti-viral drug plus
standard care

* Primary Endpoint:

— Alive at 7 days after randomization (yes/no)



Allocation of Patients

An effective treatment is any treatment that is
better than standard care

We will design the trial in stages, lets say we can
enroll 80 patients per month

You tell me where you want to assign patients

I'll tell you how many on each drug survived



Interim Analyses

* At each interim analysis, you will receive etficacy
data and will have to decide one of three things:

1.

Terminate the trial for futility, choose standard care as
best option

Stop the trial for success, choose optimal drug to treat all
future patients

Continue to collect data, allocating the next 80 patients
to the four arms however you choose



Contest Points

* Team Competition

— Each deceased patient costs 5 points

— Every minute 1t takes to make a final decision costs 50 points
(e.g., 20 minutes costs 1000 points)

— If you claim a drug is superior to standard care (successful
trial):
1. If (in truth) the chosen drug is not superior to standard care, you
lose 1,000 points
2. If (in truth) the chosen drug 1s superior to standard care, you receive
2,000 points plus 200 for each % efficacy compared to control
— If you claim standard care 1s best (futile trial):

1. If (in truth) at least one of the drugs is superior to standard, you
lose 1,000 points

2. If (in truth) all drugs are not superior to standard, you recetve 2,000
points



Instructions

* Write on a piece ot paper how many patients (80
total) you would like to allocate to

— Standard Care
— Drug1
—  Drug?2
— Drug 3
* Bring to me to receive instant patient results

— But don’t get too close

* Repeat process until treatment is selected by group



Assign Teams



Gol
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Discussion
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Decision Problem #2*

* You move to a new city and start a new job

* Want the fastest way to work
— Could take the highway (smaller p, larger 6?)

— Could take surface roads (larger p, smaller 67)

* How do you decide which way to go?

* How do you decide how to decider

* Only for those who’ve moved to a city & started a new job prior to owning a smartphone
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A common CER trial:
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Desirable Qualities of an RCT

e Rowl e Row?2



Decision Problem #3

* New device to assist pre-mature infants
* Historical mortality rate >75%

e How to decide if new device is better than
standard of care?
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Decision Problem 3: ECMO

Extracorporeal membrane oxygenation

Oxygenates babies’ blood & gives
underdeveloped lungs & heart time to heal or

orow
Historical survival rates < 25%

Michigan trial: Randomized play the winner

Strategy
— Bartlett, Pediatrics, 1985, 76: 479-487
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Arterial
Cannula

Heparin Infusion Pump
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Randomization Rules

Randomize first patient 1:1 to treatment ¢

If survives on treatment % add 1 “#colored” ball

If dies on treatment # add 1 other colored ball

Treat 10 patients this way

Expected number patients treated with better
treatment > 5, ethical
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ECMO Results

Prob to Balls in Urns
ECMO TRT Result CMT ECMO
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Prob to Balls in Urns
ECMO TRT Result CMT ECMO
Start 1 1

1 0.50 ECMO

2

3

4

5

6

7

8

9

—_
-)

20



ECMO Results
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ECMO Results

Prob to Balls in Urns
ECMO TRT Result CMT ECMO
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ECMO Results

Prob to Balls in Urns
ECMO TRT Result CMT ECMO
Start 1 1
1 0.50 ECMO Lived 1 2
2 0.67 CMT Died 1 3
3 0.75
4
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ECMO Results

Prob to Balls in Urns
ECMO TRT Result CMT ECMO
Start 1 1
1 0.50 ECMO Lived 1 2
0.67 CMT Died 1 3
0.75 ECMO Lived 1 4
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ECMO Results
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ECMO TRT Result CMT ECMO
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1 0.50 ECMO Lived 1 2
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ECMO Results

Prob to Balls in Urns
ECMO TRT Result CMT ECMO
Start 1 1
1 0.50 ECMO Lived 1 2
2 0.67 CMT Died 1 3
3 0.75 ECMO Lived 1 4
- 0.80 ECMO Lived 1 5
5 0.83 ECMO Lived 1 6
§ 0.86 ECMO Lived 1 7
7 0.88 ECMO Lived 1 8
8 0.89 ECMO Lived 1 9
9 0.90 ECMO Lived 1 10
10 0.91 ECMO Lived 1 11




What Would You Decide?

« ECMO 9/9 CMT 0/1*
*The 1 on CMT was the sickest of all patients

* As a statistician / clinical trialist do you have
sufficient information to declare ECMO

more efficacious than standard of care?
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What Would You Decide?

« ECMO 9/9 CMT 0/1*
*The 1 on CMT was the sickest of all patients

* As a statistician / clinical trialist do you have
sufficient information to declare ECMO

more efficacious than standard of care?

* As a parent would you dare nof request
ECMO for your premature baby?
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Lessons of ECMO

* QQuestions the trials designers should have asked
before the trial

— How do we calculate a p-value?
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Lessons of ECMO

* QQuestions the trials designers should have asked
before the trial

— How do we calculate a p-value?

— Published p-values for this data (Stat Sci Nov 1989)

0.00049 0.051
0.001 0.083F
0.003 0.280
0.009 0.500
0.038 0.617
0.045 1.000

undefined



Lessons of ECMO

* QQuestions the trials designers should have asked
before the trial

— How do we calculate a p-value?

— Will the medical community believe our results?

* Will we have enough data to sway opinions of people
with a wide range of prior beliefs

— What are trial results likely to look like?

— What if everyone is randomized to ECMO?
e If CMT success = 30% and ECMO success = 90%
6% chance all 10 patients will be randomized to ECMO
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Follow-Up Trials

— Stage 1: randomize equally until 4 deaths in one arm

Harvard

— Stage 2: assign all to other arm until 4 deaths or stat sig.
— 6/10 conventional therapy (60%0)

— 9/9 & 19/20 on ECMO (97%)

— Pedjatrics, 1989, 84: 957-963

U.K
— 63/93 on ECMO (68%)
— 38/92 on conventional therapy (41%)
Lancet, 1996, 348: 75-82

Were these study designs ethical?
Do we have an irrational commitment to blinded RCT's?

Do we have an irrational commitment to p < 0.05°

Does lack of p<0.05 mean equipoise until we see p<0.05?
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Why are Study Designs wsuary Fixed

* It’s eastest to calculate type I error rates if the
design parameters of the trial are all constant

* Results obtained using “Standard approaches™
are generally considered valid

* Logistically simpler to execute

* Fixed designs are less sensitive to drift in the
characteristics of subjects over time

— Fears worse than reality

* We could do the math 40 years ago

— We still can but we can also do more sophisticated things now too
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Digression:

The Marshmallow Design Challenge




The Marshmallow Design Challenge
Peter Skillman

* 4-person team

* 18 minutes

* 20 pleces of raw spaghetti
* 1 meter of tape

* 1 meter of string

e 1 marshmallow

Peter Skillman Marshmallow Design Challenge
https://www.youtube.com/watch?v=1p5sBzMtB3Q
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The Marshmallow Design Challenge

Specialized Skills
+ Fadilitation Skills
= Success

20
10
0 |
Hei Ave Architeds &
m = Eng'ineers

Tom Woujec: Build a tower, build a team.
https://www.youtube.com/watch?v=H0O_yKBitO8M
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The Marshmallow Design Challenge

Specialized Skills
+ Fadilitation Skills
= Success

20

10

0 |

Hei Ave Busi Lawyers Architeds &
m = s"fm’ Eng'ineers

Students

Tom Woujec: Build a tower, build a team.
https://www.youtube.com/watch?v=H0O_yKBitO8M
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The Marshmallow Design Challenge

Specialized Skills
+ Focllltutlon Skills

= Success

Hei Ave Busi Lawyers Architeds & (EOs  CEOs &
m o s"fm’ ng'meers Executive
Students Admins

Tom Woujec: Build a tower, build a team.
https://www.youtube.com/watch?v=H0O_yKBitO8M
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The Marshmallow Design Challenge

Specialized Skills
+ Focllltutlon Skills

= Success

Hei Ave Busi lowyers  Kinder- Architeds& (EOs  (EOs &
m =y Su‘s}mis garten Eng'meers Executive
Students Admins

Tom Woujec: Build a tower, build a team.
https://www.youtube.com/watch?v=H0O_yKBitO8M
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The Marshmallow Design Challenge
Peter Skillman

* Kindergartners
— Don’t waste time seeking power
— Don’t sit around talking about the problem
— Try, fail, try, fail until ime runs out
— They all grab stuff and try things
— Usually keep the marshmallow on top when trying

* MBA grads

— Spend a lot of time talking

— Trained to find single best plan

— Trained never to fail

— Last thing they do it put the marshmallow on top
(and often watch the whole tower collapse)
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The Marshmallow Design Challenge
Peter Skillman

You learn by doing and failing & redoing
Work in parallel
Doing multiple iterations 1s good

All projects have resource constraints

41



ECMO: Trial & Error Design by
Simulation

p.ecmo <-0.75;  p.cmt <- 0.25

group.vec <- NULL; outcome.vec <- NULL
outcome <- matrix(nrow=100000, ncol=5)

for(s in 1:100000) {
urn <- c¢(1,1)
for(pt in 1:10){
group <- sample(c("C","E"), 1, prob=urn)
result <- rbinom(1, 1, ifelse(group=="C",p.cmt, p.ecmo))
if(group=="C")/{
if(result==1){
urn|1] <-urn[1] + 1
else{
urn|2] <-urn[2] + 1
b
telse{
if(result==1){
urn|2] <-urn[2] + 1
else{
urn|1] <-urn[1] + 1
b

b
group.vec|pt| <- group

outcome.vec|pt] <- result

}

tab <- table(factor(group.vec, levels=c("C","E")), factor(outcome.vec,

levels=0:1))

outcomels,] <- c(c(tab), fisher.test(tab, alternative="greater")$p.value)

print(s)
b

### Pr no patients on control

mean((outcome[,1]+outcome[,3]) == 0)
### Pr no patients on ECMO
mean((outcome[,2]+outcome[,4]) == 0)

### Pr more on ECMO than control
mean((outcome|,1]+outcomel,3]) < (outcome[,2]+outcome|,4]))
### Pr more equal on each

mean((outcome|,1]+outcomel,3]) == (outcome][,2]+outcome[,4]))
H### Pr more on control than ECMO

mean((outcome|,1]+outcomel,3]) > (outcome[,2]+outcome|,4]))

#H#H# More ECMO than control success
mean((outcome[,3]) < (outcome[,4]))
H#HH## 4 or more ECMO than control successes

mean((outcome[,3] + 4) <= (outcome[,4]))
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ECMO: Prospective Simulation

Operating Characteristics CMT 25% CMT 25%
ECMO 75% ECMO 25%

Pr(All patients randomized to ECMO) 2.5% 0.04%
Pr(All patients randomized to CMT) 0.04% 0.04%
Pr(Majority to ECMO) 72% 36%
Pr(5 ECMO & 5 CMT) 14% 27%
Pr(Majority to CMT) 14% 36%
Pr(Fisher P-value < 5%) 12% 0.1%
Pr(Chi-square P-value < 5%) 32% 1.9%
Pr(# ECMO Success > # CMT Successes) 89% 38%

Pr(# ECMO Success = # CMT Success + 4) 59% 2.7%



ECMO: Prospective Simulation

Operating Characteristics CMT 25% CMT 25%
ECMO 75% ECMO 25%

Pr(All patients randomized to ECMO)
Pr(All patients randomized to CMT)
Pr(Majority to ECMO)

Pr(5 ECMO & 5 CMT)

Pr(Majority to CMT)

Pr(Fisher P-value < 5%)
Pr(Chi-square P-value < 5%)

Pr(# ECMO Success > # CMT Successes)

Pr(# ECMO Success = # CMT Success + 4)

Power

2.5%

0.04%

72%

14%

14%

59%

0.04%
0.04%
36%

27%
Type |
error

36%

2.7%
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ECMO: Prospective Simulation

Operating Characteristics CMT 25% CMT 25%
ECMO 75% ECMO 25%

Pr(All patients randomized to ECMO) 2.5% 0.04%

Pr(All patients randomized to CMT) 0.04% 0.04%

Pr(Majority to ECMO) 72% 36%

Pr(5 ECMO & 5 CMT) 14% 27%

Pr(Majority to CMT) 14% 36%

Pr(Fisher P-value < 5%) 12% 0.1%

Pr(Chi-square P-value < 5%) 32% 1.9% |
e

Pr(# ECMO Success > # CMT Successes) Power 89% 38% yP

Srror
Pr(# ECMO Success = # CMT Success + 4) @
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10

10

ECMO Iterate Design

Decision Rule Power when Type I error
# ECMO Successes vs. ECMO 75% ECMO 25%
# CMT Successes CMT 25% CMT 25%

1 or more 89% 38%

4 or more 59% 2. 7%

3 or more 72% 8.1%
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15

15

ECMO Iterate Design

Decision Rule Power when Type I error
# ECMO Successes vs. ECMO 75% ECMO 25%
# CMT Successes CMT 25% CMT 25%

4 or more 59% 2. 7%

3 or motre 72% 8.1%

4 or more 79% 5.9%

5 or more 71% 2.3%
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10

10

15

15

16

16

ECMO Iterate Design

Decision Rule
# ECMO Successes vs.

# CMT Successes

4 or more

3 or more

4 or more

5 or more

4 or more

5 or more

Power when
ECMO 75%
CMT 25%

59%

72%

79%

71%

82%

74%

Type I error
ECMO 25%
CMT 25%

2.7%

8.1%

5.9%

2.3%

6.7%

2.8%
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ECMO Iterate Design

Decision Rule Power when

Type I error

# ECMO Successes vs. ECMO 75% ECMO 25%
# CMT Successes CMT 25% CMT 25%

10 4 or more 59% 2.7%

10 3 or more 72% 8.1%

15 4 or more 79% 5.9%

15 5 or more 71% 2.3%

16 4 or more 82% 6.7%

16 5 or more 74% 2.8%

18 5 or more 80% 3.5%

Fisher’s exact test: 59% power @ 1-sided 5.0%.
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ECMO Iterate Design

Decision

Rule

ECMO v CMT T1lerror
N |CMT S/N 25v25
10 4 or more 59% 2. 7%

49 /65 09/35 1.25/5 1.25/5

10 3 or more 72% 8.1%

8 nore 57| 23 4 4

pa Sllts more Mor more Mmor

18 5 or more 80% 92 /122 14/58 3.5% 225/9 225/9

Standard trial with 18 patients has 58% power with 5% Type | error
Always randomized half to CMT; E(survive) = 10.6 vs. 9
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Frequency

10000 15000

5000

ECMO with 18 patients

CMT=25%, ECMO = 75% CMT=25%, ECMO = 25%

Frequency
10000 15000 20000
| | |

5000

I I I I I I I I I I
6 9 12 15 18 0 3 6 9 12

Randomized to ECMO Randomized to ECMO

I
15

18
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Type | error

1.0

0.8

0.6

0.4

0.2

0.0

No free lunch

Type | error is controlled for low rates

Controlling Type | error over the whole range
requires huge power hit in the likely range

Is this worth it in a highly morbid disease e
./. 0.37
.,—0’632034

0.3
—
Y 026028
- 0.23

____________________ S
c—o—o—°*—° 0054

0.019
.001
0.0016 0.035

0.00012 0.0073

l [ [ [ [ I
0.0 0.2 0.4 0.6 0.8 1.0

True Rate, p.c & p.t
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When designing trials I believe we should

Remember that most ‘standard” methods were developed for
agriculture

Remember that current trialists were trained by people who were
trained by people who had seeds as patients

Remember most statistical methodology is based on asymptotic theory

— Because we couldn’t do math then that we can do now

Forget much of what we know about clinical trials &
hypothesis testing & asymptotic theory

Hire smart people with their heart in the right place

Balétnce treating the next patient well & producing valuable long-term
evidence

Think much harder about the ‘right’ Type I error rate

Design trials by trial & error by using simulation,
iterate designs with doctors, patients, payers, regulators

Not let within-trial patient benefit be a side effect of quality research
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When designing trials I believe we should

Remember that most ‘standard’ methods were developed for agriculture

Remember that current trialists were trained by people who were trained by
people who had seeds as patients

Remember most statistical methodology is based on asymptotic theory

*  Because we couldn’t do math then that we can do now

Forget much of what we know about clinical trials &
hypothesis testing & asymptotic theory

Hire smart people with their heart in the right place
Balance treating the next patient well & producing valuable long-term evidence

Think much harder about the ‘right’ Type I error rate

Design trials by trial & error by using simulation,
iterate designs with doctors, patients, payers, regulators

Not let within-trial patient benefit be a side effect of quality research
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Decision Problem #4:
ESETT Trial

A multicenter, randomized, double-blind,

comparative etfectiveness study of

fos-phenytoin, levetiracetam, and valproic acid

in subjects with benzodiazepine-refractory

The Established Status |

Status Epilepticus:

“pilepticus Treatment

Trial
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Research Question

* How to treat seizing patients who’ve failed
benzodiazapine?
— tosphenytoin (fPHT)
— levetiracetam (LLVT)
— valproic acid (VPA)
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Comparative Ettectiveness

* No control group

— Three drugs start out equal

— Want to know which is best

* Whatis Type I error in CER?
— Consequence of Type I error less in CER

* Really want to know

— Which drug 1s best ... with measure of certainty

— Which drug 1s worst ... with measure of certainty
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Trial Overview

* Primary endpoint
— cessation of seizure within 20 minutes
— no further intervention within 1 hour
— no significant adverse event

* Powered to identify 15% difference in
response rate

— Min 400, Max 795 Patients (to get 720)

* Stratity randomization by age
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Bayesian Adaptive Design Features

* Adaptively allocate to favor better treatments

* Drop poor performing arms
— Relattve to one another

— Relative to 25% goal

* Stop early 1f we know the answer

or know we won’t know
— Efficacy stop if treatment clearly better

— Futility stop 1f unlikely to ID a ‘best’ or ‘worst’
* Do not stop if 1 worse and other 2 equally good

— Futility stopping if all arms bad
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Adaptive Allocation

Randomize 300 patients equally
At 300 & then every 100 adaptively allocate to

t

. \/Pr(pt = max(p)) Var(p,)

n,

— Favor better performing treatments
— Favor treatments with greater uncertainty

— Every 100 = About every 6 months | expected accrual
If allocation probability < 5%, suspend accrual
If Pr(Success > 0.25) < 0.05 drop arm
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FEarly Stopping

* Analyses begin after 400 patients and repeat
every additional 100 patients accrued

* Early Success Stopping:
— If arm has 97.5% probability of having highest

SUCCESS rate
o ie. Pr(p, = max(p)) > 0.975

* Early Futility Stopping
— If all doses have Pr(Success > 0.25) < 0.05

— If predicted probability of success (ID ‘winner’ or
‘loser’ at the max N=795) < 0.05
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Example Trial: 300 pt analysis

N Enrolled Pr(Max Pr(Allocation) Pred

Observed Response Rate Effective Trt) Prob
Look  LVT fPHT VPA LVT PHT VPA LVT ({PHT VPA

300 51/100 55/100 64/100 0.025 0.092 0.88  0.12 0.22 0.66 0.71
51% 55% 64%o
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Example Trial: 400 pt analysis

N Enrolled Pr(Max Pr(Allocation) Pred
Observed Response Rate Effective Trt) Prob

ook

300

Next
100

400

LV

51/100
51%

6/11
55%

57/111
51%

55/100
55%

19/26
73%

74/126
59%

64/100
64%o

39/63
62%

105/163
64%o

LVT {PHT VPA

0.025

0.01

0.092

0.16

0.88

0.83

LVT ({PHT VPA

0.12

0.09

0.22

0.34

0.66

0.57

0.71

0.50
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Example Trial: 500 pt analysis

N Enrolled Pr(Max Pr(Allocation) Pred
Observed Response Rate Effective Trt) Prob

LVT {PHT VPA LVT ({PHT VPA

ook LV
300 51/100
51%
400 57/111
51%
Next 5/12
100 42%
500 62/123
50%

55/100
55%

74/126
59%

20/38
53%

94/164
57%

64/100 0.025 0.092
64%o

105/163 0.01 0.16
64%o

34/50
68%

139/213  0.004 0.056
65%

0.88  0.12 0.22 0.66 0.71

0.83  0.09 0.34 0.57 0.50

0.94  0.08 0.23 0.69 0.59
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Example Trial: 600 pt analysis

N Enrolled Pr(Max Effective Pr(Allocation) Pred
Observed Response Rate Trt) Prob

Look LV LVT {PHT VPA LVT ({PHT VPA

300 51/100 55/100 64/100 0.025 0.092 0.88  0.12 0.22 0.66 0.71

51% 55% 64%o
400 57/111 74/126  105/163 0.01 0.16 0.83  0.09 0.34 0.57 0.50
51% 59% 64%o
500 62/123 94/164  139/213  0.004 0.056 094  0.08 0.23 0.69 0.59
50% 57% 65%
Next 3/3 17/28 55/69
100 100% 61% 80%

600 65/126  111/192 194/282  0.000 0.008  0.992  Trial Stops Early for Identifying
52% 58% 69% 0.87 0.13 0.00 Best Treatment
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Example Trial: Final Evaluation

fPHT 111/192 = 57.8% VPA: 194/282 = 68.8%
LVT: 65/126 = 51.6%

I I I I I I I I I I
0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80

Success Rate

Treatment Observed %o 95% CI Pr(Best) Pr(Worst)
ILVT 65/126 51.6% (.429, .601) 0.0005 0.862
Difference Observed 95% CI Pairwise Comparison
VPA — fPHT 0.110 (0.022, 0.197) Pr(VPA>LVT) = 0.993
VPA - LVT 0.172 (0.069, 0.272) Pr(VPA>{PHT) > 0.999
fPHT - LVT 0.062 (-0.049, 0.172) Pr(LVT>{PHT) = 0.862
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Comparison to without
Adaptive Randomization

Adaptive Randomization Fixed Randomization
Scenario Power Mean % to Power Mean % to Best
3 Efficacy Rates Best/Wst hY Best Best/Wst hY
Null 0.013 507 0.023 499
0.5-05-0.5 0.018 0.007
One Good 0.89 483 48 0.87 497 33
0.5—-0.5-0.65 0.03 0.04
Two Good 0.11 679 34 0.10 687 67
0.5 — 0.65 — 0.65 0.67 0.79
One Middle One Good (.50 586 47 0.44 599 33
0.5-0.575-0.65 0.25 0.31
All Bad 0.011 524 0.023 509
0.25—0.25 - 0.25 0.020 0.008
All Very Bad 0.006 400 0.008 400
0.10 - 0.10 - 0.10 0.01 0.02 o
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Conclusions for Adaptive Designs 1n
Comparative Etfectiveness Research

* Adaptive trials / adaptive CER processes more
closely mimic real-life human learning & decision

making
* Ongoing projects: Learn & Adapt
— randomize patients to best products
— drop treatments/strategies that prove less effective
— include new treatments as they come to market
— provide constant sharing of information

— encourage better patient management

72



Adaptive Randomization’

* Pros
— Resolve contlict of healer vs. investigator

— Maximize number of patients assigned more effective

therapy

— Consistent with current theories of continuous quality
improvement

* Cons
— Must be one (or few) outcome(s) of interest

— Outcomes must be apparent in a short timeframe relative
to accrual time

— May be statistically less efficient
— Estimates affected by population drift during accrual

1 Used with permission, Robert Truog, http://www.bioethics.nih.gov/slides04/truog.ppt
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Why Adapt?

The Prospective Postmortem

* Consider whether any adaptations might be added
to prospectively address potential regrets
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Why Adapt?

The Prospective Postmortem

* Consider whether any adaptations might be added
to prospectively address potential regrets

* Be honest with yourself in design Phase
— We overestimate treatment effects
— We underestimate variability
— Because we need to justify a doable trial

— Because we can’t be honest in grant proposals
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Equipoise

* Would you rather be the last patient enrolled in a
clinical trial or the first person treated after its
results are published?

e Declaration of Helsinki:

— “considerations related to the well-being of the
human subject should take precedence over the
interests of science and society
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FDA Critical Path Initiative

From FDA website:

Many of the tools used today to predict and evaluate
product safety and etficacy are badly outdated from a
scientific perspective. We have not made a concerted
effort to apply new scientific knowledge -- in areas
such as gene expression, analytic methods, and
bioinformatics -- to medical product development.
There exists tremendous opportunities to create more
effective tests and tools, if we focus on the hard work
necessary to turn these innovations into reliable
applied sciences.

http:/ /www.fda.gov/scienceresearch/specialtopics/ criticalpathinitiative/ucm077015.htm
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FDA Critical Path Initiative

From FDA website:

Inefficient clinzcal trial designs. Innovative clinical trial design may
make it possible to develop accepted protocols for smaller but
smarter trials. For example, new statistical techniques may make
it possible to reduce the number of people who need to receive
placebo or to adaptively change the trial based on ongoing
results.

50% ot Phase 3 trials failing
$800 million per successtul NME (new chemical entity)
Ann. Rev. Medicine, Woodcock & Woosley, 2008
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Critical Path Initiative

* Areas of improvement
— Development & use of biomarkers (for prediction)
toward personalized medicine
— Modernizing clinical trial methodologies & processes
— Aggressive use of bioinformatics
including disease modeling & trial simulation
— Improvement in manufacturing technologies

— 76 discrete projects that could improve product
development & product use

US FDA 2006, “Innovation or Stagnation: Critical Path Opportunities Report
& List.”

www.fda.gov/oc/initiatives/ criticalpath /reports/opp_report.pdf
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Historical Context

* Historically, obtaining results that were

“reliable and valid” required fixed study
designs

e Allowed the determination of theoretical
error rates

* Fundamental characteristic of the “culture”
of biostatistics and clinical trial methodology
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Why are Study Designs Fixed

It’s easiest to calculate type I error rates if the
design parameters of the trial are all constant

Results obtained using “Standard
approaches” are generally considered valid

Logistically simpler to execute

Fixed designs are less sensitive to “drift” in
the characteristics of subjects over time

We could do the math 30 years ago

— We still can but we can also do more way sophisticated calculations now

81



What are Adaptive Designs?

* Adaptive Design:
— A design that “changes™ depending on
observed values in the trial

* Prospective Adaptive Design:

— A design that has pre-specified dynamic
aspects that are determined by the accruing
information

Every time I say “Adaptive Design” I mean

“Prospectively Adaptive Design™

82



What are Adaptive Trials?

Trials in which key design parameters change

during trial execution based upon « prior
predefined rules and accumulating data from the
trial to achieve goals of validity, scientific
etficiency, and safety

— Planned: All possible adaptations defined a priori
— Well-defined: Criteria for adapting clearly explained

— Key parameters: No# minor inclusion or exclusion criteria,
routine amendments, etc.

— Validity: Reliable statistical inference
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What are Adaptive Trials?

Trials that change based on prospective
rules & the accruing information

— Adaptive sample sizes based on predictive probabilities

* Stop early for success

e Terminate early for futility
— Adaptive randomization

* TPor statistical efficiency

* Por improved patient treatment

* Drop/Re-enter arms or dose groups
— Adaptive accrual rate
— Combination therapies
— Adapt to responding sub-populations
— Adaptive borrowing of information

— Seamlessly combine phases of development

* Phase 2/3 designs: Operationally vs. Inferentially seamless
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Key Design Features

Frequent interim analyses

Predefined decision rules for adaptations

Explicit longitudinal modeling of the accumulating data
based upon interim outcomes

Response-adaptive randomization
Dose-response modeling using information from all patients
Extensive simulation of trial performance

Repeatedly ask when are primary questions answered
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When is Adaptation Most Valuable

Outcomes or biomarkers available rapidly
relative to time required for entire trial

Substantial morbidity, risks, costs

Large uncertainty regarding relative etficacy,
adverse event rates, variability, patient
population in trial, etc.

Logistically practical
Able to secure buy-in of stakeholders
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Drawbacks ot Adaptation

Infeasible if time from patient accrual to final
outcomes long vs. total accrual time

Adaptive design take much more forethought & buy-
in from more stakeholders

Determining traditional Type I and II error rates more

difficult

— Rely on simulation

People fear new

— Most statisticians have never designed or analyzed an
adaptive trial

— Some regulatory personnel unfamiliar with
— Funders (e.g. venture capitalists and NIH) unfamiliar with
— DMCs / IRBs may not understand

— Clinicians may not understand
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Drawbacks ot Adaptation

* Logistical issues
— Design stage 1s longer
— Data needs to be entered & transmitted quickly
— Data needs to be checked / validated quickly
— Events need to be adjudicated quickly

— Drug supply concerns for adaptive randomization

* Fear of unblinding

— Need centralized randomization

* Use web or phone systems

— Need to have lots of people / systems well & correctly
connected
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Typical Prospective Adaptive Design

Begin Data Collection with Initial
Allocation and Sampling Rules

Analyze
Available Data

Continue Data
Collection

Stopping

Rule Met?

Revise Allocation
and Sampling Rules
per Adaptive Algorithm

Stop Trial or

Begin Next
Phase in
Seamless

Design
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Typical Prospective Adaptive Design

Begin Data Collection with Initial
Allocation and Sampling Rules

Analyze
Available Data

Continue Data
Collection

The information in
the data is critical

Interim values can
be very informative

Stopping
Rule Met?

Revise Allocation
and Sampling Rules
per Adaptive Algorithm

Stop Trial or
Begin Next
Phase in
Seamless
Design




JAMA 2006,;296:1955-1957.
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Who To Involve

Sponsor

— Project leaders — Clinical experts

— Statisticians — Business leaders
— PK/PD — Patient advocates
Clinical site IRBs

Data Safety Monitoring Board
IVRS/IWRS service

CRO who will house data
Regulatory agencies

Patient advocacy groups?

* Treat patients in trial best vs. get drug to market sooner?

Payers
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Adaptive Designs & Collaborators

Requires buy-in and educating IRB, DSMB, decision-makers, study
teams, investigators, and subjects

Requires more time, resources, and upfront planning, especially at
the protocol-design stage

Show sponsor many many example trials
— Also great for debugging

Complex study designs typically require more statistical
assumptions, rigorous calculations, and extensive simulations
(operating characteristics)

But also more robust to deviations from our assumptions

Operationally challenging

— Work with CROs as early as possible, fit statistical parts within infrastructure

Make sure sponsors understands what adaptive designs are not
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Components of an Adaptive Trial

Thanks Roger Lewis

Management

Adaptive
Machinery

Logistics

Randomization
System

Clinical

CRO/Data
Management

Site n
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Components of an Adaptive Trial
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Components of an Adaptive Trial
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Components of an Adaptive Trial

Thanks Roger Lewis

Adaptive

Data

Algorithm | Analysis

Management
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. Drug
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Clinical Site 1
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Components of an Adaptive Trial

Thanks Roger Lewis

> CRO/Data
Management

Management _
Steering ¢ Independent

Sponsor [« Committee DSMB
Adaptive Adaptive | Data
Machinery Algorithm | Analysis
| oqisti Drug Randomization
ogistics Supply System
Clinical Site 1 Site 2 .
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Components of an Adaptive Trial
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Components of an Adaptive Trial

Thanks Roger Lewis

Management

¢ Independent

DSMB

Adaptive | Data
Algorithm | Analysis

Randomization_) CRO/Data
System Management

Steering
Sponsor [«>» Committee
2 T ..............................

Adaptive
Machinery

o Drug
Logistics Supply
Clinical Site 1 Site 2
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Data Satety Monitoring Boards

* Purpose

— To ensure continued safety, validity, feasibility,
and integrity of the clinical trial

— To ensure the trial 1s conducted according to
a priori plan, including adaptation
* Structure
— Learn phase: usually includes internal personnel

— Confirm phase: generally includes only
independent, external members
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Data Satety Monitoring Boards

* What’s different in an adaptive trial?

— Requires expertise to assess whether the planned
adaptations continue to be safe and appropriate

— May increase need to include sponsor personnel

— Ideally expertise to ensure everything 1s working

* What’s unchanged in an adaptive trial?

— The DS ensures completion of the trial as
Dlanned, including the adaptation

— It 1s the trial that’s adaptive, not the DS

103



IRB Review

IRBs review/approve the full protocol, including
the planned adaptations

No new review when adaptations made

— IRBs may request to be informed (e.g., new sample
size, dropping of a surgical arm)

Amendments are different
— Not preplanned
Irony

— Little changes (amendments) may require IRB review
— Big changes (adaptations) are defined by design and

only reviewed/approved once
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Acceptability to Key Stakeholders

e FDA
— FDA Critical Path Initiative

— 2010 Guidance for the Use of Bayesian Statistics in Medical
Device Trials

— 2010 Draft Guidance for Adaptive Design Clinical Trials for
Drugs and Biologics

— Joint Regulatory Science initiative with NIH
— Multiple adaptive trials accepted in development plans

* PhRMA

— Highly active “working group” on adaptive trials = DIA
— 2006 PhRMA/FDA Conference on Adaptive trials
— Many adaptive trials designed or initiated in industry
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Acceptability to Key Stakeholders

 NIH

— Sponsored Scientific Advances in Adaptive Clinical
Trial Designs Workshop, Fall 2009

— ADAPT-IT sponsored by NIH Common Fund

* Redesigning four neurologic emergency trials using adaptive designs

— READAPT sponsored by

* Journals
— Surprisingly clinical journals care little about design

* Ever see a medical journal with smaller font for the methods?

— We’ve had to aroue to let journals otve us more space
g J g more Sp

for the design
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Is Now a Prime Time for Adaptive
Designs in Clinical Trials?

It’s well past time

Virtually every large p!

device companies, anc

harmaceutical company, 100+
| dozens of biotech companies are

investing in adaptive ¢

esigns

— Many device companies have completed adaptive designs

What is the likelihood

that these designs will lead to

regulatory approval when such approval 1s warranted?

Is there a gap between perceived risk to sponsors and the

real risk?

— Does industry overestimate FDAs conservatism?
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Time has been Right for Adaptive Designs

Janet Woodcock, FDA’ s CDER Director, 2006

— Improved utilization of adaptive and Bayesian methods could help
resolve low success rate of and expense of phase 3 clinical trials

Margaret Hamburg, FDA Commissioner 2010

— “The final guidance on the use of Bayesian statistics is consistent with
the FDA’ s commitment to streamline clinical trials, when possible, in
order to get safe and effective products to market faster.”

CDRH produced guidelines for Bayesian statistics Feb 5, 2010

— “Agency says Bayesian statistical methods could trim costs, boost
efficiency” from press release

— “They beauty is you do not end up doing a trial that is too big or too
small; you end up doing a trial that is just right.” Greg Campbell

CDER/CBER produced draft guidance for adaptive designs
Feb 2010

— Generally supportive of well-characterized adaptation by design
— Appropriately cautious
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FDA Guidance Documents
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for Industry and FDA Staff

Guidance for the Use of
Bayesian Statistics in
Medical Device Clinical Trials

Document issued on: February 5, 2010

The draft of this document was issued on 5/23/2006

For questions regarding this document, contact Dr. Greg Campbell (CDRH) at 301-796-
5750 or greg.campbell@fda hhs gov or the Office of Communication, Outreach and
Development, (CBER) at 1-800-835-4709 or 301-827-1800.
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Online Tools & Resources

e MD Anderson

— http://biostatistics.mdanderson.org/SoftwareDownload/

— Lots of good utilities, including “ Adaptive
Randomization” to help with response adaptive trials

— Allows 10 arms; minimum number of patients before
adapting randomization scheme; maximum number of
patients or length of trial

— Free

* Commercial resources increasingly available

— Lack of affordable academic options
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Some Current Areas ot Application

. 4 .
Alzheimer s Disease

Aneurysm

Asthma

Atrial Fibrillation
Cancer Diagnostics

Cancer Screening

Cancer Therapeutics

Crohn’ s Disease
Diabetes

DVT

Ebola

Heart Valves

Ebola
Emphysema
HIV

Libido
Lymphoma
Lung Cancer
Lupus
Migraines
Multiple Sclerosis
Obesity

Pain

Parkinson’s

Pandemic Flu
Pre-term Labor

Rheumatoid
Arthritis

Sepsis

Smoking Cessation
Spinal Cord Injury
Spinal Implants
Stroke

Tinnitus

Uterine Cancer

Vaccines
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