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Master Protocols



Woodcock & Lavange, NEJM 2017

* High-quality evidence is what we use to guide medical
practice. The standard approach to generating this evidence
— a series of clinical trials, each investigating one or two
interventions in a single disease — has become ever more
expensive and challenging to execute. As a result, important
clinical questions go unanswered.

* A methodologic innovation responsive to this need involves
coordinated efforts to evaluate more than one or two
treatments in more than one patient type or disease within
the same overall trial structure. Such efforts are referred to as

master protocols, defined as one overarching protocol
designed to answer multiple questions.



Woodcock & Lavange, NEJM 2017

* Master protocols may involve one or more
interventions in multiple diseases or a single disease,
as defined by current disease classification, with
multiple interventions, each targeting a particular

oiomarker-defined population or disease subtype.

ncluded under this broad definition of a master
orotocol are three distinct entities: umbrella, basket,
and platform trials (Table 1 and Figs. 1 and 2). All
constitute a collection of trials or substudies that
share key design components and operational
aspects to achieve better coordination than can be
achieved in single trials designed and conducted
independently.




Master Protocols

¢ I\/Iay or may not compare treatment across
groups
— One structure, but each TX vs. common control
— Reported as multiple trials (e.g. 1 per intervention)

— Sites have one set of rules, execute like 1 trial

* Intensive pretrial discussion among sponsors

— data use, publication rights, and the timing of
regulatory submission

e Matchmaker

— Therapies to targeted subpopulations



Master Protocols

Table 1. Types of Master Protocols.

Type of Trial Objective

Umbrella To study multiple targeted therapies in the context of a single
disease

Basket To study a single targeted therapy in the context of multiple

diseases or disease subtypes

Platform To study multiple targeted therapies in the context of a single
disease in a perpetual manner, with therapies allowed to
enter or leave the platform on the basis of a decision algo-
rithm

NEJM 377, 1, p63, Table 1




Master Protocols

Traditional Trial Design

Drug A

Type 1

* Single treatment
* Homogeneous patients
* Single question

Umbrella Trial Design
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Master Protocols

Umbrella
trial Single disease

l

Screen for presence of targets

Biomarker 1— Biomarker 2— Biomarker 3— Single group

positive positive positive or assigned
Targeted therapy 1  Targeted therapy 2 Targeted therapy 3 according to group

Disease or Disease or Disease or
tB§sIket histologic feature 1 histologic feature 2  histologic feature 3
ria

Screen for presence of target

|

Target-positive
participants

Trial of one targeted therapy
(controlled or uncontrolled)

NEJM 377, 1, p63, Figure 1




Master Protocols

Trial

Trial events

£g

Continuous

stratum start

Biomarker-
negative
stratum start

Stop for futility

NEJM 377, 1, p63, Figure 2




Master Protocols

Areas of Innovation

Infrastructure
Common screening platform for biomarker identification
Governance
Steering committee
Adjudication committee
Data monitoring committee
Central institutional review board
Trial networks and clinical centers
Processes
Randomization
Data and safety capture and management
Quality-control oversight

Trial Design
Adaptive randomization and other adaptive design features
Longitudinal modeling to determine probabilities of success
or failure
Shared control patients
Natural-history cohort
Biomarker qualification

Figure 3. Areas of Innovation in Master Protocols.

NEJM 377, 1, p63, Figure 3

Master protocols come in different
sizes and shapes but share many
commonalities.

Increased planning efforts and
coordination to satisfy the
objectives of different
stakeholders.

Maximum information is obtained
from the research effort

Infrastructure required for imple-
mentation increases data quality
and trial efficiencies, as compared
with those in stand-alone trials.

Can last many years, even
decades, with innovations from
the laboratory translating quickly

to clinical evaluation.
10



Platform Trials



Asking the Right Question

 Current Clinical Trials
Is Drug A Effective and Safe?

More precisely
What is the probability of the observed
data assuming the treatment is no good?



Asking the Right Question

* Current Clinical Trials
— Is this drug effective and safe compared to a placebo?
— |s this drug effective & safe compared to the SOC

e Correction Question
— What is the best treatment for this Patient?
— What is the best treatment for this type of patient?



Traditional Trial Design

Single treatment vs. Control
Homogenous patient population
1 or 2 questions per 1 trial

Start with assuming a particular control group effect
and a particular (usually optimistic) treatment
group effect

Assume ‘average’ effect relevant to all patients
Calculate a sample size as if we know the true effect



Platform Trial

* An experimental infrastructure to evaluate multiple
treatments, often for a group of diseases, and
intended to function continually and be productive
beyond the evaluation of any individual treatment

— Designed around a group of related diseases rather than a
single treatment

— Disease focused not treatment focused

— Dynamic list of available treatments, assigned with
response-adaptive randomization

— Preferred treatments may depend on health system,
patient, or disease-level characteristics



VIEWPOINT

Scott M. Berry, PhD
Berry Consultants LLC,
Austin, Texas; and
Department of
Biostatistics, University
of Kansas Medical
Center, Kansas City.

Jason T. Connor, PhD
Berry Consultants LLC,
Austin, Texas; and
University of Central
Florida College of
Medicine, Orlando.

Roger J. Lewis, MD,
PhD

Department of
Emergency Medicine,
Harbor-UCLA Medical
Center, Torrance,
California; and Berry
Consultants LLC,
Austin, Texas.

The Platform Trial

Opinion

An Efficient Strategy for Evaluating

Multiple Treatments

The drug development enterprise isstruggling. The de-
velopment of new therapies is limited by high costs, slow
progress, and a high failure rate, even in the late stages
of development. Clinical trials are most commonly based
on a "one population, one drug, one disease” strategy,
in which the clinical trial infrastructure is created to test
a single treatment in 3 homogeneous population.

This approach has been largely unsuccessful for mul-
tiple diseases, including sepsis, dementia, and stroke. De-
spite promising preclinical and early human trials, there
have been numerous negative phase 3 trials of treat-
ments for Alzheimer disease' and more than 40 nega-
tive phase 3 trials of neuroprotectants for stroke.” Ef-
fective treatments for such diseases will likely require
combining treatments to affect multiple targets incom-
plex cellular pathways and, perhaps, tailoring treat-
ments to subgroups defined by genetic, proteomic,
metabolomic, or other markers.>

There has been increasing interest in efficient trial
strategies designed to evaluate multiple treatmentsand

romhinatinne nf treatmentc in heternoanennic natient

JAMA. Published online March 23, 2015. doi:10.1001/jama.2015.2316

benefits when evaluating potentially synergistic com-
bination treatments (eg, treatment A, treatment B, treat-
ment C, and all combinations) if the starting pointisthe
testing of each treatment in isolation.

What Is a Platform Trial?

A platform trial is defined by the broad goal of finding the
best treatment for a disease by simultaneously investigat-
ing multiple treatments, using specialized statistical tools
for allocating patients and analyzing results. The focusison
thedisease rather thanany particular experimental therapy.
A platform trial is often intended to continue beyond the
evaluation of the initial treatments and toinvestigate treat-
ment combinations, to quantify differences in treatment
effects insubgroups, andto treat patients as effectively as
possible within the trial. Although some of the statistical
tools used in platform trials are frequently usedinotherset-
tingsandsome less so, itis theintegrated application of mul-
tiple tools that allows a platform trial to address its multiple
goals. The Table summarizes the general differences be-

tween a traditinnal clinical trial and a nlatfarm trial
16



@ The JAMA Network

From: The Platform Trial: An Efficient Strategy for Evaluating Multiple Treatments

JAMA. Published online March 23, 2015. doi:10.1001/jama.2015.2316

Table. General Characteristics of Traditional and Platform Trials®

Characteristic Traditional Trial Platform Trial

Scope Efficacy of a single agent in a homogeneous population  Evaluating efficacy of multiple agents in a heterogeneous population;
explicitly assumes treatment effects may be heterogeneous

Duration Finite, based on time required to answer the single Potentially long-term, as long as there are suitable treatments

primary question requiring evaluation

No. of treatment groups Prespecified and generally limited Multiple treatment groups; the number of treatment groups and the
specific treatments may change over time

Stopping rules The entire trial may be stopped early for success or Individual treatment groups may be removed from the trial, based on

futility or harm, based on the apparent efficacy of the

single experimental treatment
Allocation strategy Fixed randomization

Sponsor support Supported by a single federal or industrial sponsor

demonstrated efficacy or futility or harm, but the trial continues,
perhaps with the addition of new experimental treatment(s)

Response-adaptive randomization

The trial infrastructure may be supported by multiple federal
or industrial sponsors or a combination

4 Platform trials and similar trials may also be called basket, bucket, umbrella, or standing trials.

Table Title:

General Characteristics of Traditional and Platform Trials2

Date of download: 3/24/2015

Copyright © 2015 American Medical
Association. All rights reserved.
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Platform Trial

Control
Drug A
Drug B
Drug C
Drug A+C
Drug D
Drug E
Drug F
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Platform Trial

Control .
Drug A
Drug B -

Drug C
Drug A+C
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Platform Trial
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Platform Trial




Platform Trial

Drug A
Drug B
Drug C
Drug A+C
Drug E
Drug F

Compare Drug D
with Concurrent
Control Patients

Time ==

22



Time Machine

Model how controls change over time, if similar, then use
some controls outside concurrent window

Drug A
Drug B
Drug C
Drug A+C
Drug E
Drug F

Compare Drug D
with Mostly
Concurrent Control

Time

23



Time Machine

If controls change little over time, then use more weight
from non-concurrent controls, increases power & efficiency

Drug A
Drug B
Drug C
Drug A+C
Drug E
Drug F

Compare Drug D
with Mostly
Concurrent Control

24



Platform Trials are Happening

* |Infection diseases

— Gates Foundation sponsored Ebola design
— PREPARE: European Consortium for Disease Preparedness

(Pandemic flu & CAP)
e Cancer

— |-SPY2 in Breast Cancer
— GBM AGILE in Glioblastoma multiforme
— LUNG-MAP in Lung Cancer

e Alzheimer’s

— EPAD: European Prevention of Alzheimer’s Dementia
— DIAN: Dominantly Inherited Alzheimer’s Network



Cancer Trials »
Characteristics of | || W | g |3 - _qg’ s
Modern Platform Trials | > | & = 5 Z1q]2 |8

N i s|l<|z2|Z2|=|N

aCIEIFIEIE
Screen markers forallpts | vV |V |V |V |V |V | —| —
Master protocol vViv I iV I|IV|V V|V |V
Many regimens Vi v |V | VI IV |IVI|V |V
Combination therapies v | v |V Vv |Vv

Sequential therapies v v
Assembly line vV |V vV Vv | Vv |V
Learn off-target effects vV v |V vi—|—
Pair regimens/biomarkers | V' | V' | V vV |—|—
Common control arm V|V V| v |V
Adaptive randomization Vi iv |V Vi v |V
Adaptive sample size vV |V V| v |V
Early “curable” disease v V| v |V
Registration endpoint v V| v | Vv
Seamless phases v

Longitudinal modeling vV v v v

Bayesian vV | v |V Vi v |v
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CLINICAL
Article TRIALS

Clinical Trials
1-9
© The Author(s) 2016

Efficiencies of platform clinical trials: Reprint and permissions:

sagepub.co.uk/journalsPermissions.nav

A ViSiOI‘I Of the futu re DOI: 10.1177/1740774515626362

ctj.sagepub.com

®SAGE

Benjamin R Saville"'? and Scott M Berry'"*

Abstract

Background: A “platform trial” is a clinical trial with a single master protocol in which multiple treatments are evalu-
ated simultaneously. Adaptive platform designs offer flexible features such as dropping treatments for futility, declaring
one or more treatments superior, or adding new treatments to be tested during the course of a trial.

Methods: A simulation study explores the efficiencies of various platform trial designs relative to a traditional two-arm
strategy.

Results: Platform trials can find beneficial treatments with fewer patients, fewer patient failures, less time, and with
greater probability of success than a traditional two-arm strategy.

Conclusion: In an era of personalized medicine, platform trials provide the innovation needed to efficiently evaluate
modern treatments.

Keywords
Platform trial, master protocol, multi-arm, adaptive, Bayesian, clinical trial design
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A response adaptive randomization Reprine nd pormissons:
platform trial for efficient evaluation of D?)Fgl%lbl7l7(2|174o7;42|?62|72|
Ebola virus treatments: A model for ®SAGE

pandemic response

Scott M Berry'?, Elizabeth A Petzold®, Peter Dull*, Nathan M Thielman®,
Coleen K Cunningham®, G Ralph Corey®, Micah T McClain®, David L Hoover’,
James Russell®, ] McLeod Griffiss’ and Christopher W Woods***"®

Abstract

The outbreak of Ebola virus disease in West Africa is the largest ever recorded. Numerous treatment alternatives for
Ebola have been considered, including widely available repurposed drugs, but initiation of enrollment into clinical trials
has been limited. The proposed trial is an adaptive platform design. Multiple agents and combinations will be investigated
simultaneously. Additionally, new agents may enter the trial as they become available, and failing agents may be removed.
In order to accommodate the many possible agents and combinations, a critical feature of this design is the use of
response adaptive randomization to assign treatment regimens. As the trial progresses, the randomization ratio evolves
to favor the arms that are performing better, making the design also suitable for all-cause pandemic preparedness plan-
ning. The study was approved by US and Sierra Leone ethics committees, and reviewed by the US Food and Drug
Administration. Additionally, data management, drug supply lines, and local sites were prepared. However, in response
to the declining epidemic seen in February 2015, the trial was not initiated. Sierra Leone remains ready to rapidly acti-
vate the protocol as an emergency response trial in the event of a resurgence of Ebola. (ClinicalTrials.gov Identifier:
NCT02380625.) In summary, we have designed a single controlled trial capable of efficiently identifying highly effective or
failing regimens among a rapidly evolving list of proposed therapeutic alternatives for Ebola virus disease and to treat the
patients within the trial effectively based on accruing data. Provision of these regimens, if found safe and effective, would
have a major impact on future epidemics by providing effective treatment options.
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The Problem: Ebola Treatment Trial

* Acknowledge universe of possible treatments

— Will evolve over time

— Recognition that combinations may play an
important role

* Uncertainty over role of standard of care
 Our Goal: To determine best treatment for

treating ebola
— Not a trial to determine if a single drug X works



EV-003 Adaptive Platform Design

Reviewed and approved by:
— Duke University IRB
— University of Sierra Leone ethics committee

Master Protocol dictates trial behavior, each treatment included as an
appendix

Multiple Agents
— Primary & Secondary agents
— Combination + Single agents

Response Adaptive Randomization (RAR)
— Run by a single algorithm

— Assigns treatment regimens that are performing better using collection of primary
endpoint data

Protocol is built so trial arms evolve (part of the protocol!), trial is perpetual

Endpoint is 14-day mortality



Primary/Secondary Agents

* All arms receive optimized standard of care (SOC)
* Primary and Secondary agents

— Primary: Expected capability to work as single agent
(e.g. anti-viral efficacy)

— Secondary: Expected to work with other agents (not
given alone)

Treatments
Pl | P2 | P3| P4 | S1 | S2

Regimens

Treatments




Adaptive Platform Design

Burn-in
Enroliment

Remove Agent? ﬁ
Accrue

More

Yes

No Analyze
(report)
Results

Revise Allocation

Rules

Add Agents
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Design Details

 Endpoint: Death (Dichotomous, events are bad)
e Start with burn-in period to all 10 regimens

— Equal randomization to 10 arms
— 30 subjects / 3 per arm

e After burn-in

— Response adaptive randomization

— Proportional to probability regimen is optimal
* Adjusted for information

— Continue perpetually (committee can change vote)



Burn-in

Starting Structure | eoroiment

* Allocate 50% of subjects to single-agent arms

e Allocate 50% to combination arms

* [faSOCarm isto be included, it gets a
minimum of 20% allocation



Analyze

Decision Criteria (In/Out)  teport

Results

* |f thereis a less than 0.01 probability an agent is
part of the optimal regimen

— Candidate for futility

* |f the probability an agent is in the optimal
regimen is greater than 0.95

— Report to the steering committee for public
dissemination

* |f a regimen has at least a 0.95 probability of
being superior to SOC Alone then SOC Alone is
reported for removal



Revise
Allocation

Allocation Rules Rules

fa SOC it gets minimum of 20%...

Randomize to regimens with probability
oroportional to:

Pr (7, = max 7))

li ™~

nU+1



Statistical Model -

M

M M
log( P )=a+2 +2 XY Ariie

1 p X=1 XlYXl

 Priors:

[x]~N(0.2)  [X.Y]~N(0,02})



[x]~N(0.2)|  [X.Y]~N(0,02})

N(0,1) has 95% CI from about 1/7 to 7.



 Priors:

[x]~N(0.2)  |[X.Y]~N(0,02?)

N(0,0.22%) has 95% CI from about 2/3 to 3/2.

40



 Priors:

[x]~N(0.2)  [X.Y]~N(0,02})

e Time:

— Incorporate time “buckets” to model time trend or
‘drift’ -

[A]~NDLM (0,7%)
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Example Trial

Regimens

Agents

2 3

Agents

W N =
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S _ Q _
™ . A
® Deaths O Survivors — Model CI
Survivors B Deaths Prob Optimal
o Factor in Best
[ee]
8 S
(e]
(o]
= ©
c o | > o 7
3 © £
(@] el
— ©
c Q
K] [S]
g S 3- T
g S T
(6]
N
o | [}
< . N . N
-— O
[ ] L] 0% 0% 0% 0% 100% 100% 0% 0% 0% 0% g -
o - | ) e N — — W e I e ] s— s—
T T T T T T T T 1 [ T T T T T T T T 1
142 143 144 2 243 244 3 3+4 4 1 142 143 144 2 243 244 3 3+4 4 1 142 143 144 2 243 244 3 3+4 4

43



New Data Cumulative Data @20 Model Estimates
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New Data Cumulative Data @30 Model Estimates
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New Data Cumulative Data @40 Model Estimates
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New Data
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New Data
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New Data Cumulative Data @80 Model Estimates
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New Data Cumulative Data @90 Model Estimates
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New Data Cumulative Data @100 Model Estimates
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New Data Cumulative Data @110 Model Estimates
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New Data Cumulative Data @120 Model Estimates
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New Data
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Preparedness

* Can we construct a master protocol to be “on-
the-shelf” for the next pandemic?

* The design can be mapped out to handle a
large class of possible outbreaks

— Very easily customizable

— Get software for simulations premade — “on-the-
shelf”

* Do the groundwork at WHO/Ethical
boards/Countries on readiness plans?



Preparedness
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Summary

Incredibly powerful design for finding effective

therapies and combinations in the universe of
treatments

— Type lll Error (the question never asked!)

Allows the arms to evolve internally and externally to
changing science

Improved Embedded Care: Efficiently and quickly
identifies best agents, while treating patients more

effectively
Have design ready—on the shelf for next pandemic

— A number of parameters can be optimized quickly
— Protocol ready (add appendices)
— Models + simulations ready



The Role of Biomarkers
in Treatments & Trials



Testing a New Treatment

e Standard of Care works in 40%

SOC Works



10% of Patients Benefit

e Standard of Care works in 40%
 New therapy works in 50%

Additional Benefit

SOC Works



50% still untreatable

e Standard of Care works in 40%
 New therapy works in 50%
* Nothing works in 50%

SOC Works
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50% still untreatable

e Standard of Care works in 40%
 New therapy works in 50%
* Nothing works in 50%

* How many patients do we

need to have 90% chance to
SOC Works see a ‘statistically significant’
difference?
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Need 1036 patients for 90% Power

e Standard of Care works in 40%
 New therapy works in 50%
* Nothing works in 50%

SOC Works
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Need 1036 patients for 90% Power

e Standard of Care works in 40%
 New therapy works in 50%
* Nothing works in 50%

* 90% of patients you enroll tell
you nothing

SOC Works
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Need 1036 patients for 90% Power

e Standard of Care works in 40%
 New therapy works in 50%
* Nothing works in 50%

* 90% of patients you enroll tell
you nothing

S0C Works * What if you knew which 10% of
patients benefited?
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What if you KNEW which 10% Benefit

* |f you just enrolled the purple
patients how many patients do
you need for 90% power?

SOC Works

85



What if you KNEW which 10% Benefit

* |f you just enrolled the purple

patients you need 8 patients for
100% power

* |f you could perfectly predict
— 0/4 on standard of care

— 4/4 on new treatment
— Fisher’s exact test p-value = 0.029

SOC Works

86



sorta

What if you*KNEW which 10% Benefit

* Enroll 20% to capture the 10%

* 25% cured by SOC

e 25% still not cured

* 50% of enrolled patients benefit

SOC Works
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sorta

What if you*KNEW which 10% Benefit

* Enroll 20% to capture the 10%

* 25% cured by SOC

e 25% still not cured

* 50% of enrolled patients benefit

* Need 36 patients for 90% power

SOC Works
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kinda sorta

What if you*KNEW which 10% Benefit

* Enroll 30% to capture the 10%

* 33% cured by SOC

* 33% not cured

* 33% of enrolled patients benefit

SOC Works
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kinda sorta

What if you*KNEW which 10% Benefit

* Enroll 30% to capture the 10%

* 33% cured by SOC

* 33% not cured

* 33% of enrolled patients benefit
* Need 90 patients for 90% power

SOC Works
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Learn & Confirm Using Biomarkers

Make confirmatory trials dramatically smaller

— Or learn & confirm within a trial

Lead us toward personalized medicine
— What works best in whom?

May require larger platforms trials, data sharing &
adaptive randomization to efficiently identify
Different drugs work in different types of patients

— Not one trial, one patient type
— Learn, confirm, perpetually



Challenges in Platform Trials

Complexity in trial implementation and planning

Collaborations across sponsors - who initiates the
planning?

Timely communication between participating sites
and data coordinating units

Sponsors sacrifice autonomy in running the trial
Determining shared costs

ldentifying what to report when

— iSpy2 has rules for ‘graduating’
— When to report subgroup results broadly?



Platform Trial Efficiencies

Useful for evaluating combinations of treatments and for
direct comparisons between competing treatments

Do not require a new trial infrastructure for every treatment
under investigation

Implemented or planned in many diseases

Breast cancer

Lung cancer

Brain cancer

Pandemic influenza

Community acquired pneumonia
Alzheimer’s

Ebola

Melanoma

Sclerederma

President’s Council of Advisors on Science and Technology (PCAST) included a
call for antibiotic platform trials



ESSET Code



Definitions, Trial Parameters

rm(list=1s())

## All times in months

library(VGAM)

v = list(
### Event, success probabilities for IV, IV+2nd therapy, Oral, Oral + 2nd therapy
S3 = c(## There are success rates for the four groups

0:50 giif Response Rates

)/

MaXNdaximum sample size & max sample size for Stage 1
MaxN = 795,

# Priors

a = rep(l, 3), F) I

b = rep(1l, 3), rIC)rSS
# First look and look every

firstlook = 300,
firststop = 400

lookevery = 100, Sample Size &

# Min to randomized . .

minpr = 0.05, T g f L k
# simulations IrT]Ir] () C)() ES
nsims = 1000,

badlim = 0.25,

# critv to (a) for 'best'

# (b) for 'worst'
# (c) to stop for futility (i.e Pred prob a winner or loser id'd)
# (d) for worse than 25%

critv = c(.975, .975, 0.05, 0.05)
)

Critical values for stopping



simtrials <- function(v){

co <- ppcutoffs(vScritv([3])

dout .mat Creates a big matrix to
(1) N store simulation results

(2-4) N per group
(5-7) Rank as 1, 2, 3 (according to prob best)
(8) Sig best (1 2 or 3 or 0 if none)
(9) Sig worst (1 2 or 3 or 0 if none)
(10) Final conclusion
= overall futility stop,
= stop early for winner
= stop early for winner & loser

1
2
3
4 = stop early for loser and futility (not possible in ours)
5 = max overall futility
6 = max and loser
7 = max and winner
8 = max & winner & loser
(11-13) Final Pr(best)
(14-16) Final Pr(2nd)
(17-19) Final Pr(worst)
(20-22) Successes per group

FhoF o OFH W FH O W OFH HFH W OH W OH K OH H W

(23-25) Ever drop arm? (rand goes to 0 at any pt)



out.

Simulate group assignment

mat <- matrix(NA, nrow=v$nsims, ncol=25)

for(s in l:v$nsims){ & response to tx

##

ad <- c(1,1,1)
## Rand assignment for first FirstLook pts & generate outcome
group <- rep(NA, vS$MaxN)
group[l:v$firstlook] <- rand.new(v$firstlook, c(1,1,1))
y <- rep(NA, v$MaxN)
y[l:v$Sfirstlook] <- sim.endpoint(group[l:v$Sfirstlook], v$S3)
lookl <- interim(v$firstlook, y, group, Vv, coO)
print (round(lookl,3)) . . ]
# Track if arm every dropped FlrSt |nter|m IOOk
ad <- ad * as.numeric(lookl[12:14]1>0)
n.now <- v$firstlook

print(c(s,n.now))

Now loop through Stage 1 Simulate group assignment
white(lookll11==1) & response to tx

new <- min(v$MaxN-n.now, v$lookevery)
group[ (n.now+l):(n.now+new)] <- rand.new(new, lookl[12:14])

y[(n.now+l):(n.now+new)] <- sim.endpoint(group[(n.now+l):(n.nowtnew)], v$S3)
lookl <- interim(n.now+new, y, group, V, CO)
print (round(lookl,3))

ad <- ad * as.numeric(lookl[12:14]>0)

n.now <- n.nowt+new

Do interim looks

print(c(s,n.now))



mx <- lookl[3:5]; mn <- lookl[6:8]
winner <- ifelse(max(mx) > vS$critv[1l], (1l:3)[mx==max(mx)], 0)
loser <- ifelse(max(mn) > v$critv[2], (1l:3)[mn==max(mn)], 0)
if(lookl[2]==1){
whystop <- 1 ## futility See if best or worst identified
}else if(lookl[2]==3){
if(loser>0){
whystop <- 3
telse{
whystop <- 2
b See if stopping rules met
telse if(lookl[2]==2){
if (winner==0 & loser==0) { whystop <- 5}
else if(winner>0 & loser>0){ whystop <- 8}

else if(winner>0) { whystop <- 7}
else if(loser>0) { whystop <- 6}
else{print("error why stop at max?”)} Prlnt OUt Slmulatlon

else{print("error, why did trial stop?”)}

results

out.mat[s,1:25] <- c(n.now, lookl[18:20], order(mx), winner, loser,
whystop, lookl[c(3,4,5,9,10,11,6,7,8,15,16,17)],1-ad)

out.mat <- data.frame(out.mat)
names (out.mat) <- c("N","N1",6"N2","N3",..

return(out.mat)



sumtrial <- function(outmat) {
mat <- matrix(nrow=4, ncol=9)
out <- table(factor(outmat[,10], levels=1:8))

# Ntotal SDN phat Rankl Rank2 Rank3 SigBest SigWorst Drop

# fPHT ¢ . ,

" LVT Takes the results of ‘simtrials’ and
# VPA - .

Y motal Produces prettier output

mat[l:3,1] <- apply(outmat[,2:4], 2, mean)

mat[l:3,2] <- apply(outmat[,2:4], 2, sd)

mat[1l:3,3] <- c(mean(outmat[,20]/outmat[,2]), mean(outmat[,21]/outmat[,3]),
mean (outmat([,22]/outmat[,4]))

mat[l,4:6] <- table(factor(outmat[,5], levels=3:1))/dim(outmat)[1]

mat[2,4:6] <- table(factor(outmat[,6], levels=3:1))/dim(outmat)[1]

mat[3,4:6] <- table(factor(outmat[,7], levels=3:1))/dim(outmat)[1]

mat[l:3,7] <- table(factor(outmat[,8], levels=1:3))/dim(outmat)[1]

mat[l:3,8] <- table(factor(outmat[,9], levels=1:3))/dim(outmat)[1]

mat[1l:3,9] <- apply(outmat[,23:25], 2, mean)

mat[4,1] <- mean(outmat[,1])

mat[4,2] <- sd(outmat[2])

mat[4,3] <- mean(rowSums (outmat[,20:22]) / rowSums(outmat[2:4]))

mat[4,4:6] <- NA

mat[4,7] <- sum(mat[l:3,7])

mat[4,8] <- sum(mat[l1l:3,8])

mat[4,9] <- NA

mat <- data.frame(mat)

names (mat) <- c("N","SD","Phat", "Best","Mid", "Worst", "SigBest", "SigWorst", "Drop")

dimnames(mat)[[1]] <- c("fPHT","LVT","VPA","Total")

return(list(out, mat))



interim <- function(N, y, group, Vv, co){

## Runs trial returns: Does Interlm analySIS
# (1) go (0=stop, lkeep going) o Calc posteriors, new

# (2) why stop (l=3-way fut, 2=max n, 3=1 winner)

# (3-5) Pr each is best rand prObS,

# (6-8) Pr each is worst

# (9-14) x/N for each group Pred prOb Of SUCCESS
# (15-17) rand probs Eit max

ns <- table(factor(group[l:N], levels=1:3))

tab <- table(factor(group[l:N],levels=1:3), factor(y[l:N], levels=0:1))

postl <- rbeta(10000, v$Sa[l]+tab[l,2], vSb[l]+tab[1l,1])

post2 <- rbeta(10000, vSa[2]+tab[2,2], vSb[2]+tab[2,1]) i
post3 <- rbeta(10000, v$a[3]+tab[3,2], vSb[3]+tab[3,1]) CaIC pOSterlorS
vr <- as.numeric(( (vSat+tab[,2])*(vSb+tab[,1])) / ((vSatv$b+ns)"2 * (v$Sa+vSb+ns+1l)))
top <- apply(cbind(postl,post2,post3), 1, max)

bot <- apply(cbind(postl,post2,post3), 1, min)

best <- c(mean(postl==top), mean(post2==top), mean(post3==top))

worst <- c(mean(postl==bot), mean(post2==bot), mean(post3==bot)) .
middle <- l-best-worst CalC prOb eaCh IS
best & worst

toobad <- l-c(pbeta(v$badlim, vS$a[l]+tab[l,2], vSb[1l]+tab[1l,1]),
pbeta(v$Sbadlim, vS$a[2]+tab[2,2], vSb[2]+tab[2,1]),
pbeta(vS$badlim, vS$a[3]+tab[3,2], vS$Sb[3]+tab[3,1]))

Calc Pr(p<0.25)

wt <- sqrt(best * vr / as.numeric(ns)); wt <- wt/sum(wt)

wt[wt < vSminpr] <- 0; wt[toobad < vS$critv([4]] <- 0

if(sum(wt) > 0){

W <= w/sum(wt) Calc new rand prob

}



#####PRED PROBS; only do if all 3 arms left

if((N >= v$Sfirststop) & (N < v$MaxN) & (prod(wt>0)> 0)){

drop <- 0
lefi <- v$MaxN - N
left <- ceiling(rep(left/3, 3)) CaIC pred prOb Of SUccess

ns.total <- nstleft
winlose <- 0 At MaX N

counter <- 1

while((winlose < co[counter,l]) & (winlose >= co[counter,2]) & (counter < 1000)){
y.end <- tab[,2] + rbetabin.ab(3, left, vS$a+tab[,2], vS$b+tab[,1])
postlf <- rbeta(10000, v$a[l]+y.end[l], vSb[l]+ns.total[l]-y.end[1l])
post2f <- rbeta(10000, v$a[2]+y.end[2], vSb[2]+ns.total[2]-y.end[2])
post3f <- rbeta(10000, vSa[3]ty.end[3], vSb[3]+ns.total[3]-y.end[3])
topf <- apply(cbind(postlf,post2f,post3f), 1, max)
botf <- apply(cbind(postlf,post2f,post3f), 1, min)
bestf <- c(mean(postlf==topf), mean(post2f==topf), mean(post3f==topf))
worstf <- c(mean(postlf==botf), mean(post2f==botf), mean(post3f==botf))

winlose <- winlose + ifelse((max(bestf)>v$critv[1l]) | (max(worstf)>vScritv[2]),
0)
counter <- counter + 1
print(c(winlose/counter, counter))
}
ppwin <- winlose/counter
telse{
drop <- 1

ppwin <- v$critv[3]+1l # If missing just make bigger than the crit value.



## Stopping:
if(N < vsfirststop) {

so =~ 1 Track IF stop

whystop <- NA
}else if (N >= v$MaxN) { And WHY Stop
go <- 0
whystop <- 2
}else if(max(best) > vScritv[1l]){
go <- 0
whystop <- 3
}else if(ppwin < vS$critv[3]){
go <- 0
whystop <- 1
}else if(wt[1l]==0 & wt[2]==0 & wt[3]==0){

go <- 0

whystop <- 1
telse{

go <-1

whystop <- NA

return(as.numeric(c(go, whystop, best, worst, middle, wt, tab[,2], ns, ppwin, drop)))



Summary:
Big Picture



Big Summary

* Think deeply about every question

— Try to understand the clinical aide as much as you can

* Ask “What do you REALLY want to know?”
— “Are you sure?”
— “What else?”

— A good trial can answer more than one question

* Ask yourself and your collaborators beforehand

— “If this trial (or a future trial in the process) fails to
answer our questions, what are would be likely to say
we wish we’d have done differently?”
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Big Summary

* Ask yourself what information is necessary to answer
the primary question(s)

— Think about how the info we collect might change as we
answer the primary questions

— Think about which design assumptions are least reliably
known

* Ask what will we know and when will we know 1t
— Can longitudinal models improve upon slow info
— Can biomarkers improve upon slow info

* Continually ask whether we know the answer

— Or whether we’re likely to know the answer if we stop
enrolling now and follow everyone enrolled

— Or whether we’re likely to ever know given our resource
constrains




Big Summary

Act naturally

Be creative

Our tool kit is FAR bigger than we think
Our constraints are tar fewer than we think
Remember what the real question is
Almost every research question is unique

so why 1sn’t every trial design unique?



Great Irony ot Biostatistics

* Our job is to identify whether the newest, latest,
greatest medical technologies are safe & etficacious

and what works best for whom
— Laser therapies, Whole genome diagnostics

— Immunotherapies for cancer, etc

* Many statisticians believe our ‘technologies’ were as

good as can be by 1933 or 1977 and nothing better

can be invented



Great Irony ot Biostatistics

* Anna Barker @ GBM AGILE kickoff:
“Randomized clinical trials are 70 years old...what
other technology doesn’t change in 70 years?
Meanwhile, cancer biology is moving at light speed
and potential treatments have to wait in the queue.”

* Take away: Realize the constraints (lack of)

computing played on statistical methodology — and
realize we are no longer constrained



Thanks for a great class

What did you like?
What worked?

What did not?




