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Phase I Trials
• Key goal is to assess safety and identify the appropriate 

dose of a new treatment

• Typically very small sample sizes

• Most therapeutic areas:
– healthy volunteers
– single ascending dose (SAD) and multiple ascending dose 

(MAD) studies

• Oncology (therapies often very toxic):
– patients 
– dose escalation studies: no randomization
– heterogeneous population (often “all-comer” trials)
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Dose Escalation Studies

Typically small, uncontrolled studies.
GOAL: Determine the maximum tolerated dose (MTD), and/or a 
recommended Phase II dose.
Approaches:

– Algorithm-based designs
3+3 (or the more general A+B)
MTD is identified as the dose with fewer than some 
proportion of  dose limiting toxicities (e.g. <2/6).

– Model-based designs
MTD is estimated as a quantile of  the dose-toxicity curve.
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Key Design Elements
• Define starting dose and dose spacing

• Cohort size: how many patients are treated at a time

• Identify which adverse events will be defined as 
“dose-limiting toxicity” (DLT)

• Define acceptable/target toxicity level (TTL)
– typically between 20% and 33%
– corresponds to maximum tolerated dose (MTD)

• Define dose escalation rules
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Two Strategies

1. Algorithm-based designs
– 3+3 (or more generally A+B)
– Accelerated titration
– MTD is defined as the dose with fewer than 

some pre-specified observed proportion of dose 
limiting toxicities (e.g. < 2/6)

1. Model-based designs
– MTD is estimated as a quantile of the dose-

toxicity curve
6



“Traditional” 3+3 Design

• Well accepted, easy to understand 
and implement

• Weaknesses are well documented:
– The probability of stopping at an 

incorrect dose level is higher than 
generally believed (Reiner et al. 
1999)

– No statistical estimation of MTD
– Underlying Pr(toxicity) associated 

with MTD is unclear
– Behavior of the design depends 

on the number of cohorts before 
the MTD

Escalation History
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Model-based Designs
Model-based designs use a statistical model to describe the relationship 
between dose and outcome:

Continual Reassessment Method (CRM)
•O’Quigley, Pepe, Fisher (1990)
•Faries (1994)
•Goodman, Zahurak, Piantadosi (1995)

Escalation with Overdose Control (EWOC)
•Babb, Rogatko, Zacks (1998)

Joint Toxicity/Efficacy
•Braun (2002)
•Thall and Cook (2004)

CRM with Cool Features
•Broglio, Berry (2015)
•Quintana, Li et al (2016)

CRM
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Continual Reassessment Method
1. Select a mathematical model to 

describe the relationship between 
dose and Pr(DLT).

2. Describe uncertainty about the model 
by a prior distribution.

3. After each cohort, update the model, 
and estimate the probability of  
toxicity for each dose.

4. Assign patients to dose levels 
according to the model-based 
estimates of  DLT and with regard to 
other rules that may govern 
escalation (e.g. no skipped doses)

5. Stop when a pre-specified rule is met 
(e.g. maximum number of  subjects 
on the MTD)

Lots of customization opportunities!
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Example Phase I CRM

• 8 doses: 1, 2, 3, 5, 8, 13, 21, 34 mg or 
generically: 1, 2, 3, 4, 5, 6, 7, 8

• DLT (dose-limiting toxicity) is defined within 
the first cycle 

• Goal is to find the MTD: maximum dose with 
rate of DLT’s ≤ 0.30
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Example Phase I CRM
• Bayesian model for DLT-dose relationship

• Model Log-odds

• Model:

π d = Pr DLT | dose d( )

θd = log
π d

1− π d

$

%&
'

()

θd = α + βd
α ~ N −2.5,22( )

β ~ N 0.05,0.352( )
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Code
plot(0,0,xlim=c(0,40), ylim=c(0,1), xlab='Dose', ylab='Pr(DLT)', type='n', 
main='Prior Mean for Dose-DLT Curve')
lines(d, inv.logit.fun(-2.5 + d*0.05), lwd=3)
abline(h=0.3, col=2, lty=2)

alpha <- rnorm(100, -2.5, 2)
beta <- rnorm(100, 0.05, 0.35)
plot(0,0,xlim=c(0,40), ylim=c(0,1), xlab='Dose', ylab='Pr(DLT)', type='n', 
main='100 Prior Draws for Dose-DLT Curve' )
for(s in 1:100){
lines(d, inv.logit.fun(alpha[s]+beta[s]*d), col='lightblue')
}
lines(d, inv.logit.fun(-2.5 + d*0.05), lwd=5,  col='white')
lines(d, inv.logit.fun(-2.5 + d*0.05), lwd=3)
abline(h=0.3, col=2, lty=2)

alpha <- rnorm(100, -2.5, 2)
beta <- rnorm(10000, 0.05, 0.35)
beta <- beta[beta>0]
beta <- beta[1:100]

plot(0,0,xlim=c(0,40), ylim=c(0,1), xlab='Dose', ylab='Pr(DLT)', type='n', 
main='100 Prior Draws for Positive Slope Dose-DLT Curve' )
for(s in 1:100){
lines(d, inv.logit.fun(alpha[s]+beta[s]*d), col='lightblue')
}
lines(d, inv.logit.fun(-2.5 + d*0.05), lwd=5,  col='white')
lines(d, inv.logit.fun(-2.5 + d*0.05), lwd=3)
abline(h=0.3, col=2, lty=2)
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• Based on observed DLTs or No DLTs at 
each dose the DLT-dose curve is updated 
(posterior distribution)

• Posterior Quantities:
– Posterior for π (mean and st. dev)
– Pr(d=SAFE): Pr(πd≤0.30)
– Pr(d=MTD): Probability dose is the MTD

Model Update
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• Allocate next subject to the highest safe dose
– “Safe” means Pr(DLT<0.30)>0.50

• Following constraints:
– First patient enrolled to dose 1
– Must have at least 2 with “observations” at d before 

escalate to d+1
– First 6 subjects “complete information” before accrue 

next
• Open enrollment after 6 (controlled) 
• Stop if n=10 at “current dose”
• Stop for futility if Pr(d=Safe)<0.25 for all doses 

(otherwise d=1) is used

Design
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3+3 Pros and Cons
• Well accepted, easy to understand and implement
• Treats a higher proportion of patients at low, 

possibly ineffective, doses
• The probability of stopping at an incorrect dose level 

is higher than generally believed (Reiner, Paoletti, 
O’Quigley 1999).

• Tends to choose a dose below the true MTD
• In dose escalation uses information from only the 

most recent cohort and ignores data from previous 
cohorts

• There is no statistical estimation of the MTD
48



CRM Pros and Cons
• Requires more planning and infrastructure to execute 
• Execution can be streamlined (same day); no delay 

between cohorts
• Could require more patients and take longer
• CRM allows complete flexibility: can target any DLT 

rate, flexible stopping rules, etc
• Tends to treat patients at doses close to the MTD
• In dose escalation incorporates available data from all 

cohorts borrowing information across all dose levels
• Provides a statistical estimate of  the MTD, borrowing 

information from neighboring dose levels, and allows 
for uncertainty around this estimate
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Previously Performed Extensions to 
the CRM

• Customization of rules for enrollment, dose 
escalation, stopping early for having sufficiently 
characterized the MTD

• Ordinal (rather than dichotomous) outcomes
• Two dimensional dose finding for combinations
• Randomized dose-escalation between two 

formulations – compare rate of DLTs between 
control and new formulation

• Dose escalate simultaneously in multiple 
populations and/or schedules – share 
information between groups
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Previously Performed Extensions to 
the CRM

• Seamless phase I/II: escalate to the MTD and 
continue to a phase II portion 
– Bring select doses forward for randomized phase 

II
– Bring all doses forward, continue to refine the 

MTD while determining optimal phase II dose 
based on both toxicity and efficacy

• “Backfill” of lower dose levels: enroll 
additional patients at lower doses during 
escalation to establish dose-toxicity and dose-
response curves
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Example #2:
Combo CRM

With Scott Berry
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Goal

• Experimental agent and existing agent
• Find the MTD (maximum tolerated dose) 

for the single agent therapy and the 
combination therapy

• MTD is the largest dose that achieves a 33% 
or less rate of DLT (dose limiting toxicity)

• Certainly can be different doses 
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Modeling
• 42 doses of experimental
• Probability of DLT for single agent:

• Probability of DLT for combination:

log
π
S

1− π
S







= α1 + βd

log
π
C

1− π
C







= α1 +α2 + βd
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Prior Distributions

α
1
~ N −3,0.5

2( )

α
2
~ N 0.20,0.15

2( )

β ~ N 0.10,0.05
2( )

55



Design--Stage 1
• 3 Subjects assigned to dose 1
• Find Estimated MTD (Bayesian calculation from 

posterior)
• Assign 3 to estimated MTD, unless more than 

double highest dose given (2x max increase)
• 12 subjects (4 cohorts) in Stage 1
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Design--Stage 2

• Start combo at 50% of single agent MTD
• Rotate assignment to estimated MTD for 

combo and single agent
• No more than a doubling of the highest 

given value
• Update posterior each pair of subjects
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Stopping Rules

• Futility: Drop single or combo if 
– Pr(π > 0.33 | d=1) > 0.90

• Success: Stop single or combo if 
– 5 successive doses sum P(d=MTD)>0.90
– With 42 doses no one dose will ever 

dominate
• Stop at the cap of 60
• If single or combo stops continue the 

other
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Sample Trial
SUBJECT # Arm Dose DLT? 

1 SINGLE 1  NO 

2 SINGLE 1  NO 

3 SINGLE 1  NO 
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SUBJECT # Arm Dose DLT? 

4 SINGLE 2 NO 

5 SINGLE 2 NO 

6 SINGLE 2 NO 
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SUBJECT # Arm Dose DLT? 

7 SINGLE 4 NO 

8 SINGLE 4 NO 

9 SINGLE 4 NO 
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SUBJECT # Arm Dose DLT? 

10 SINGLE 8 NO 

11 SINGLE 8 NO 

12 SINGLE 8 NO 
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0 10 20 30 40
Dose

SUBJECT # Arm Dose DLT? 

13 SINGLE 16 YES 

14 COMBO 4 NO 
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SUBJECT # Arm Dose DLT? 

15 SINGLE 19 YES 

16 COMBO 8 NO 

17 SINGLE 16 YES 

18 COMBO 15 NO 

19 SINGLE 15 NO 

20 COMBO 14 YES 

 

The probability that the MTD for SINGLE is dose 13 
or 14 or 15 or 16 or 17 is 
0.095 + 0.108 + 0.112 + 0.101 + 0.086 = 0.502.  
This is the highest set of five adjacent doses.  
0.502 < 0.90 :  trial does not stop for successfully 
knowing the MTD.  
Likewise the COMBO arm does not stop for success.

65



 

0 10 20 30 40
Dose 66



SUBJECT # Arm Dose DLT? 

21 SINGLE 15 NO 

22 COMBO 14 NO 

23 SINGLE 16 NO 

24 COMBO 15 YES 

25 SINGLE 16 NO 

26 COMBO 14 YES 

27 SINGLE 15 NO 

28 COMBO 14 NO 

29 SINGLE 16 YES 

30 COMBO 14 NO 

31 SINGLE 15 NO 

32 COMBO 14 YES 

33 SINGLE 15 NO 

34 COMBO 13 YES 

35 SINGLE 15 NO 

36 COMBO 13 NO 

37 SINGLE 15 NO 

38 COMBO 14 NO 

39 SINGLE 16 NO 

40 COMBO 14 YES 
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SUBJECT # Arm Dose DLT? 

41 SINGLE 16 NO 

42 COMBO 14 YES 

43 SINGLE 15 NO 

44 COMBO 14 YES 

45 SINGLE 15 NO 

46 COMBO 13 NO 

47 SINGLE 15 NO 

48 COMBO 14 YES 

49 SINGLE 15 NO 

50 COMBO 14 YES 

51 SINGLE 15 YES 

52 COMBO 13 NO 

53 SINGLE 15 NO 

54 COMBO 13 NO 

55 SINGLE 15 NO 

56 COMBO 13 YES 

57 SINGLE 15 NO 

58 COMBO 13 NO 

59 SINGLE 15 NO 

60 COMBO 13 YES 
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Example #5:

Indication Finder
or Basket Trials

With Kert Viele
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Phase II Trial
• Tumor Type #1, Historic response rate of 

15%
• What conclusion?

• π~Beta(1,1);  Pr(π > 15%) = 0.848

Tumor 
Type N Respon

se %

#1 40 8 20
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Phase II Trial: Additional Tumor 
Types

• Tumor Type #1, Historic response rate of 
15%

• What conclusion?

• π~Beta(1,1);  Pr(π > 15%) = 0.848
• Pooled: Pr(π >15%) = 0.046

Tumor 
Type N Response %

#1 40 8 20
#2 40 3 7.5

#3 40 1 2.5

#4 40 4 10
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Phase II Trial: Additional Tumor 
Types

• Tumor Type #1, Historic response rate of 
15%

• What conclusion?

• π~Beta(1,1);  Pr(π > 15%) = 0.848
• Pooled: Pr(π >15%) = 0.9986

Tumor 
Type N Response %

#1 40 8 20
#2 40 10 25

#3 40 8 20

#4 40 12 30
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Pr(π > 15%) = 0.848

Pr(π > 15%) = 0.046

Pr(π > 15%) = 0.655
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Pr(π > 15%) = 0.848

Pr(π > 15%) = 0.999

Pr(π > 15%) = 0.917
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Hierarchical Modeling

• Shrinkage – the estimation of one “unit” 
borrows information from the other units 

• Better estimation of individual units 
– Better than pooling
– Better than ignoring
– Think James-Stein estimator

• Realizing this is a better way to synthesize 
information, we use this prospectively in the 
design
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More intuition
• Think of baseball batting averages in May

– someone is almost always hitting near 0.400. This never 
lasts…no one is that good…but with multiple good players, 
someone is typically good AND lucky.

– some otherwise very good players often have slumps.
• Good estimates separate the luck (random variation) 

from the skill
– the highest averages are biased upward, lower them
– the lowest averages are biased downward, raise them

• Pulling the observed values together makes better 
estimates.
– don’t pool! bring the highest down a little bit, the lowest up a 

little bit. But the estimates are still different.
• Efron & Morris, JASA, 1975
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James-Stein Estimators
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James-Stein Estimators
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More intuition
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More intuition

• Separate trials assume independence
• Suppose you were waiting on data from the 5th

group, but knew the first 4 groups succeeded
– would you be more optimistic than when you 

started?

• Similarly, would repeated failures in the first 4 
make you pessimistic about the 5th?

• Sharing (borrowing) of information formalizes 
this intuition.
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Indication Finder
• Explore multiple histologies in one trial

Different cancer types
Different tumor types

• Combine the information across the 
histologies to make inferences about the 
drug effect in each histology

• Borrow strength across the histologies with 
hierarchical modeling
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Potential Adaptations
• Sample size
• stop accrual if histology/tumor type clearly does 

or does not meet goal
• Inclusion criteria
• steer accrual to optimal subpopulations
• steer accrual to subpopulations with remaining 

uncertainty
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Questions for Collaborators
• How many subtypes

– Need to prospectively define each subtype
• Goal response rate

– May differ across subtypes
• Success & Futility stopping rules

– Trade off more aggressive early stopping / smaller trial size vs. 
increase likelihood of erroneous inferences

• Maximum trial size
• Maximum subtype size
• Minimum subtype size before allow early stopping
• Prior on effect size
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€ 

€ 

pt = Pr(Tumor Response | Tumor Type t)

θt = log
pt

1− pt

 

 
 

 

 
 

θt ~ N(µ,σ2)

µ ~ N(0,102)

σ2 ~ Γ−1(1.0,0.1)

Bt ,Success = Pr(pt > 0.20)

Bt,Futility = Pr(pt < 0.20)

At each interim analysis calculate

Model Details
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Example Analysis
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Indication Finder
• Statistical goals

– Estimate response rate in each tumor subtype
– Stop enrolling a subtype if it is unresponsive

• Saves resources by not enrolling where futile
– Stop enrolling a subtype if we determine is meets goal

• Quickly move to next phase for this subpopulation
• Saves resources for this trial for tumor types that need further 

study

• Statistical properties
– If response rates similar across tumor types estimate 

response rates as if one large population
– If response rates different across tumor types estimate 

response rates separately for each group
– If somewhere in between, share data accordingly 
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Adaptive Decisions

• Enroll patients, track trial as data accumulates
• At each analysis calculate

– Posterior distribution for response rate in tumor type t, pt

– Pr(Response Rate for type t > Goal rate) = Pr(pt > Goal rate)
• If Pr(pt > Goal) > 0.95 & 10 patients of type t

– Stop enrolling tumor type t; move to next phase
• If Pr(pt > Goal) < 0.10 & 10 patients of type t

– Stop enrolling tumor type t for futility
• If 20 patients of type t, stop enrolling patients of tumor 

type t
• Stop when total reaches maximum sample size
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Design Parameters
• Number of subtypes:  4
• Frequency of interim analysis: every 8 patients
• Goal response rate: 20%
• Success Stopping rule: Pr(pt > Goal) > 0.95
• Futility stopping rule: Pr(pt > Goal) < 0.10
• Total maximum sample size: 40
• Maximum size per subtype: 20
• Minimum size before stopping: 10
• Prior on effect: N(0, 10), vague prior
• Prior on heterogeneity:  Gamma(1.0, 0.1)  
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Operating Characteristics, Positive Response
Scenario 5: 
Hist   True  Goal  Cap  Fut1   Suc  Prev
Type1  0.50 0.20   20  0.10  0.95  0.35
Type2  0.50 0.20   20  0.10  0.95  0.25
Type3  0.50 0.20   20  0.10  0.95  0.15
Type4  0.50 0.20   20  0.10  0.95  0.25

40 max
Parameter     Fut  N Cap    Pos       SS       SD   Avg SD   Avg Pi
Type1      0.000  0.086  0.914     11.2      1.6   0.1090   0.5046
Type2      0.000  0.252  0.748     10.6      1.6   0.1110   0.4999
Type3      0.000  0.835  0.165      7.7      1.9   0.1211   0.4953
Type4      0.000  0.257  0.743     10.5      1.6   0.1110   0.5003
Total                            40.0      0.0

60 max
Parameter     Fut  N Cap    Pos       SS       SD   Avg SD   Avg Pi
Type1      0.000  0.030  0.970     11.5      2.2   0.1049   0.5059
Type2      0.001  0.034  0.965     11.7      2.2   0.1042   0.5031
Type3      0.000  0.040  0.960     12.3      2.2   0.1030   0.5037
Type4      0.001  0.032  0.967     11.7      2.2   0.1045   0.5053
Total                            47.2      4.1
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Operating Characteristics, One Responder
Scenario 9: 
Hist   True  Goal  Cap  Fut1   Suc  Prev
Type1  0.10 0.20   20  0.10  0.95  0.35
Type2  0.10 0.20   20  0.10  0.95  0.25
Type3  0.40 0.20   20  0.10  0.95  0.15
Type4  0.10 0.20   20  0.10  0.95  0.25

40 max
Parameter     Fut  N Cap    Pos       SS       SD   Avg SD   Avg Pi
Type1      0.560  0.436  0.004     12.6      2.6   0.0700   0.1050
Type2      0.362  0.637  0.001     10.4      2.1   0.0774   0.1075
Type3      0.004  0.950  0.046      6.7      2.3   0.1524   0.3534
Type4      0.364  0.636  0.000     10.4      2.3   0.0773   0.1102
Total                            40.0      0.0

60 max
Parameter     Fut  N Cap    Pos       SS       SD   Avg SD   Avg Pi
Type1      0.665  0.331  0.004     14.6      4.0   0.0631   0.0954
Type2      0.634  0.359  0.007     14.2      3.7   0.0643   0.0973
Type3      0.018  0.496  0.486     13.6      3.8   0.1210   0.3906
Type4      0.637  0.363  0.000     14.2      3.7   0.0650   0.0977
Total                            56.7      4.1
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Operating Characteristics, Poor Response
Scenario 8: 
Hist   True  Goal  Cap  Fut1   Suc Prev
Type1  0.20 0.20   20  0.10  0.95  0.35
Type2  0.20 0.20   20  0.10  0.95  0.25
Type3  0.10 0.20   20  0.10  0.95  0.15
Type4  0.10 0.20   20  0.10  0.95  0.25

40 max
Parameter     Fut N Cap    Pos       SS       SD   Avg SD   Avg Pi
Type1      0.230  0.714  0.056     13.5      2.8   0.0929   0.1943
Type2      0.139  0.837  0.024     10.2      2.4   0.1017   0.1881
Type3      0.040  0.960  0.000      6.3      2.2   0.0954   0.1199
Type4      0.320  0.680  0.000     10.0      2.3   0.0789   0.1117
Total                            40.0      0.0

60 max
Parameter     Fut N Cap    Pos       SS       SD   Avg SD   Avg Pi
Type1      0.299  0.634  0.067     17.0      3.9   0.0821   0.1890
Type2      0.272  0.668  0.060     15.9      3.7   0.0839   0.1876
Type3      0.473  0.527  0.000     11.6      3.2   0.0719   0.1032
Type4      0.647  0.350  0.003     13.6      3.4   0.0650   0.0948
Total                            58.1      3.0
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Benefits to Borrowing
• Suppose you are in the alternative scenario.

– Multiplicities work both ways. Separate trials have limited 
power, generally you miss multiple effective groups.

– A general trend of effective groups provides a backdrop for 
accepting “borderline” groups.

– Suppose separate analyses would results in pvalues of 0.01, 
0.02, 0.01, 0.03, and 0.06.
• the last isn’t significant, but is borderline.
• the general good trend allows the hierarchical model to conclude the 

0.06 is a random low, and declare success in that group.
• Compare to separate pvalues of 0.30, 0.50, 0.15, 0.70, and 0.06 where 

the 5th group looks more like a random high.

• More power in the alternative scenario.
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Disadvantages
• Outlying subgroups or clusters can be difficult

– If the drug works in only one subgroup, then the 
power for that effect can be decreased relative to 
separate trials

– If the drug is effective in all but one subgroup, then 
Type I error for that subgroup can increase relative 
to separate trials

– Intuitively, if the value really is different, “shrinkage” 
can pull it in the wrong direction.
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Other materials

• Berry et. al. Bayesian hierarchical modeling of 
patients subpopulations : efficient designs of 
phase II oncology clinical trials. Clinical Trials 
2013, 720-734. 
http://www.ncbi.nlm.nih.gov/pubmed/2398
3156

• Kert Viele’s YouTube talk
https://www.youtube.com/watch?v=H7C1l
PvybOk
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