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Why be adaptive on sample size?

Doctor comes to you.
Well documented historical success rate = 50%
Claims his therapy has 70% success

“How many patients do I need to be
statistically significant?”



N = 65 gives 90% power to reject Ho: p = 0.50 when p = 0.7
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Why be adaptive?

Doctor comes to you.
Claims her treatment increases 1QQ by 5 points
SD =10

“How many patients do I need to have 90%
power to demonstrate superiority?



Power
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We've ignored the error in the pilot data

SE=4.0

Treatment Effect



Power

02 03 04 05 06 07 08 09 1.0

00 0.1

n=168,0=10

Power if Treatment Effect = 5 with 84 pts/grp
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Phase 3 / Confirmatory Trials

CDER/CBER Phase 3
CDRH Contirmatory
The final test before market

Control of Type I error rate very important

Tend not to adaptively randomize
— Fear of drift
— Usually two arm

— No power benefit with adaptive rand. in 2-arm trial

11



What is Ditferent About
Confirmatory Trials

Type I error is a dominant factor

Adjusting the design (goal) in order to
accommodate adaptive aspects must still
control type I error

Predictive probabilities much more relevant
than posterior probabilities

Very well-defined goal.

— A “game” you win or lose
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Confirmatory Trials & Bayes

* You can’t have an informative prior and
control Type I error

— Assuming the informative prior claims the
treatment starts off better than the control

— Kopp-Schneider, Calderazzo, & Wiesenfarth,
Biometric Journal, 2019.
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Simple Trial

Binomial data
One-armed trial

n = 100

Need to show p > 0.5
H:p =05
H:p>0.5
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Phase 3 & Priors

* Simple Trial:
— Binary data. Observe x ~ Bin(100,p)
— Need to show Pr(p > 0.5 | x out of 100) > 0.95
— Assume p ~ Beta(1,1) prior
— Pr(p > 0.5 | 59 out of 100) = 0.963
— Pr(P > 0.5 | 58 out of 100) = 0.944

Beta(59,43) Beta(60,42)

T

I I I I I
0.0 0.2 0.4 0.6 0.8



Phase 3 & Priors

* Simple Trial:
— Binary data. Observe x ~ Bin(100,p)
— Need to show Pr(p > 0.5 | x out of 100) > 0.95
— Assume p ~ Beta(1,1) prior
— Pr(p > 0.5 | 59 out of 100) = 0.963
— Pr(P > 0.5 | 58 out of 100) = 0.944
¢ Pr(X=59 | p =0.50) = 0.044
— Simple binomial calculation
— This 1s Type I error and is < 5%
— Bayesian trial

— Good frequentist properties
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Phase 3 & Priors

Now we have “pure” information

9 ot 10 successes 1n European trial
Instead of Beta(1,1) prior use Beta(1+9, 1+1)
= Beta(10,2) prior

Regulatory agrees it 1s reasonable to use this
as the prior

Fixed design: for Pr[p > 0.5 | data] = 0.95
_Pr(p > 0.5 | 55 out of 100, a=10,3=2) = 0.956
— Pr(P > 0.5 | 54 out of 100, a=10,=2) = 0.936
Pr(X=55 | p = 0.50) = 0.184

— Type I error is inflated
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Phase 3 & Priors

Solution to control Type I error
— Raise the post probability threshold from

0.95 bar to 0.99 (like decreasing critical level)
— Pr(p > 0.5 | 59 out of 100, a=10,=2) = 0.993
— Pr(P > 0.5 | 58 out of 100, a=10,=2) = 0.989
— Pr(X=59 | p =0.50) = 0.044
Need a Beta(59+10,41+2) for a win...59 is
back!!!

The type I error “restriction” forces 59,/100
regardless of prior...

Can’t allow beneficial priors AND force Type

I of “new’” experiment!



Posterior/Predictive

Phase | Phase Il Phase Il
Animals/Bench Pilot Study Pivotal Study

19



Predictive Probabilities

* Simple Trial:
— Binary data. Observe x ~ Bin(100, p)
— Need to show Pr(p > 0.5 | x out of 100) > 0.95
— Assume p ~ Beta(1,1) prior
— Pr(p > 0.5 | 59 out of 100) = 0.963
— Pr(p > 0.5 | 58 out of 100) = 0.944
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Predictive Probabilities

* Simple Trial:
— Binary data. Observe x ~ Bin(100, p)
— Need to show Pr(p > 0.5 | x out of 100) > 0.95
— Assume p ~ Beta(1,1) prior
— Pr(p > 0.5 | 59 out of 100) = 0.963
— Pr(p > 0.5 | 58 out of 100) = 0.944

* Observe data half way through
— See 28/50 successes

— Need to see 31/50 to meet threshold
— What is predictive probability of trial success?
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Predictive Probabilities

Know we need x > 59 at trial s end

Have x;, = 28
Need x, = 31

b~ Beta(1+28, 1+22)
x, ~ Binomial(50, p)
x, ~ Beta-binomial (50, a=29, =23)

50
Pr(Win Trial) = E

x2=31

{(

50

Xy

B(x, +29,50 - x, +23)

B(29.,22)

}=O.301
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R code for predictive probability

### VIA SIMULATION
alpha <- 1; beta <-1
X <= 28; N <- 50

p <- rbeta(1000000, alphat+x, beta+N-x)
X.new <- rbinom(1000000, 50, p)

mean(x.new >= 31)
1] 0.301132

### VIA DIRECT CALCULATION
N.new <- 50
Xx.new <- 0:50
prob <- choose(N.new,x.new) *
beta(alpha+x+x.new, (beta+N-x)+(N-x.new)) /
beta(alpha+x, (betat+N-x))
> sum(prob)
[1] 1
> sum(prob[x.new >= 31])
[1] 0.3010906
> barplot(prob, names.arg=0:50, col=c(rep(2,31), rep(3,20)),
+ main="Predictive Distribution for Remaining 50 patients")

++VVVVVVV—VVVYVVYVVYV
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Predicted

Pred Probs After 20 Observations

Observed

32



Predicted

Pred Probs After 50 Observations

Observed

0.8

1.0

33



Predicted

1.0

0.8

0.6

04

0.2

0.0

Pred Probs After 95 Observations

Observed

0.8

1.0

34



Predicted

1.0

0.8

0.6

04

0.2

0.0

Pred Probs After 98 Observations

0.2

04 0.6

Observed

0.8

1.0

35



Predicted

1.0

0.8

0.6

04

|

0.2

0.0

|

Pred Probs After 99 Observations

0.2

04 0.6

Observed

0.8

1.0

36



Predictive Probabilities

* Observe 12 / 20 (60%)
— Need 47 / 80 successes; 59% or better rest of way
— p-valne = 0.25, Pr(p>0.5) = 0.81
— Predictive probability of success @ 100 = 0.54
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Predictive Probabilities

* Observe 12 / 20 (60%)
— Need 47 / 80 successes; 59% or better rest of way
— p-valne = 0.25, Pr(p>0.5) = 0.81
— Predictive probability of success @ 100 = 0.54

* Observe 28 / 50 (56%)
— Need 31/50 successes; 62% or better rest of way
— pvalne = 0.24, Pr(p>0.5) = 0.80
— Predictive probability of success @ 100 = 0.30
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Predictive Probabilities

* Observe 12 / 20 (60%)
— Need 47 / 80 successes; 59% or better rest of way
— p-valne = 0.25, Pr(p>0.5) = 0.81
— Predictive probability of success @ 100 = 0.54

* Observe 28 / 50 (56%)
— Need 31/50 successes; 62% or better rest of way
— pvalne = 0.24, Pr(p>0.5) = 0.80
— Predictive probability of success @ 100 = 0.30

* Observe 41 / 75 (54.7%)
— Need 18/25 successes; 72% or better rest of way
— p-valne = 0.24, Pr(p>0.5) = 0.79
— Predictive probability of success @ 100 = 0.086
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Predictive Probabilities

* Observe 12 / 20 (60%)
— Need 47 / 80 successes; 59% or better rest of way
— pevalne = 0.25, Pe(p>0.5) = 0.81
— Predictive probability of success @ 100 = 0.54

* Observe 28 / 50 (56%)
— Need 31/50 successes; 62% or better rest of way
— pevalne = 0.24, Pr(p>0.5) = 0.80
— Predictive probability of success @ 100 = 0.30

* Observe 41 / 75 (54.7%)
— Need 18/25 successes; 72% or better rest of way
— pevalne = 0.24, Pe(p>0.5) = 0.79
— Predictive probability of success @ 100 = 0.086
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Another trial

N-= 100 1n Treatment & Control Group

Testing p, > p. using Fisher s Exact Test @ 0.025

Observe
— 34/50 in Control Group
— 41/50 in Treatment Group

What is predictive probability of success?

41



Predictive Probability

alpha <- 1; beta <-1
Xc <- 34; nc <- 50
Xt <- 41; nt <- 50

pc <- rbeta (100000, alphat+xc, beta+t+nc-xc)
pt <- rbeta(100000, alpha+xt, beta+nt-xt)

xc.total <- xc + rbinom(100000, 50, pc)
xt.total <- xt + rbinom(100000, 50, pt)

p.values <- rep(NA,100000)
for(i in 1:100000){
p.values[i] <- fisher.test(
matrix(c(xc.total[i], 100-xc.total[i],
xt.total[i], 100-xt.total[i]),nrow=2),
alternative="“less”)S$p.value

}

> mean(p.value<0.025)
[1] 0.549



GREEN numbers are when it’'s statistically superior

RED are cases not significant
Predictive Probability = 0.549

80
|

Treatment
70

50 60 70 80

Control

90
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But what if we have historical data

* Well known historical data, p, = 60% E 5%

* Expected from pilot studies, p, = 80% E£15%
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But what if we have historical data

* Well known historical data, p, = 60% E 5%

* Expected from pilot studies, p, = 80% E£15%

 Beta distribution defined by p~Beta(a.,f3)

has mean & variance

a af
E(p) = V(D) =
(p) a+/3 (p) (a+ﬁ)2(a+[5+1)
* Solve for o & f3
¢ __06 op = 0.05>

2

Ot+/3= (a+pB) (a+p+]1)
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But what if we have historical data

* Well known historical data, p, = 60% E 5%
— o, =57,B. =38

* Expected from pilot studies, p, = 80% E£15%
— o, = 4.8888, 3, = 1.2222

Priors: Beta(57.38), Beta(4.88, 1.22)
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alpha.c <- 57; beta.c <- 38; alpha.t <- 4.888888; beta.t <- 1.222222

Xc <- 34; nc <- 50; xt <- 41; nt <- 50

pc <- rbeta(100000, alpha.c+xc, beta.c+nc-xc)

pt <- rbeta(100000, alpha.t+xt, beta.t+nt-xt)

xc.total <- xc + rbinom(100000, 50, pc)

xt.total <- xt + rbinom(100000, 50, pt)

p.values <- rep(NA,100000)

for(i in 1:100000)¢{

p.values[i] <- fisher.test(matrix(c(xc.total[i], 100-xc.total[i],

xt.total[i], 100-xt.total[i]),nrow=2),
alternative="less")S$Sp.value

}
> mean(p.values<0.025)
[1] 0.73422
Posteriors: Beta(57+34,38+16), Beta(4.88+41, 1.22+9)
0.0 0.2 0.4 0.6 0.8 1.0
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Downweight Historical Information

* Well known historical data, p, = 60% 5%
— o = 57, B. = 38, 95 patients’ worth of info

* Expected from pilot studies, p, = 80% F=15%
— o, = 4.8888, 3, = 1.2222 6.1 pts’ worth of info

Priors: Beta(57.38), Beta(4.88, 1.22)
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Downweight Historical Information

* Well known historical data, p, = 60% 3 5%
— o, =57, B, =38, 95 patients worth of info
— New data is 50/(50+95) = 34% of information

* Expected from pilot studies, p, = 80% F=15%
— o, = 4.8888, B, = 1.2222, 6.1 patients’ worth of info
— New data is 50/(50+06) = 89% of information

* Downweight each prior so it includes 1/3 as
much information

—a. =19, B. = 12.6667, 31.67 patients’ worth of info
—a, = 1.63, 3, = 0.407, 2 patients’ worth of info

49



Posteriors: Beta(57+34, 38+16), Beta(4.88+41, 1.22+9)
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Phase 3 Cancer Design

* Binary endpoint, complete response observed
at 45 days post treatment

— Consider CR vs. PES vs. OS?

— Primary analysis chi-square test

* Expect 20% improvement vs. control

* Use Bayesian prediction to determine sample
size necessary for success in frequentist trial

— Bayesian ‘behind the curtain’

51



Statistical Model

* Final analysis: Chi-square test

* Interim analyses with
— N = N, +N, patients enrolled, » = n+n, complete
— x, ~ Binomial(n,, p); b, ~ Beta(1,1)
— x, ~ Binomial(#,, p,); b, ~ Beta(1,1)
—N=N,+N, N,=n+n* N, = nAn*
— x,* ~ Beta-binomial(n,*, 1+x,, 1+n-x)

— x,* ~ Beta-binomial(z,*, 1+x, 1+7-x)

PP, = Ezpr( ) ( ){)(pmlue(xc+x:,Nc,xt+xf,Nt)<0.05}

—0 X, =y
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Design Questions

* What should sample size range be?

— Most sponsor can do is 300 patients

* Step 1, calculate power of fixed 300 patient trial
> bpower (nl=150, n2=150, pl=0.6, p2=0.8)

Power

0.969

— Best case want to go to FDA with 2150 patients

— We' 1l see if 300 is enough, if not we 1l go back to

the company with evidence they need to up the cap
> bpower (nl=150, n2=150, pl=0.6, p2=0.75)
Power
0.795
Smallest win: 60% (80/150) vs. 72% (108/150) = p=0.03
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Design Questions

* Can we use an adaptive design?
— Expect 15-25 patients per month
— “Fast” outcome at 45 days
— 22-37 outstanding patients at any analysis

— If we do first look (@ 150 patients enrolled
128 with complete data with 15 pt/month accrual
113 with complete data with 25 pt/month accrual

— Usually accrual ramps up, assume constant here
— Don’t want to interfere with accrual

Don’t pause accrual at each interim analysis

Decide whether to stop accrual while accruing

54



Patients Enrolled & Patients Complete
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Design Questions

e How often to do interim looks?

— Every 25 patients is every 1-1%5 months
— Manageable, may be CRO fee for every look
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Design Questions

* How to decide when to stop accrual for
predicted success?
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Design Questions

* How to decide when to stop accrual for
predicted success?
— Use predictive probabilities
— At each interim analysis ask

“If we stop enrolling & wait for all outstanding
patients to reach their 45-day outcomes, what is the

probability we ‘win ?”
— It high, stop, wait, & analyze
How high?

I never want to stop then lose! (and so far haven’t)
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Design Questions

* How to decide when to stop accrual for

futility (if at all)?
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Design Questions

* How to decide when to stop accrual for
futility (if at all)?
— Use predictive probabilities
— At each analysis ask

“If we enrolling to the 300-patient maximum
then wait for all patients to reach their 45-day

outcomes, what is the probability we “win 2"
— It low, stop for futility?
How low?

More aggressive, more likely to stop a good trial

o1



Design Questions
* What priors to use for predictive probabilities
Beta dists?

— Pretty new, let’s be conservative with Beta(1,1)
for treatment & control

— Could use historical (or downweighted historical)
pl‘iOI‘ s here Incentive to have an ‘honest’ prior

— Don’t use prior in final analysis, frequentist test
* Stop for predicted success if PPy, > Sy = 0.90
* Stop for futility if PPy, ... < Fry= 0.10
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Sketch ot my simulation code

Define when to analyze, priors, cap, accrual rate, alpha level, etficacy

— Factors I'll change a lot during discussions with sponsor

Subroutine for patient accrual & randomization
Subroutine to generate patient response & dropout

Subroutine for interim analysis
— Factors in time of analysis, which patients enrolled, which pts have outcomes

— Outputs predictive probability of success with current 7 and at maximum N

Subroutine for decision

— Stop for predicted success, stop for cap, stop for futility, keep going
Final analysis at » where trial stopped

Track trial size, win or lose, reason for stopping, number of looks,
trial duration
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Control Rate= 0.6000
Exper Rate = 0.8000

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9000

Mean
Sample Size 179.60

Lose

Success 0.008

Cap 0.012

Futility 0.035

Total 0.055
Look Lose Win
150 0.020 0.565
175 0.005 0.118
200 0.002 0.091
225 0.004 0.069
250 0.006 0.028
275 0.006 0.026
300 0.012 0.048
Tot 0.055 0.945

O O OO

1

0.
0.

45

Win

. 897
.048
.000
.945

5.00
1000
150
300
0250
1000

SD
.10

Total

R OO OO OO Oo

.585
.123
.093
.073
.034
.032
.060
.000
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0.6000
0.8000

Control Rate=
Exper Rate =

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9000
Mean
Sample Size 179.60
Lose
Success 0.008
Cap 0.012
Futility 0.035
Total 0.055
Look Lose Win
150 0.020 0.565
175 0.005 0.118
200 0.002 0.091
225 0.004 0.069
250 0.006 0.028
275 0.006 0.026
300 0.012 0.048
Tot 0.055 0.945

O O OO

15.00
1000
150
300
0.0250
0.1000

SD
45.10

Win

. 897
.048
.000
.945

Total
.585
.123
.093
.073
.034
.032
.060
.000

R OO OO OO Oo

Fixed trial of 300
provided 96.9% power

This design provides
94.5% power with
average sample size just
180 patients
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0.6000
0.8000

Control Rate=
Exper Rate =

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9000
Mean
Sample Size 179.60
Lose
Success 0.008
Cap 0.012
Futility 0.035
Total 0.055
Look Lose Win
150 0.020 0.565
175 0.005 0.118
200 0.002 0.091
225 0.004 0.069
250 0.006 0.028
275 0.006 0.026
300 0.012 0.048
Tot 0.055 0.945

O O OO

15.00
1000
150
300
0.0250
0.1000

SD
45.10

Win

. 897
.048
.000
.945

Total
.585
.123
.093
.073
.034
.032
.060
.000

R OO OO OO Oo

0.6000
0.8000

Control Rate=
Exper Rate =

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9000
Mean
Sample Size 182.65
Lose
Success 0.013
Cap 0.026
Futility 0.000
Total 0.039
Look Lose Win
150 0.011 0.586
175 0.000 0.097
200 0.001 0.082
225 0.000 0.071
250 0.001 0.022
275 0.000 0.036
300 0.026 0.067
Tot 0.039 0.961

O O OO

1

0.
0.

49

Win

.894
.067
.000
.961

5.00
1000
150
300
0250
0000

SD
.86

Total

P OO OO OO Oo

.597
.097
.083
.071
.023
.036
.093
.000

66



Stopping Boundartes, S, F,

Need not be constant

We stopped for predicted success but lost at
the first interim analysis in 1.1% of trials

— I never want this to happen if I can avoid it!

Let S, be the success stopping bound

Let F, be the futility stopping bound
Current §, = 0.9 & F, = 0.1 for all
Could choose §, = 0.99 for small #
& S, = 0.9 for higher #
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0.6000
0.8000

Control Rate=
Exper Rate =

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9000
Mean
Sample Size 182.65
Lose
Success 0.013
Cap 0.026
Futility 0.000
Total 0.039
Look Lose Win
150 0.011 0.586
175 0.000 0.097
200 0.001 0.082
225 0.000 0.071
250 0.001 0.022
275 0.000 0.036
300 0.026 0.067
Tot 0.039 0.961

O O OO

15.00
1000
150
300
0.0250
0.0000

SD
49.86

Win

.894
.067
.000
.961

Total
.597
.097
.083
.071
.023
.036
.093
.000

R OO OO OO Oo

0.6000
0.8000

Control Rate=
Exper Rate =

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9500
Mean
Sample Size 186.47
Lose
Success 0.001
Cap 0.032
Futility 0.000
Total 0.033
Look Lose Win
150 0.000 0.520
175 0.001 0.135
200 0.000 0.110
225 0.000 0.054
250 0.000 0.053
275 0.000 0.033
300 0.032 0.062
Tot 0.033 0.967

O O OO

1

0.
0.

53

Win

.905
.062
.000
.967

5.00
1000
150
300
0250
0000

SD
.61

Total

P OO OO OO Oo

.520
.136
.110
.054
.053
.033
.094
.000
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0.6000
0.8000

Control Rate=
Exper Rate =

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9500
Mean
Sample Size 186.47
Lose
Success 0.001
Cap 0.032
Futility 0.000
Total 0.033
Look Lose Win
150 0.000 0.520
175 0.001 0.135
200 0.000 0.110
225 0.000 0.054
250 0.000 0.053
275 0.000 0.033
300 0.032 0.062
Tot 0.033 0.967

O O OO

15.00
1000
150
300
0.0250
0.0000

SD
53.61

Win

.905
.062
.000
.967

Total
.520
.136
.110
.054
.053
.033
.094
.000

R OO OO OO Oo

0.6000
0.8000

Control Rate=
Exper Rate =

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9500
Mean
Sample Size 183.82
Lose
Success 0.001
Cap 0.014
Futility 0.022
Total 0.037
Look Lose Win
150 0.012 0.513
175 0.003 0.139
200 0.004 0.108
225 0.001 0.061
250 0.000 0.056
275 0.003 0.038
300 0.014 0.048
Tot 0.037 0.963

O O OO

1

0.
0.

46

Win

.915
.048
.000
.963

5.00
1000
150
300
0250
0500

SD
.57

Total

P OO OO OO Oo

.525
.142
112
.062
.056
.042
.063
.000
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0.6000
0.8000

Control Rate=
Exper Rate =

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9500
Mean
Sample Size 183.82
Lose
Success 0.001
Cap 0.014
Futility 0.022
Total 0.037
Look Lose Win
150 0.012 0.513
175 0.003 0.139
200 0.004 0.108
225 0.001 0.061
250 0.000 0.056
275 0.003 0.038
300 0.014 0.048
Tot 0.037 0.963

O O OO

15.00
1000
150
300
0.0250
0.0500

SD
46 .57

Win

.915
.048
.000
.963

Total
.525
.142
.112
.062
.056
.042
.063
.000

R OO OO OO Oo

0.6000
0.8000

Control Rate=
Exper Rate =

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9500
Mean
Sample Size 183.20
Lose
Success 0.001
Cap 0.015
Futility 0.027
Total 0.043
Look Lose Win
150 0.017 0.546
175 0.006 0.118
200 0.001 0.093
225 0.000 0.054
250 0.002 0.049
275 0.002 0.032
300 0.015 0.065
Tot 0.043 0.957

O O OO

1

0.
0.

48

Win

.892
.065
.000
.957

5.00
1000
150
300
0250
1000

SD
.53

Total

P OO OO OO Oo

.564
.124
.094
.054
.051
.034
.080
.000
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0.6000
0.7500

Control Rate=
Exper Rate =

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9500
Mean
Sample Size 217.45
Lose
Success 0.009
Cap 0.083
Futility 0.116
Total 0.209
Look Lose Win
150 0.044 0.260
175 0.017 0.100
200 0.012 0.086
225 0.016 0.068
250 0.018 0.067
275 0.019 0.057
300 0.083 0.152
Tot 0.209 0.791

O O OO

15.00
5000
150
300
0.0250
0.0500

SD
59.78

Win

.639
.152
.000
.791

Total
.304
.117
.098
.084
.085
.076
.235
.000

R OO OO OO Oo

0.6000
0.7500

Control Rate=
Exper Rate =

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9500
Mean
Sample Size 211.28
Lose
Success 0.008
Cap 0.063
Futility 0.148
Total 0.219
Look Lose Win
150 0.064 0.263
175 0.024 0.105
200 0.020 0.088
225 0.016 0.072
250 0.017 0.073
275 0.015 0.053
300 0.063 0.128
Tot 0.219 0.781

O O OO

1

0.
0.

57

Win

.654
.128
.000
.781

5.00
5000
150
300
0250
1000

SD
.80

Total

P OO OO OO Oo

.327
.129
.108
.088
.090
.068
.191
.000
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0.6000
0.6000

Control Rate=
Exper Rate =

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9500
Mean
Sample Size 187.32
Lose
Success 0.002
Cap 0.066
Futility 0.900
Total 0.968
Look Lose Win
150 0.519 0.008
175 0.117 0.002
200 0.079 0.002
225 0.079 0.003
250 0.062 0.002
275 0.046 0.002
300 0.066 0.012
Tot 0.968 0.032

O O OO

15.00
5000
150
300
0.0250
0.0500

SD
49.97

Win

.020
.012
.000
.032

Total
.527
.119
.081
.082
.064
.048
.078
.000

R OO OO OO o

0.6000
0.6000

Control Rate=
Exper Rate =

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9500
Mean
Sample Size 176.31
Lose
Success 0.002
Cap 0.041
Futility 0.929
Total 0.972
Look Lose Win
150 0.634 0.006
175 0.103 0.004
200 0.073 0.003
225 0.047 0.003
250 0.042 0.002
275 0.033 0.001
300 0.041 0.009
Tot 0.972 0.028

O O OO

1

0.
0.

44

Win

.019
.009
.000
.028

5.00
1000
150
300
0250
1000

SD
.02

Total

P OO OO OO o

.640
.107
.076
.050
.044
.034
.050
.000
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Enough!

e Settle on
— Success Bound = 0.95
— Futlity Bound = 0.10
* Type I error was 0.028 -- too high
— Pivotal trial, we need this to be =< 0.025
— Hard to calculate analytically

— Need to simulate over many scenarios

— Then convince ourselves & FDA we’ve explored
the whole null space
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Use critical value = 0.025

Intuition Check

Simulate with 4 accrual rates, 10k sims/scenario

Will the Type I error rates change with accrual

rate? If so

How will sample sizes changer

how?

Accrual (pts/mth) Mean N Type I error
5
15% 177 0.030
25
50

*Slightly different than previous slide because 10,000 sims each
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Intuition Check

Use critical value = 0.025
Simulate with 4 accrual rates, 10k sims/scenario

Will the Type I error rates change with accrual
rate? If so how?

How will sample sizes changer

Accrual (pts/mth) Mean N Type I error
5 172 0.039
15 177 0.030
25 182 0.028
50 195 0.027




Find Critical Value for oo = 0.025

e Assume accrual won t be slower than 15/month

* HExplore range of true p, & p,

* Find right critical value by trial & error
— 10,000 sims each using 0.6 vs. 0.6
— Sqrt(0.025*0.975/10000) = 0.0016

Critv 0.40 0.50 0.60 0.70 0.80

0.025 0.030




Find Critical Value for oo = 0.025

e Assume accrual won t be slower than 15/month

* HExplore range of true p, & p,

* Find right critical value by trial & error
— 10,000 sims each using 0.4 vs. 0.4 to 0.8 vs. 0.8
— Sqrt(0.025*0.975/10000) = 0.0016

Critv 0.40 0.50 0.60 0.70 0.80

0.025 0.030
0.020 0.024 0.026 0.026 0.024 0.025
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Find Critical Value for oo = 0.025

e Assume accrual won t be slower than 15/month

* HExplore range ot true p, & p,

* Find right critical value by trial & error
— 10,000 sims each using 0.4 vs. 0.4 to 0.8 vs. 0.8
— Sqrt(0.025*%0.975/10000) = 0.0016

Critv 0.40 0.50 0.60 0.70 0.80
0.025 0.030
0.020 0.024 0.026 0.026 0.024 0.025

0.018 0.024 0.021 0.023 0.023 0.020




Find Critical Value for oo = 0.025

Explore range of true p, & p,

Find right critical value by trial & error
— 10,000 sims each using 0.4 vs. 0.4 to 0.8 vs. 0.8
— Sqrt(0.025*0.975/10000) = 0.0016

Assume accrual won t be slower than 15/month

Critv 0.40 0.50 0.60 0.70 0.80
0.025 0.030

0.020 0.024 0.026 0.026 0.024 0.025
0.018 0.024 0.021 0.024 0.023 0.020
0.019 0.022 0.026 0.024 0.024 0.024

Let s go with 0.018

If a real trial I d run 100,000 or 1M sims and try to get as much power as possible
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Example Trial #1

Simulation # 14 Analysis # 150

Group N Obs Suc

Control 75 68 35 51%

Treatment 75 68 49 72%

P N = 0.9360 > 0.950 ? No, P Nmax = 0.9180 < 0.100 ? No

Continue to enroll



Example Trial #1

Simulation # 14 Analysis # 150

Group N Obs Suc

Control 75 68 35 51%

Treatment 75 68 49 72%

P N = 0.9360 > 0.950 ? No, P Nmax = 0.9180 < 0.100 ? No
Continue to enroll

Simulation # 14 Analysis # 175

Group N Obs Suc

Control 88 73 39 53%

Treatment 87 72 53 74%

P N = 0.9370 > 0.950 ? No, P Nmax = 0.9360 < 0.100 ? No

Continue to enroll



Example Trial #1

Simulation # 14 Analysis # 150

Group N Obs Suc

Control 75 68 35 51%

Treatment 75 68 49 72%

P N = 0.9360 > 0.950 ? No, P Nmax = 0.9180 < 0.100 ? No
Continue to enroll

Simulation # 14 Analysis # 175

Group N Obs Suc

Control 88 73 39 53%

Treatment 87 72 53 74%

P N = 0.9370 > 0.950 ? No, P Nmax = 0.9360 < 0.100 ? No

Continue to enroll

Simulation # 14 Analysis # 200

Group N Obs Suc

Control 100 91 48 53%

Treatment 100 90 68 76%

P N = >.9999 > 0.950 ? YES, P Nmax = 0.9900 < 0.100 ? No

Stop for predicted success



Example Trial #1

Simulation # 14 Analysis
Group N Obs Suc
Control 75 68 35
Treatment 75 68 49
P N = 0.9360 > 0.950 ? No,
Continue to enroll

Simulation # 14 Analysis
Group N Obs Suc
Control 88 73 39
Treatment 87 72 53
P N = 0.9370 > 0.950 ? No,
Continue to enroll

Simulation # 14 Analysis
Group N Obs Suc
Control 100 91 48
Treatment 100 90 68
P N = >.,9999 > 0.950 ? YES,

Stop for predicted success

#

#

#

Simulation # 14 Final Analysis

Group N Obs Suc
Control 100 100 52
Treatment 100 100 76

Successful trial, p-value =

150
51%
712%

P Nmax

175
53%
74%

P Nmax

200
53%
76%

P Nmax

200

52%
76%

0.9180 <

0.9360 <

0.9900 <

0.001 < 0.0180

0.100 ? No

0.100 ? No

0.100 ? No



Example Trial #2

Simulation # 10 Analysis # 150

Group N Obs Suc

Control 75 66 40 61% (need to see +20

Treatment 75 65 44 68% successes for win @
150)

P n = 0.0000 > 0.950 ? No, P Nmax = 0.2590 < 0.100 ? No

Continue to enroll

Simulation # 10 Analysis # 175

Group N Obs Suc

Control 88 80 47 59%

Treatment 87 79 51 65%

P n = 0.0000 > 0.950 ? No, P Nmax = 0.1020 < 0.100 ? No

Continue to enroll

Simulation # 10 Analysis # 200

Group N Obs Suc

Control 100 90 55 61% (need to see +18

Treatment 100 89 57 64% successes for win @
300)

P n = 0.0000 > 0.950 ? No, P Nmax = 0.0360 < 0.100 ? YES

Stop for futility
Unsuccessful trial



Final Operating Characteristics
S =0.95 F =0.10

Mean il Max  PredSuc b
ti r
2 P N Y e Win & Win ¢
0.046 0.016
0.60 0.60 175 0.937 0.024
0009 001
0.145 0.081
0.60 0.65 199 0.775 0.117
0000
0.247 0.275
0.60 0.70 220 0.478 0.381
e 0267
0.216 0.590
0.60 0.75 216 0.195 0.723
018 0580
0.088 0.873
0.60 0.80 189 0.039 0.942




Final Operating Characteristics
S =0.95 F = 0.05

Mean il Max  PredSuc b
ti r
2 P N Y e Win & Win ¢
0.071 0.017
0.60 0.60 185 0.913 0.025
0009 001
0.200 0.084
0.60 0.65 212 0.716 0.132
00 00
0.314 0.230
0.60 0.70 231 0.407 0.401
0.131 0.271
0.256 0.601
0.60 0.75 221 0.143 0.746
0SS 059
0.095 0.830
0.60 0.80 190 0.025 0.950




Final Operating Characteristics
vs. Fixed Frequentist Trials

B-A B-A F-Power F-Power
Ps Ps Mean N Power 300  BA Mean

175 0.024

0.60 0.60 0.025 0.025
18 0.025
199 0.12

0.60 0.65 0.14 0.11
212 O 13 .................
220 0.38

0.60 0.70 0.44 0.34
231 040
216 0.72

0.60 0.75 0.79 0.66
221 0.75 ....................
189 0.94

0.60 0.80 0.969 0.86
190 0.95
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Summary / Thoughts?



Imagine

Imagine investigators do a case-control study

Identify cases

— Patients with hypertension

Identity controls

— People without hypertension with the same
demographics (age, gender, marital status)

See statistically significant increase in blood
pressure between cases & controls

Would JAMA publish this paper?
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* They did: Bassler et al, March 23/31, 2010,
V303, No12, 1180-1187.

Stopping Randomized Trials Early for Benefit

and Estimation of Treatment Effects
Systematic Review and Meta-regression Analysis

Dirk Bassler, MD, MSe¢
Matthias Briel, MD, MSe¢

Victor M. Montori, MD, MSe
Melanie Lane, BA

Paul Glasziou, MBBS, PhD

Qi Zhou, PhD

Diane Heels-Ansdell, MSc
Stephen D. Walter, PhD
Gordon H. Guyatt, MD, MSc
and the STOPIT-2 Study Group

LTHOUGH RANDOMIZED CON-

trolled trials (RCTs) gener-

ally provide credible evi-

ence of treatment effects,

multiple problems may emerge when in-
vestigators terminate a trial earlier than
planned,' especially when the decision
to terminate the trial is based on the find-
ing of an apparently beneficial treat-
ment effect. Bias may arise because large
random fluctuations of the estimated
treatment effect can occur, particularly
early in the progress of a trial.> When in-
vestigators stop a trial based on an ap-
parently beneficial treatment effect, their

wanmsilen s thavafava muact da waiqlaaAd

Context Theory and simulation suggest that randomized controlled trials (RCTs) stopped
early for benefit (truncated RCTs) systematically overestimate treatment effects for
the outcome that precipitated early stopping.

Objective To compare the treatment effect from truncated RCTs with that from meta-
analyses of RCTs addressing the same question but not stopped early (nontruncated
RCTs) and to explore factors associated with overestimates of effect.

Data Sources Search of MEDLINE, EMBASE, Current Contents, and full-text journal
content databases toidentify truncated RCTs up to January 2007; search of MEDLINE, Coch-
rane Database of Systematic Reviews, and Database of Abstracts of Reviews of Effects to
identify systematic reviews from which individual RCTs were extracted up to January 2008.

Study Selection Selected studies were RCTs reported as having stopped early for
benefit and matching nontruncated RCTs from systematic reviews. Independent re-
viewers with medical content expertise, working blinded to trial results, judged the
eligibility of the nontruncated RCTs based on their similarity to the truncated RCTs.

Data Extraction Reviewers with methodological expertise conducted data extrac-
tion independently.

Results The analysis included 91 truncated RCTs asking 63 different questions and
424 matching nontruncated RCTs. The pooled ratio of relative risks in truncated RCTs
vs matching nontruncated RCTs was 0.71 (95 % confidence interval, 0.65-0.77). This
difference was independent of the presence of a statistical stopping rule and the meth-
odological quality of the studies as assessed by allocation concealment and blinding.
Large differences in treatment effect size between truncated and nontruncated RCTs
(ratio of relative risks <0.75) occurred with truncated RCTs having fewer than 500
events. In 39 of the 63 questions (62 %), the pooled effects of the nontruncated RCTs
failed to demonstrate significant benefit.

Conclusions Truncated RCTs were associated with greater effect sizes than RCTs
not stopped early. This difference was independent of the presence of statistical stop-
ping rules and was greatest in smaller studies.

JAMA. 2010;303(12):1180-1187 www.jama.com
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From Abstract Study Selection

“Selected studies were RCT's reported as having
stopped early for benefit and matching
nontruncated RCTs from systematic reviews.
Independent re-viewers with medical content
expertise, working blinded to trial results,
judged the eligibility of the nontruncated RCTs
based on their similarity to the truncated

RCTs.”
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From Abstract Results

* Large differences in treatment effect size

between truncated and nontruncated RCT's
occurred ....

* In 39 of the 63 questions (62%), the pooled
effects of the nontruncated RCTs failed to
demonstrate significant benefit.
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Control Rate= 0.6000 o PfCViOuS CXamp1€
Exper Rate = 0.7500

Accrual Rate (pts/month): 15.00 ¢ Tfuth iS 150/0 beﬂﬁﬁt
Number of Sims 5000
Minimum Sample Size 150 0 ” ”
Marinun Samole Sice oo * But 8.3% of time trial

CVv 0.0250

Cuts  0.9500 0.0500 goes to maximum ...

and fails.

Mean SD
Sample Size 217.45 59.78

Lose Win

Success 0.009 0.639 .
Cap 0.083  0.152 * The reason it goes to
Futility 0.116 0.0
Total 0.209 0.

max 1s because data 1s

Look Lose Total y
150  0.044 0.304 amblguous
175  0.017 0.117
200 0.012 0.098
225  0.016 0.084
250  0.018 Jo. 0.085
275 0.019) o. 0.076
300  0.083" 0.152  0.235
Tot  0.209  0.791  1.000
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S. Berry, Carlin, Connor

“To 1illustrate the issue, consider a clinical trial in which
analysis 1s as follows: participants found to be
performing better are retrospectively placed in the
experimental group and participants found not to be
performing well are retrospectively placed in the
control group; a statistically significant difference in
outcome 1s found when the groups are compared. It is
clear that post-treatment selection of participants,
based on their outcomes, would be responsible for any
observed difference.”

“This 1s logically equivalent to the analysis reported by
Bassler et al.”
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Goodman, D. Berry, Wittes

“So comparing the truncated trials to the nontruncated
trials is similar to comparing completed trials with
large etfects with those with lower etfects. The
difference the authors observed was both predictable
and uninformative.”

“Bias 1s a property of study procedures; it is not
logically applicable to a subset of results.”

Goodman SN. Systematic reviews are not biased by
results from trials stopped early for benefit. | Clin
Epidemtol. 2008;61(1):95-96.
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5, =08 vs. ». = 0.6
n=180 =2 80% Power

* What is average effect size in the statistically
significant trials?
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5, =08 vs. ». = 0.6
n=180 =2 80% Power

* What is average effect size in the statistically
significant trials?

* What 1s the average etfect size in 100,000
simulated trials?
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pvalue <- NULL; effect <- NULL

for(i in 1:100000)¢{

X.c <- rbinom(1l, 90, 0.6)

Xx.t <- rbinom(1l, 90, 0.8)

mat <- rbind(c(x.c, 90-x.c), c(x.t, 90-x.t))
test <- chisqg.test(mat)

pvalue[i] <- test$p.value

effect[i] <- x.t/90 - x.c/90

print (i)

}

hist(effect, breaks=seq(-.2, .6, by=0.025))
par (new=T)

hist(effect[pvalue<0.05], breaks=seq(-.2, .6, by=0.025), col=2, main=" ", xlab="
", ylab= " " )

> mean(pvalue < 0.05) ### CHECK power = 80%

[1] 0.80313

> mean(effect) ### CHECK mean effect = 0.20

[1] 0.2003593

>

> mean(effect[pvalue < 0.05])

[1] 0.2233924

> mean(effect[pvalue >= 0.05])

[1] 0.1063962

>

> 0.80 * .2233924 + 0.20 * 0.1063962
[1] 0.1999932



count <- 0
outcome <- matrix(nrow=8281, ncol=5)
for(xc in 0:90){
for(xt in 0:90){
count <- count + 1
prob.of.pair <- dbinom(xc, 90, 0.6) * dbinom(xt, 90, 0.8)

mat <- rbind(c(xc, 90-xc), c(xt, 90-xt))
test <- chisqg.test(mat)
effect <- xt/90 - xc/90

outcome[count, ] <- c(xc, xt, prob.of.pair, test$p.value, effect)
print(c(xc, xt))

H}

outcome <- data.frame(outcome)
names (outcome) <- c("xc","xt","pr", "pvalue", "effect")

> sum(outcomeS$pr[outcome$pvalue < 0.05])
[1] 0.80168

> sum( (outcomeSeffect * outcomeS$Spr) [outcomeS$pvalue < 0.05]) /
sum(outcomeS$pr[outcomeSpvalue<0.05])

[1] 0.2231661

> sum( (outcomeSeffect * outcomeS$Spr) [outcomeS$pvalue > 0.05]) /
sum(outcomeS$pr[outcomeSpvalue>0.05])

[1] 0.1063544
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Frequency

10000 15000 20000

5000

100k sims 0.8 vs. 0.6, n=180

Histogram of effect

0.0 0.2

effect

0.4

0.6
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Frequency

10000 15000 20000

5000

100k sims 0.8 vs. 0.6, n=180

Histogram of effect

Mean effect of Mean effect of

failed trials successful trials
0.106 0.223
—

-0.2 0.0 0.2 0.4 0.6

effect
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Revisit Previous Example

* Binary outcome
* Adaptive trial from 150 to 300 patients
* Expected difference 60% vs. 80%
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0.6000
0.8000

Control Rate=
Exper Rate =

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9500
Mean
Sample Size 183.20
Lose
sSuccess 0.001
Cap 0.015
Futility 0.027
Total 0.043
Look Lose Win
150 0.017 0.546
175 0.006 0.118
200 0.001 0.093
225 0.000 0.054
250 0.002 0.049
275 0.002 0.032
300 0.015 0.065
Tot 0.043 0.957

O O OO

15.00
1000
150
300
0.0250
0.1000

SD
48.53

Win

.892
.065
.000
.957

Total
.564
.124
.094
.054
.051
.034
.080
.000

R OO OO0 OO Oo

0.6000
0.6000

Control Rate=
Exper Rate =

Accrual Rate (pts/month):

Number of Sims
Minimum Sample Size
Maximum Sample Size

Cv
Cuts 0.9500
Mean
Sample Size 176.31
Lose
Success 0.002
Cap 0.041
Futility 0.929
Total 0.972
Look Lose Win
150 0.634 0.006
175 0.103 0.004
200 0.073 0.003
225 0.047 0.003
250 0.042 0.002
275 0.033 0.001
300 0.041 0.009
Tot 0.972 0.028

O O OO

1

0.
0.

44

Win

.019
.009
.000
.028

5.00
1000
150
300
0250
1000

SD
.02

Total

P OO OO OO o

.640
.107
.076
.050
.044
.034
.050
.000
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Effect Size Estimate

04

0.3

0.2
®
| $28,
i (1111 { T

0.1

Goldilocks Example

80% vs. 60%

Sample Size
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80% vs. 60%

s HRTIHI, &
A

¥'0 €0

gjewns3 az1S 1val3

L0

300

250

200

150

Sample Size
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80% vs. 60%

=0.21

Mean

T
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300

250

200

150

Sample Size
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70% vs. 60%
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60% vs. 60%

,___m__w ..

L0

=-0.014

Mean
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300

250

200

150

Sample Size
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Frequency

20

0

0.8 vs. 0.6 with Stopping

-

il Mm .

0.0

l T T I
0.1 0.2 0.3 0.4

Point Estimate

0.5
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Frequency

Frequency

0 20

80

40

0.8 vs. 0.6 with Stopping

"

L OdlE

M

| |

| |

0.0 0.1 0.2 0.3 0.4 0.5
Point Estimate
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Compare Distributions

1000 simulations from pt = 0.8, pc = 0.6
Min. 1lst Qu. Median Mean 3rd Qu. Max.
Allow Stopping 0.034 0.172 0.208 0.212 0.253 0.453
No Stopping 0.027 0.167 0.200 0.202 0.240 0.373

1000 simulations from pt = 0.6, pc = 0.6
Min. 1lst Qu. Median Mean 3rd Qu. Max.
Allow Stopping -0.293 -0.057 -0.010 -0.014 0.032 0.224
No Stopping -0.173 -0.040 0.000 0.001 0.040 0.180
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Another Example
* SHINE Trial

— Tight glycemic control in stroke
— Designed using 1*-look OBF

— Redesigned (NIH grant) using Bayesian adaptive
trial

— Decided to execute using 5-look OBF

— Stored datasets for Bayesian re-evaluation

* Connor JT, Broglio KB, Durkalski V, Meurer W], and Johnston KC. The
Stroke Hyperglycemia Insulin Network Effort (SHINE) Trial. An
Adaptive Trial Design Case Study. Trials. March 2015, Vol 16, No 72.

— Final negative results just announced

* Bayesian re-analysis forthcoming
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Power
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Power
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Observed Difference
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Combining Features
* Frequentist design uses 5 OBFs looks

— Well understood

* Added blind sample size re-estimation prior
to tirst OBF interim analysis

— Well understood, Gould & Shih Stats in Med 1998
— Pc =0.25 vs. Pt = 0.32 Power = 0.83
— Pc =0.46 vs. Pt = 0.53 Power = 0.75

— Increase sample size if pooled rate > 31%

* What happens if there is a big effect?
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Be Careful Combining Features

 TLarge effect size = High pooled rate
— 30% vs. 50% (but analysis 1s unblinded, observe 40%0)
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Be Careful Combining Features

 TLarge effect size = High pooled rate
— 30% vs. 50% (but analysis 1s unblinded, observe 40%0)

* High pooled rate = Increase in sample size
— From 1400 to 1650
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Be Careful Combining Features

 TLarge effect size = High pooled rate
— 30% vs. 50% (but analysis 1s unblinded, observe 40%0)

* High pooled rate = Increase in sample size
— From 1400 to 1650

* Increase in sample size = Delay 1% interim look
— From 700 with data to 825 with data
— About 4 months
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Be Careful Combining Features

Latrge effect size 2 High pooled rate
— 30% vs. 50% (but analysis 1s unblinded, observe 40%0)

High pooled rate = Increase in sample size
— From 1400 to 1650

Increase in sample size = Delay 1% interim look
— From 700 with data to 825 with data
— About 4 months

Delay 1% interim look = Delay eatly stopping

123



Be Careful Combining Features

Large etfect size
— 30% vs. 50% (hue

* High pooled rate 3 Increase in sample size
— From 1400 to 1650

* Increase in sample sizeN Delay 1" interim look
— From 700 with data to 82 with data

— About 4 months
Delay early stopping

* Delay 1°" interim look
UNDERSTAND effects of combining features
SIMULATE trials

High pooled rate
analysis 1s unblinded, observe 40%0)
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Summary
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l.essons

Ensure minimum sample size will suttice
— Not just statistical, but impacttful

— Company did a continue access protocol to get
more patients during review, leading to panel

Ensure data isn’t coded optimistically

Ensure inclusion / exclusion criteria
rigorously followed

Goldilocks trials gets the size 9ust right’ but
that means you can be close to qust wrong’ if
some data changes post hoc
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