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Why be adaptive on sample size?

• Doctor comes to you.
• Well documented historical success rate = 50%
• Claims his therapy has 70% success
• “How many patients do I need to be 

statistically significant?”
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N = 65 gives 90% power to reject Ho: p = 0.50 when p = 0.7 
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If observed = 70% only need N = 30 not N=65!
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Why be adaptive?

• Doctor comes to you.
• Claims her treatment increases IQ by 5 points
• SD = 10
• “How many patients do I need to have 90% 

power to demonstrate superiority?”
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Phase 3 / Confirmatory Trials

• CDER/CBER Phase 3
• CDRH Confirmatory
• The final test before market
• Control of Type I error rate very important
• Tend not to adaptively randomize

– Fear of drift
– Usually two arm
– No power benefit with adaptive rand. in 2-arm trial
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What is Different About 
Confirmatory Trials

• Type I error is a dominant factor
• Adjusting the design (goal) in order to 

accommodate adaptive aspects must still 
control type I error

• Predictive probabilities much more relevant 
than posterior probabilities

• Very well-defined goal.  
– A “game” you win or lose



Confirmatory Trials & Bayes

• You can’t have an informative prior and 
control Type I error
– Assuming the informative prior claims the 

treatment starts off better than the control

– Kopp-Schneider, Calderazzo, & Wiesenfarth, 
Biometric Journal, 2019.
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Simple Trial

• Binomial data
• One-armed trial
• n = 100
• Need to show p > 0.5
• Ho: p ≤ 0.5
• Ha: p > 0.5
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Phase 3 & Priors
• Simple Trial: 

– Binary data. Observe x ~ Bin(100,p)
– Need to show Pr(p > 0.5 | x out of 100) > 0.95
– Assume p ~ Beta(1,1) prior
– Pr(p > 0.5 | 59 out of 100) = 0.963
– Pr(P > 0.5 | 58 out of 100) = 0.944

0.0 0.2 0.4 0.6 0.8 1.0

p

Beta(60,42)Beta(59,43)
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Phase 3 & Priors
• Simple Trial: 

– Binary data. Observe x ~ Bin(100,p)
– Need to show Pr(p > 0.5 | x out of 100) > 0.95
– Assume p ~ Beta(1,1) prior
– Pr(p > 0.5 | 59 out of 100) = 0.963
– Pr(P > 0.5 | 58 out of 100) = 0.944

• Pr(X≥59 | p = 0.50) = 0.044
– Simple binomial calculation
– This is Type I error and is < 5%
– Bayesian trial
– Good frequentist properties
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Phase 3 & Priors
• Now we have “pure” information 

9 of 10 successes in European trial
• Instead of Beta(1,1) prior use Beta(1+9, 1+1)

= Beta(10,2) prior
• Regulatory agrees it is reasonable to use this 

as the prior
• Fixed design: for Pr[p > 0.5 | data] ≥ 0.95

– Pr(p > 0.5 | 55 out of 100, a=10,b=2) = 0.956
– Pr(P > 0.5 | 54 out of 100, a=10,b=2) = 0.936

• Pr(X≥55 | p = 0.50) = 0.184
– Type I error is inflated
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Phase 3 & Priors
• Solution to control Type I error

– Raise the post probability threshold from 
0.95 bar to 0.99 (like decreasing critical level)

– Pr(p > 0.5 | 59 out of 100, a=10,b=2) = 0.993
– Pr(P > 0.5 | 58 out of 100, a=10,b=2) = 0.989
– Pr(X≥59 | p = 0.50) = 0.044

• Need a Beta(59+10,41+2) for a win…59 is 
back!!!

• The type I error “restriction” forces 59/100 
regardless of prior…

• Can’t allow beneficial priors AND force Type 
I of “new” experiment! 
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Posterior/Predictive

Phase I Phase II Phase III
Pilot Study Pivotal StudyAnimals/Bench
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Predictive Probabilities

• Simple Trial: 
– Binary data. Observe x ~ Bin(100, p)
– Need to show Pr( p > 0.5 | x out of 100) > 0.95
– Assume p ~ Beta(1,1) prior
– Pr( p > 0.5 | 59 out of 100) = 0.963
– Pr( p > 0.5 | 58 out of 100) = 0.944
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Predictive Probabilities

• Simple Trial: 
– Binary data. Observe x ~ Bin(100, p)
– Need to show Pr( p > 0.5 | x out of 100) > 0.95
– Assume p ~ Beta(1,1) prior
– Pr( p > 0.5 | 59 out of 100) = 0.963
– Pr( p > 0.5 | 58 out of 100) = 0.944

• Observe data half way through
– See 28/50 successes
– Need to see 31/50 to meet threshold
– What is predictive probability of trial success?
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X ~ Bin(50, 0.56)
Pr(x) ≥ 31

X ~ Bin(50, 0.56)
Pr(x) ≤ 30
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Predictive Probabilities

• Know we need x ≥ 59 at trial’s end
• Have x1 = 28
• Need x2 ≥ 31
• p ~ Beta(1+28, 1+22)
• x2 ~ Binomial(50, p)
• x2 ~ Beta-binomial(50, a=29, b=23)
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R code for predictive probability
> ### VIA SIMULATION
> alpha <- 1; beta <- 1
> x <- 28; N <- 50
> 
> p <- rbeta(1000000, alpha+x, beta+N-x)
> x.new <- rbinom(1000000, 50, p)
> 
> mean(x.new >= 31)
[1] 0.301132
> 
> 
> 
> ### VIA DIRECT CALCULATION
> N.new <- 50
> x.new <- 0:50
> prob <- choose(N.new,x.new) * 
+      beta(alpha+x+x.new,(beta+N-x)+(N-x.new)) / 
+         beta(alpha+x,      (beta+N-x)) 
> sum(prob)
[1] 1
> sum(prob[x.new >= 31])
[1] 0.3010906
> barplot(prob, names.arg=0:50, col=c(rep(2,31), rep(3,20)),
+ main="Predictive Distribution for Remaining 50 patients")
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Predictive Probabilities
• Observe 12 / 20 (60%)

– Need 47 / 80 successes; 59% or better rest of way
– p-value = 0.25, Pr(p>0.5) = 0.81
– Predictive probability of success @ 100 = 0.54

• Observe 28 / 50  (56%)
– Need 31/50 successes; 62% or better rest of way
– p-value = 0.24, Pr(p>0.5) = 0.80
– Predictive probability of success @ 100 = 0.30

• Observe 41 / 75 (54.7%)
– Need 18/25 successes; 72% or better rest of way
– p-value = 0.24, Pr(p>0.5) = 0.79
– Predictive probability of success @ 100 = 0.086
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Another trial

• NG = 100 in Treatment & Control Group
• Testing pt > pc using Fisher’s Exact Test @ 0.025
• Observe 

– 34/50 in Control Group
– 41/50 in Treatment Group

• What is predictive probability of success?
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Predictive Probability
alpha <- 1; beta <- 1
xc <- 34; nc <- 50
xt <- 41; nt <- 50

pc <- rbeta(100000, alpha+xc, beta+nc-xc)
pt <- rbeta(100000, alpha+xt, beta+nt-xt)

xc.total <- xc + rbinom(100000, 50, pc)
xt.total <- xt + rbinom(100000, 50, pt)

p.values <- rep(NA,100000)
for(i in 1:100000){

p.values[i] <- fisher.test( 
matrix(c(xc.total[i], 100-xc.total[i],

xt.total[i], 100-xt.total[i]),nrow=2),
alternative=“less”)$p.value

}

> mean(p.value<0.025)
[1] 0.549
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GREEN numbers are when it’s statistically superior
RED are cases not significant 
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But what if we have historical data
• Well known historical data, pc = 60%±5%

• Expected from pilot studies, pt = 80% ±15%
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But what if we have historical data
• Well known historical data, pc = 60%±5%

• Expected from pilot studies, pt = 80% ±15%

• Beta distribution defined by p~Beta(a,b)
has mean & variance

• Solve for a & b

€ 

E(p) =
α

α + β
V (p) =

αβ

α + β( )
2
α + β +1( )

€ 

α

α + β
= 0.6

αβ

α + β( )
2

α + β +1( )
= 0.052
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But what if we have historical data
• Well known historical data, pc = 60%±5%
– ac = 57, bc = 38

• Expected from pilot studies, pt = 80% ±15%
– at = 4.8888, bt = 1.2222
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alpha.c <- 57; beta.c <- 38; alpha.t <- 4.888888; beta.t <- 1.222222
xc <- 34; nc <- 50; xt <- 41; nt <- 50
pc <- rbeta(100000, alpha.c+xc, beta.c+nc-xc)
pt <- rbeta(100000, alpha.t+xt, beta.t+nt-xt)
xc.total <- xc + rbinom(100000, 50, pc)
xt.total <- xt + rbinom(100000, 50, pt)
p.values <- rep(NA,100000)
for(i in 1:100000){
p.values[i] <- fisher.test(matrix(c(xc.total[i], 100-xc.total[i],

xt.total[i], 100-xt.total[i]),nrow=2), 
alternative="less")$p.value

}
> mean(p.values<0.025)
[1] 0.73422
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• Well known historical data, pc = 60%±5%
– ac = 57, bc = 38,   95 patients’ worth of info

• Expected from pilot studies, pt = 80% ±15%
– at = 4.8888, bt = 1.2222    6.1 pts’ worth of info

Downweight Historical Information
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• Well known historical data, pc = 60%±5%
– ac = 57, bc = 38,   95 patients’ worth of info
– New data is 50/(50+95) = 34% of information

• Expected from pilot studies, pt = 80% ±15%
– at = 4.8888, bt = 1.2222,   6.1 patients’ worth of info
– New data is 50/(50+6) = 89% of information

• Downweight each prior so it includes 1/3 as 
much information
– ac = 19, bc = 12.6667,   31.67 patients’ worth of info
– at = 1.63, bt = 0.407,   2 patients’ worth of info

Downweight Historical Information
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Phase 3 Cancer Design
• Binary endpoint, complete response observed 

at 45 days post treatment
– Consider CR vs. PFS vs. OS?
– Primary analysis chi-square test 

• Expect 20% improvement vs. control
• Use Bayesian prediction to determine sample 

size necessary for success in frequentist trial
– Bayesian ‘behind the curtain’
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Statistical Model
• Final analysis: Chi-square test
• Interim analyses with 

– N = Nc+Nt patients enrolled;  n = nc+nt complete
– xc ~ Binomial(nc , pc);    pc ~ Beta(1,1)
– xt ~ Binomial(nt , pt);  pt ~ Beta(1,1)
– N = Nc + Nt Nc = nc+nc* Nt = nt+nt*
– xc* ~ Beta-binomial(nc*, 1+xc , 1+nc-xc)
– xt* ~ Beta-binomial(nt*, 1+xt, 1+nt-xt)

PPN = pr xc
*( ) pr xt

*( ) I χ p−value

2
xc + xc

*
,Nc, xt + xt

*
,Nt( ) < 0.05{ }

xt
*
=0

nt
*

∑
xc
*
=0

nc
*

∑
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Design Questions
• What should sample size range be?

– Most sponsor can do is 300 patients
• Step 1, calculate power of fixed 300 patient trial

> bpower(n1=150, n2=150, p1=0.6, p2=0.8)
Power 
0.969 

– Best case want to go to FDA with ≥150 patients
– We’ll see if 300 is enough, if not we’ll go back to 

the company with evidence they need to up the cap
> bpower(n1=150, n2=150, p1=0.6, p2=0.75)
Power 

0.795
Smallest win:  60% (80/150) vs. 72% (108/150) à p=0.03
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Design Questions
• Can we use an adaptive design?

– Expect 15-25 patients per month
– “Fast” outcome at 45 days
– 22-37 outstanding patients at any analysis
– If we do first look @ 150 patients enrolled

128 with complete data with 15 pt/month accrual
113 with complete data with 25 pt/month accrual

– Usually accrual ramps up, assume constant here
– Don’t want to interfere with accrual

Don’t pause accrual at each interim analysis
Decide whether to stop accrual while accruing

54



15 pt/mth
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15 pt/mth

25 pt/mth

56



Design Questions
• How often to do interim looks?

– Every 25 patients is every 1-1⅔ months
– Manageable, may be CRO fee for every look
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Design Questions
• How to decide when to stop accrual for 

predicted success?
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Design Questions
• How to decide when to stop accrual for 

predicted success?
– Use predictive probabilities
– At each interim analysis ask 
“If we stop enrolling & wait for all outstanding 
patients to reach their 45-day outcomes, what is the 
probability we ‘win’?”

– If high, stop, wait, & analyze
How high?
I never want to stop then lose! (and so far haven’t)
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Design Questions
• How to decide when to stop accrual for 

futility (if at all)?
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Design Questions
• How to decide when to stop accrual for 

futility (if at all)?
– Use predictive probabilities
– At each analysis ask 
“If we enrolling to the 300-patient maximum 
then wait for all patients to reach their 45-day 
outcomes, what is the probability we ‘win’?”

– If low, stop for futility?
How low?    
More aggressive, more likely to stop a good trial
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Design Questions
• What priors to use for predictive probabilities 

Beta dists?
– Pretty new, let’s be conservative with Beta(1,1) 

for treatment & control
– Could use historical (or downweighted historical)

priors here           Incentive to have an ‘honest’ prior

– Don’t use prior in final analysis, frequentist test

• Stop for predicted success if PPN > SN = 0.90
• Stop for futility if PPNmax < FN = 0.10
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Sketch of my simulation code
• Define when to analyze, priors, cap, accrual rate, alpha level, efficacy

– Factors I’ll change a lot during discussions with sponsor

• Subroutine for patient accrual & randomization
• Subroutine to generate patient response & dropout
• Subroutine for interim analysis

– Factors in time of analysis, which patients enrolled, which pts have outcomes
– Outputs predictive probability of success with current n and at maximum N

• Subroutine for decision
– Stop for predicted success, stop for cap, stop for futility, keep going

• Final analysis at n where trial stopped
• Track trial size, win or lose, reason for stopping, number of looks, 

trial duration

63



Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9000   0.1000

Mean      SD
Sample Size  179.60 45.10

Lose      Win
Success    0.008    0.897

Cap    0.012    0.048
Futility    0.035    0.000

Total    0.055    0.945

Look     Lose      Win    Total
150    0.020    0.565    0.585
175    0.005    0.118    0.123
200    0.002    0.091    0.093
225    0.004    0.069    0.073
250    0.006    0.028    0.034
275    0.006    0.026    0.032
300    0.012    0.048    0.060
Tot    0.055    0.945    1.000
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Fixed trial of  300 
provided 96.9% power

This design provides 
94.5% power with 
average sample size just 
180 patients 
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Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9000   0.1000

Mean      SD
Sample Size  179.60 45.10

Lose      Win
Success    0.008    0.897

Cap    0.012    0.048
Futility    0.035    0.000

Total    0.055    0.945

Look     Lose      Win    Total
150    0.020    0.565    0.585
175    0.005    0.118    0.123
200    0.002    0.091    0.093
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Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9000   0.0000

Mean      SD
Sample Size  182.65 49.86

Lose      Win
Success    0.013    0.894

Cap    0.026    0.067
Futility    0.000 0.000

Total    0.039    0.961

Look     Lose      Win    Total
150    0.011 0.586    0.597  
175    0.000    0.097    0.097
200    0.001    0.082    0.083
225    0.000    0.071    0.071
250    0.001    0.022    0.023
275    0.000    0.036    0.036
300    0.026    0.067    0.093
Tot    0.039    0.961    1.000
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Stopping Boundaries, Sn , Fn

• Need not be constant
• We stopped for predicted success but lost at 

the first interim analysis in 1.1% of trials
– I never want this to happen if I can avoid it!

• Let Sn be the success stopping bound
• Let Fn be the futility stopping bound
• Current Sn = 0.9 & Fn = 0.1 for all n
• Could choose Sn = 0.99 for small n

& Sn = 0.9 for higher n
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Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9000   0.0000

Mean      SD
Sample Size  182.65 49.86

Lose      Win
Success    0.013 0.894

Cap    0.026    0.067
Futility    0.000    0.000

Total    0.039    0.961

Look     Lose      Win    Total
150    0.011 0.586    0.597
175    0.000    0.097    0.097
200    0.001    0.082    0.083
225    0.000    0.071    0.071
250    0.001    0.022    0.023
275    0.000    0.036    0.036
300    0.026    0.067    0.093
Tot    0.039    0.961    1.000

Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.0000

Mean      SD
Sample Size  186.47 53.61

Lose      Win
Success    0.001 0.905

Cap    0.032    0.062
Futility    0.000    0.000

Total    0.033    0.967

Look     Lose      Win    Total
150    0.000 0.520    0.520
175    0.001    0.135    0.136
200    0.000    0.110    0.110
225    0.000    0.054    0.054
250    0.000    0.053    0.053
275    0.000    0.033    0.033
300    0.032    0.062    0.094
Tot    0.033    0.967    1.000
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Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.0500

Mean      SD
Sample Size  183.82 46.57

Lose      Win
Success    0.001    0.915

Cap    0.014    0.048
Futility    0.022    0.000

Total    0.037    0.963

Look     Lose      Win    Total
150    0.012 0.513    0.525
175    0.003    0.139    0.142
200    0.004    0.108    0.112
225    0.001    0.061    0.062
250    0.000    0.056    0.056
275    0.003    0.038    0.042
300    0.014    0.048    0.063
Tot    0.037    0.963    1.000

Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.0000

Mean      SD
Sample Size  186.47 53.61

Lose      Win
Success    0.001    0.905

Cap    0.032    0.062
Futility    0.000    0.000

Total    0.033    0.967

Look     Lose      Win    Total
150    0.000 0.520    0.520
175    0.001    0.135    0.136
200    0.000    0.110    0.110
225    0.000    0.054    0.054
250    0.000    0.053    0.053
275    0.000    0.033    0.033
300    0.032    0.062    0.094
Tot    0.033    0.967    1.000
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Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.0500

Mean      SD
Sample Size  183.82 46.57

Lose      Win
Success    0.001    0.915

Cap    0.014    0.048
Futility    0.022    0.000

Total    0.037    0.963

Look     Lose      Win    Total
150    0.012    0.513    0.525
175    0.003    0.139    0.142
200    0.004    0.108    0.112
225    0.001    0.061    0.062
250    0.000    0.056    0.056
275    0.003    0.038    0.042
300    0.014    0.048    0.063
Tot    0.037    0.963    1.000

Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.1000

Mean      SD
Sample Size  183.20 48.53

Lose      Win
Success    0.001    0.892

Cap    0.015    0.065
Futility    0.027    0.000

Total    0.043    0.957

Look     Lose      Win    Total
150    0.017    0.546    0.564
175    0.006    0.118    0.124
200    0.001    0.093    0.094
225    0.000    0.054    0.054
250    0.002    0.049    0.051
275    0.002    0.032    0.034
300    0.015    0.065    0.080
Tot    0.043    0.957    1.000
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Control Rate=    0.6000
Exper Rate =    0.7500

Accrual Rate (pts/month):  15.00
Number of Sims      5000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.0500

Mean      SD
Sample Size  217.45 59.78

Lose      Win
Success    0.009    0.639

Cap    0.083    0.152
Futility    0.116    0.000

Total    0.209    0.791

Look     Lose      Win    Total
150    0.044    0.260    0.304
175    0.017    0.100    0.117
200    0.012    0.086    0.098
225    0.016    0.068    0.084
250    0.018    0.067    0.085
275    0.019    0.057    0.076
300    0.083    0.152    0.235
Tot    0.209    0.791    1.000

Control Rate=    0.6000
Exper Rate =    0.7500

Accrual Rate (pts/month):  15.00
Number of Sims      5000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.1000

Mean      SD
Sample Size  211.28 57.80

Lose      Win
Success    0.008    0.654

Cap    0.063    0.128
Futility    0.148    0.000

Total    0.219    0.781

Look     Lose      Win    Total
150    0.064    0.263    0.327
175    0.024    0.105    0.129
200    0.020    0.088    0.108
225    0.016    0.072    0.088
250    0.017    0.073    0.090
275    0.015    0.053    0.068
300    0.063    0.128    0.191
Tot    0.219    0.781    1.000
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Control Rate=    0.6000
Exper Rate =    0.6000

Accrual Rate (pts/month):  15.00
Number of Sims      5000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.0500

Mean      SD
Sample Size  187.32 49.97

Lose      Win
Success    0.002    0.020

Cap    0.066    0.012
Futility    0.900 0.000

Total    0.968    0.032

Look     Lose      Win    Total
150    0.519    0.008    0.527
175    0.117    0.002    0.119
200    0.079    0.002    0.081
225    0.079    0.003    0.082
250    0.062    0.002    0.064
275    0.046    0.002    0.048
300    0.066    0.012    0.078
Tot    0.968    0.032    1.000

Control Rate=    0.6000
Exper Rate =    0.6000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.1000

Mean      SD
Sample Size  176.31 44.02

Lose      Win
Success    0.002    0.019

Cap    0.041    0.009
Futility    0.929 0.000

Total    0.972    0.028

Look     Lose      Win    Total
150    0.634    0.006    0.640
175    0.103    0.004    0.107
200    0.073    0.003    0.076
225    0.047    0.003    0.050
250    0.042    0.002    0.044
275    0.033    0.001    0.034
300    0.041    0.009    0.050
Tot    0.972    0.028    1.000
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Enough!
• Settle on 

– Success Bound = 0.95
– Futility Bound = 0.10

• Type I error was 0.028 -- too high
– Pivotal trial, we need this to be ≤ 0.025
– Hard to calculate analytically
– Need to simulate over many scenarios
– Then convince ourselves & FDA we’ve explored 

the whole null space
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Intuition Check
• Use critical value = 0.025
• Simulate with 4 accrual rates, 10k sims/scenario
• Will the Type I error rates change with accrual 

rate?  If so how?
• How will sample sizes change?

Accrual (pts/mth) Mean N Type I error

5

15* 177 0.030

25

50

*Slightly different than previous slide because 10,000 sims each
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Intuition Check
• Use critical value = 0.025
• Simulate with 4 accrual rates, 10k sims/scenario
• Will the Type I error rates change with accrual 

rate?  If so how?
• How will sample sizes change?

Accrual (pts/mth) Mean N Type I error

5 172 0.039

15 177 0.030

25 182 0.028

50 195 0.027

75



Critv 0.40 0.50 0.60 0.70 0.80

0.025 0.030

Find Critical Value for a = 0.025
• Assume accrual won’t be slower than 15/month
• Explore range of true pc & pt

• Find right critical value by trial & error
– 10,000 sims each using 0.6 vs. 0.6
– Sqrt(0.025*0.975/10000) = 0.0016
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Critv 0.40 0.50 0.60 0.70 0.80

0.025 0.030

0.020 0.024 0.026 0.026 0.024 0.025

Find Critical Value for a = 0.025
• Assume accrual won’t be slower than 15/month
• Explore range of true pc & pt

• Find right critical value by trial & error
– 10,000 sims each using 0.4 vs. 0.4 to 0.8 vs. 0.8
– Sqrt(0.025*0.975/10000) = 0.0016
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Critv 0.40 0.50 0.60 0.70 0.80

0.025 0.030

0.020 0.024 0.026 0.026 0.024 0.025

0.018 0.024 0.021 0.023 0.023 0.020

Find Critical Value for a = 0.025
• Assume accrual won’t be slower than 15/month
• Explore range of  true pc & pt

• Find right critical value by trial & error
– 10,000 sims each using 0.4 vs. 0.4 to 0.8 vs. 0.8
– Sqrt(0.025*0.975/10000) = 0.0016
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Critv 0.40 0.50 0.60 0.70 0.80

0.025 0.030

0.020 0.024 0.026 0.026 0.024 0.025

0.018 0.024 0.021 0.024 0.023 0.020

0.019 0.022 0.026 0.024 0.024 0.024

Let’s go with 0.018
If  a real trial I’d run 100,000 or 1M sims and try to get as much power as possible

Find Critical Value for a = 0.025
• Assume accrual won’t be slower than 15/month
• Explore range of true pc & pt

• Find right critical value by trial & error
– 10,000 sims each using 0.4 vs. 0.4 to 0.8 vs. 0.8
– Sqrt(0.025*0.975/10000) = 0.0016
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Example Trial #1
Simulation #  14       Analysis #  150
Group          N    Obs    Suc
Control       75     68     35     51%
Treatment     75     68     49     72%
P_N   =  0.9360 >  0.950 ? No,   P_Nmax =  0.9180 <  0.100 ? No
Continue to enroll
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Example Trial #1
Simulation #  14       Analysis #  150
Group          N    Obs    Suc
Control       75     68     35     51%
Treatment     75     68     49     72%
P_N   =  0.9360 >  0.950 ? No,   P_Nmax =  0.9180 <  0.100 ? No
Continue to enroll

Simulation #  14       Analysis #  175
Group          N    Obs    Suc
Control       88     73     39     53%
Treatment     87     72     53     74%
P_N   =  0.9370 >  0.950 ? No,   P_Nmax =  0.9360 <  0.100 ? No
Continue to enroll
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Example Trial #1
Simulation #  14       Analysis #  150
Group          N    Obs    Suc
Control       75     68     35     51%
Treatment     75     68     49     72%
P_N   =  0.9360 >  0.950 ? No,   P_Nmax =  0.9180 <  0.100 ? No
Continue to enroll

Simulation #  14       Analysis #  175
Group          N    Obs    Suc
Control       88     73     39     53%
Treatment     87     72     53     74%
P_N   =  0.9370 >  0.950 ? No,   P_Nmax =  0.9360 <  0.100 ? No
Continue to enroll

Simulation #  14       Analysis #  200
Group          N    Obs    Suc
Control      100     91     48     53%
Treatment    100     90     68     76%
P_N   =  >.9999 >  0.950 ? YES,  P_Nmax =  0.9900 <  0.100 ? No
Stop for predicted success
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Simulation #  14       Analysis #  150
Group          N    Obs    Suc
Control       75     68     35     51%
Treatment     75     68     49     72%
P_N   =  0.9360 >  0.950 ? No,   P_Nmax =  0.9180 <  0.100 ? No
Continue to enroll

Simulation #  14       Analysis #  175
Group          N    Obs    Suc
Control       88     73     39     53%
Treatment     87     72     53     74%
P_N   =  0.9370 >  0.950 ? No,   P_Nmax =  0.9360 <  0.100 ? No
Continue to enroll

Simulation #  14       Analysis #  200
Group          N    Obs    Suc
Control      100     91     48     53%
Treatment    100     90     68     76%
P_N   =  >.9999 >  0.950 ? YES,  P_Nmax =  0.9900 <  0.100 ? No
Stop for predicted success

Simulation #  14   Final Analysis  200
Group      N    Obs    Suc

Control      100    100     52     52%
Treatment    100    100     76     76%
Successful trial,   p-value = 0.001 < 0.0180

Example Trial #1
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Example Trial #2
Simulation #  10       Analysis #  150
Group          N    Obs Suc
Control       75     66     40     61%  (need to see +20
Treatment     75     65     44     68%   successes for win @ 
150)

P_n =  0.0000 >  0.950 ? No,   P_Nmax =  0.2590 <  0.100 ? No
Continue to enroll

Simulation #  10       Analysis #  175
Group          N    Obs Suc
Control       88     80     47     59%
Treatment     87     79     51     65%
P_n =  0.0000 >  0.950 ? No,   P_Nmax =  0.1020 <  0.100 ? No
Continue to enroll

Simulation #  10       Analysis #  200
Group          N    Obs Suc
Control      100     90     55     61%  (need to see +18
Treatment    100     89     57     64%  successes for win @ 
300)

P_n =  0.0000 >  0.950 ? No,   P_Nmax =  0.0360 <  0.100 ? YES
Stop for futility
Unsuccessful trial
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pc pt
Mean

N
Futility

Max
& Win

PredSuc
& Win

Power

0.60 0.60 175 0.937
0.046
0.009

0.016
0.015

0.024

0.60 0.65 199 0.775
0.145
0.041

0.081
0.075

0.117

0.60 0.70 220 0.478
0.247
0.114

0.275
0.267

0.381

0.60 0.75 216 0.195
0.216
0.143

0.590
0.580

0.723

0.60 0.80 189 0.039
0.088
0.073

0.873
0.868

0.942

Final Operating Characteristics
Sn = 0.95, Fn = 0.10
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pc pt
Mean

N
Futility

Max
& Win

PredSuc
& Win

Power

0.60 0.60 185 0.913
0.071
0.009

0.017
0.015

0.025

0.60 0.65 212 0.716
0.200
0.053

0.084
0.079

0.132

0.60 0.70 231 0.407
0.314
0.131

0.280
0.271

0.401

0.60 0.75 221 0.143
0.256
0.155

0.601
0.591

0.746

0.60 0.80 190 0.025
0.095
0.074

0.880
0.876

0.950

Final Operating Characteristics
Sn = 0.95, Fn = 0.05
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pc pt
B-A

Mean N
B-A

Power
F-Power

300
F-Power
BA Mean

0.60 0.60
175
185

0.024
0.025

0.025 0.025

0.60 0.65
199
212

0.12
0.13

0.14 0.11

0.60 0.70
220
231

0.38
0.40

0.44 0.34

0.60 0.75
216
221

0.72
0.75

0.79 0.66

0.60 0.80
189
190

0.94
0.95

0.969 0.86

Final Operating Characteristics
vs. Fixed Frequentist Trials
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Summary / Thoughts?
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Imagine

• Imagine investigators do a case-control study
• Identify cases

– Patients with hypertension

• Identify controls
– People without hypertension with the same 

demographics (age, gender, marital status)

• See statistically significant increase in blood 
pressure between cases & controls

• Would JAMA publish this paper? 
89



• They did: Bassler et al, March 23/31, 2010, 
V303, No12, 1180-1187.
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From Abstract Study Selection

“Selected studies were RCTs reported as having 
stopped early for benefit and matching 
nontruncated RCTs from systematic reviews. 
Independent re-viewers with medical content 
expertise, working blinded to trial results, 
judged the eligibility of the nontruncated RCTs 
based on their similarity to the truncated 
RCTs.”
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From Abstract Results

• Large differences in treatment effect size 
between truncated and nontruncated RCTs 
occurred …. 

• In 39 of the 63 questions (62%), the pooled 
effects of the nontruncated RCTs failed to 
demonstrate significant benefit. 
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Control Rate=    0.6000
Exper Rate =    0.7500

Accrual Rate (pts/month):  15.00
Number of Sims      5000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.0500

Mean      SD
Sample Size  217.45 59.78

Lose      Win
Success    0.009    0.639

Cap    0.083    0.152
Futility    0.116    0.000

Total    0.209    0.791

Look     Lose      Win    Total
150    0.044    0.260    0.304
175    0.017    0.100    0.117
200    0.012    0.086    0.098
225    0.016    0.068    0.084
250    0.018    0.067    0.085
275    0.019    0.057    0.076
300    0.083    0.152    0.235
Tot    0.209    0.791    1.000

• Previous example
• Truth is 15% benefit
• But 8.3% of time trial 

goes to maximum … 
and fails.

• The reason it goes to 
max is because data is 
ambiguous
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“To illustrate the issue, consider a clinical trial in which 
analysis is as follows: participants found to be 
performing better are retrospectively placed in the 
experimental group and participants found not to be 
performing well are retrospectively placed in the 
control group; a statistically significant difference in 
outcome is found when the groups are compared. It is 
clear that post-treatment selection of participants, 
based on their outcomes, would be responsible for any 
observed difference.”
“This is logically equivalent to the analysis reported by 
Bassler et al.”

S. Berry, Carlin, Connor
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Goodman, D. Berry, Wittes
“So comparing the truncated trials to the nontruncated 
trials is similar to comparing completed trials with 
large effects with those with lower effects. The 
difference the authors observed was both predictable 
and uninformative.”
“Bias is a property of study procedures; it is not 
logically applicable to a subset of results.”
Goodman SN. Systematic reviews are not biased by 
results from trials stopped early for benefit. J Clin
Epidemiol. 2008;61(1):95-96. 
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pt = 0.8 vs. pc = 0.6 
n=180 à 80% Power

• What is average effect size in the statistically 
significant trials?

• What is the average effect size in 1000 
simulated trials?
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pt = 0.8 vs. pc = 0.6 
n=180 à 80% Power

• What is average effect size in the statistically 
significant trials?

• What is the average effect size in 100,000 
simulated trials?
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pvalue <- NULL; effect <- NULL

for(i in 1:100000){
x.c <- rbinom(1, 90, 0.6)
x.t <- rbinom(1, 90, 0.8)
mat <- rbind(c(x.c, 90-x.c), c(x.t, 90-x.t))
test <- chisq.test(mat)
pvalue[i] <- test$p.value
effect[i] <- x.t/90 - x.c/90
print(i)
}

hist(effect, breaks=seq(-.2, .6, by=0.025))
par(new=T)
hist(effect[pvalue<0.05], breaks=seq(-.2, .6, by=0.025), col=2, main=" ", xlab=" 
", ylab= " " )

> mean(pvalue < 0.05)     ### CHECK power = 80%
[1] 0.80313
> mean(effect)            ### CHECK mean effect = 0.20
[1] 0.2003593
> 
> mean(effect[pvalue < 0.05])
[1] 0.2233924
> mean(effect[pvalue >= 0.05])
[1] 0.1063962
> 
> 0.80 * .2233924 + 0.20 * 0.1063962
[1] 0.1999932
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count <- 0
outcome <- matrix(nrow=8281, ncol=5)
for(xc in 0:90){
for(xt in 0:90){
count <- count + 1
prob.of.pair <- dbinom(xc, 90, 0.6) * dbinom(xt, 90, 0.8)

mat <- rbind(c(xc, 90-xc), c(xt, 90-xt))
test <- chisq.test(mat)
effect <- xt/90 - xc/90

outcome[count, ] <- c(xc, xt, prob.of.pair, test$p.value, effect)
print(c(xc, xt))

}}

outcome <- data.frame(outcome)
names(outcome) <- c("xc","xt","pr","pvalue","effect")

> sum(outcome$pr[outcome$pvalue < 0.05])
[1] 0.80168

> sum((outcome$effect * outcome$pr) [outcome$pvalue < 0.05]) / 
sum(outcome$pr[outcome$pvalue<0.05])
[1] 0.2231661

> sum((outcome$effect * outcome$pr) [outcome$pvalue > 0.05]) / 
sum(outcome$pr[outcome$pvalue>0.05])
[1] 0.1063544

99



100k sims 0.8 vs. 0.6, n=180
Histogram of effect
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100k sims 0.8 vs. 0.6, n=180
Histogram of effect
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failed trials

0.106
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Revisit Previous Example

• Binary outcome
• Adaptive trial from 150 to 300 patients
• Expected difference 60% vs. 80%
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Control Rate=    0.6000
Exper Rate =    0.6000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.1000

Mean      SD
Sample Size  176.31 44.02

Lose      Win
Success    0.002    0.019

Cap    0.041    0.009
Futility    0.929 0.000

Total    0.972    0.028

Look     Lose      Win    Total
150    0.634    0.006    0.640
175    0.103    0.004    0.107
200    0.073    0.003    0.076
225    0.047    0.003    0.050
250    0.042    0.002    0.044
275    0.033    0.001    0.034
300    0.041    0.009    0.050
Tot    0.972    0.028    1.000

Control Rate=    0.6000
Exper Rate =    0.8000

Accrual Rate (pts/month):  15.00
Number of Sims      1000

Minimum Sample Size      150
Maximum Sample Size      300

CV   0.0250
Cuts   0.9500   0.1000

Mean      SD
Sample Size  183.20 48.53

Lose      Win
Success    0.001    0.892

Cap    0.015    0.065
Futility    0.027    0.000

Total    0.043    0.957

Look     Lose      Win    Total
150    0.017    0.546    0.564
175    0.006    0.118    0.124
200    0.001    0.093    0.094
225    0.000    0.054    0.054
250    0.002    0.049    0.051
275    0.002    0.032    0.034
300    0.015    0.065    0.080
Tot    0.043    0.957    1.000
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Goldilocks Example
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Compare Distributions
1000 simulations from pt = 0.8, pc = 0.6

Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
Allow Stopping  0.034   0.172   0.208   0.212   0.253   0.453 

No Stopping  0.027   0.167   0.200   0.202   0.240   0.373 

1000 simulations from pt = 0.6, pc = 0.6
Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 

Allow Stopping -0.293  -0.057  -0.010  -0.014   0.032  0.224
No Stopping -0.173  -0.040   0.000   0.001   0.040  0.180 
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Another Example
• SHINE Trial

– Tight glycemic control in stroke
– Designed using 1*-look OBF
– Redesigned (NIH grant) using Bayesian adaptive 

trial
– Decided to execute using 5-look OBF
– Stored datasets for Bayesian re-evaluation

• Connor JT, Broglio KB, Durkalski V, Meurer WJ, and Johnston KC. The 
Stroke Hyperglycemia Insulin Network Effort (SHINE) Trial. An 
Adaptive Trial Design Case Study. Trials. March 2015, Vol 16, No 72.

– Final negative results just announced
• Bayesian re-analysis forthcoming
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Power & Average Sample Size;  Sn=0.99, Fn=0.01
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Power

0.003 0.010 0.024 0.059 0.13 0.23 0.38 0.53 0.68 0.81 0.90 0.95 0.98

0.001 0.007 0.020 0.053 0.11 0.21 0.36 0.51 0.66 0.80 0.89 0.95 0.98
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Power & Average Sample Size;  Sn=0.99, Fn=0.05
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901 955 1019 1093 1155 1212 1246 1258 1253 1226 1191 1150 1118

Power
0.003 0.008 0.023 0.058 0.12 0.22 0.35 0.51 0.65 0.79 0.88 0.94 0.97

0.001 0.007 0.020 0.053 0.11 0.21 0.36 0.51 0.66 0.80 0.89 0.95 0.98

Original Design

Bayesian Adaptive Design

w/o Longitudinal Model
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-0.02 0.00 0.02 0.04 0.06 0.08 0.10

Power & Average Sample Size;  Sn=0.99, Fn=0.05
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Sample Size
614 665 733 810 887 962 1017 1025 1016 979 915 845 773
901 955 1019 1093 1155 1212 1246 1258 1253 1226 1191 1150 1118

Power
0.003 0.008 0.023 0.058 0.12 0.22 0.35 0.51 0.65 0.79 0.88 0.94 0.97
0.001 0.007 0.020 0.053 0.11 0.21 0.36 0.51 0.66 0.80 0.89 0.95 0.98

1-Futility, 1-Success OBF

Bayesian Adaptive Design

OBF-10 looks
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Combining Features
• Frequentist design uses 5 OBFs looks

– Well understood

• Added blind sample size re-estimation prior 
to first OBF interim analysis
– Well understood, Gould & Shih Stats in Med 1998
– Pc = 0.25 vs. Pt = 0.32 Power = 0.83
– Pc = 0.46 vs. Pt = 0.53 Power = 0.75
– Increase sample size if pooled rate > 31%

• What happens if there is a big effect?
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Be Careful Combining Features

• Large effect size à High pooled rate
– 30% vs. 50% (but analysis is unblinded, observe 40%)

• High pooled rate à Increase in sample size
– From 1400 to 1650

• Increase in sample size à Delay 1st interim look
– From 700 with data to 825 with data
– About 4 months

• Delay 1st interim look à Delay early stopping

• UNDERSTAND effects of combining features
• SIMULATE trials
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Summary
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Lessons
• Ensure minimum sample size will suffice

– Not just statistical, but impactful
– Company did a continue access protocol to get 

more patients during review, leading to panel
• Ensure data isn’t coded optimistically
• Ensure inclusion / exclusion criteria 

rigorously followed
• Goldilocks trials gets the size ‘just right’ but 

that means you can be close to ‘just wrong’ if 
some data changes post hoc
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