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NOT TOO BIG, NOT TOO SMALL: A GOLDILOCKS
APPROACH TO SAMPLE SIZE SELECTION

Kristine R. Broglio1, Jason T. Connor1,2, and Scott M. Berry1

1Berry Consultants, LLC, Austin, Texas, USA
2University of Central Florida, Orlando, Florida, USA

We present a Bayesian adaptive design for a confirmatory trial to select a trial’s sample size
based on accumulating data. During accrual, frequent sample size selection analyses are
made and predictive probabilities are used to determine whether the current sample size is
sufficient or whether continuing accrual would be futile. The algorithm explicitly accounts
for complete follow-up of all patients before the primary analysis is conducted. We refer to
this as a Goldilocks trial design, as it is constantly asking the question, “Is the sample size
too big, too small, or just right?” We describe the adaptive sample size algorithm, describe
how the design parameters should be chosen, and show examples for dichotomous and time-
to-event endpoints.

Key Words: Bayesian adaptive trial design; Predictive probabilities; Sample size; Sequential design.

1. INTRODUCTION

A typical sample size calculation for a randomized clinical trial involves a statement
of the number of patients required to achieve a desired level of power. This calculation is
made conditional on an assumed control or placebo rate, a treatment effect, and a partic-
ular type I error rate. The assumed control rate may have been carefully derived from the
literature, other similar trials, or even preliminary data. The treatment effect is similarly
estimated, although frequently there are no published data and less preliminary data.

However, after the trial has been conducted and the data are analyzed, planned power
is relatively unimportant. The actual observed treatment effect is principle. At this point
either a trial has or has not achieved its objective. If the results are highly statistically
significant, then the trial may have used too many resources, taken too long, and delayed
conveying important information to clinicians and patients. If the results are not clinically
convincing or close to statistically significant, then the last patients enrolled in the trial
offered little towards providing the final evidence to achieve the trial’s goal and also could
have been saved (Berry, 2004).

Thus, it is very desirable during the conduct of a trial to have planned interim analy-
ses of the accumulating data such that, if the treatment effect is large and a superiority claim
is highly likely, or conversely, if the treatment effect is non-existent and futility is nearly
certain, the trial can be stopped early. Group sequential techniques are widely used for this
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686 BROGLIO ET AL.

purpose (FDA, 2010). However, these methods have been criticized for being too conser-
vative and stopping only when results are extreme (Berry, 2004). In addition, if accrual is
rapid relative to when the primary endpoint is observed, accrual may be complete before
enough information has accumulated for the first planned interim analysis. In this case, trial
time may be saved, but not patient resources.

We present an alternative sequential design, a Bayesian adaptive sample size algo-
rithm for a confirmatory (Phase III) trial to select a trial’s sample size based on accumulat-
ing data. This design allows not just for early stopping of the trial, but for early stopping of
accrual, and explicitly accounts for complete follow-up of all enrolled patients. Minimum
and maximum sample sizes are prespecified, and frequent sample size selection analyses
are made using predictive probabilities to determine whether the current sample size, if
allowed to complete follow-up, is sufficient for superiority or whether continuing accrual
would be futile. We refer to this as a Goldilocks design. We describe the Goldilocks adap-
tive sample size algorithm and show example designs for both binary and time to event
endpoints, though the method may be generalized to any analysis of any endpoint or even
multiple endpoints.

2. GOLDILOCKS ADAPTIVE SAMPLE SIZE ALGORITHM

Predictive probabilities have a simple interpretation that is easily communicated to
clinicians, chiefly the chance of trial success if the trial continues (Dmitrienko, 2006) and
as such are both natural and useful in interim assessments of ongoing clinical trials (Berry,
2004). Early stopping of clinical trials based on predictive probability calculations, par-
ticularly in the case of futility, has been described elsewhere (Berry, 1989; Choi, 1989;
Dmitrienko, 2006; Herson, 1979; Julian, 2008; Kelly, 2012; Saville, in press; Spiegelhalter,
1986). In brief, for early futility stopping, the idea is to determine the probability of trial
success at the final analysis if the trial were to continue to the prespecified maximum sam-
ple size. If this probability is low, the trial is stopped early for futility. The final analysis
may be either a standard frequentist test or may be a fully Bayesian analysis. The predic-
tive probability calculation includes two sources of variability: the natural variability in the
data that has not yet been observed and the variability around the estimate of the treatment
effect. Predictive probabilities average the trial’s probability of success over the posterior
distribution of the treatment effect, thus considering the knowledge of the treatment effect
that has amassed and also formally accounting for the uncertainty around the treatment
effect (Berry, 2004; Choi, 1989; Spiegelhalter, 1986).

The Goldilocks design allows not just for early futility stopping but also for early
stopping for predicted success. The adaptive algorithm applies only during the accrual
phase of the trial and so is distinct in that it is not necessarily a method for interim moni-
toring, but is a method for selecting a trial’s sample size. Our Goldilocks adaptive sample
size algorithm is based on two predictive probabilities, the predictive probability of trial
success at the current sample size, Pn, if the trial were to stop accrual immediately and
all enrolled patients were allowed to complete follow-up, and the predictive probability of
trial success should the trial continue to the maximum sample size, Pmax. The minimum
and maximum sample size, the frequency of sample size selection analyses, the criteria for
stopping accrual early for success stopping (Sn), and criteria for stopping the trial early
for futility (Fn) are prespecified parameters. The trial’s actual sample size is selected by
comparing the two predictive probabilities to the early stopping thresholds. Pn is compared
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BAYESIAN ADAPTIVE SAMPLE SIZE 687

to Sn and Pmax is compared to Fn. Sn and Fn may be constants or may be allowed to vary
across the course of the trial.

At each sample size selection analysis with n patients, if the predictive probability
of trial success with the currently enrolled patients, Pn, is greater than the criteria for early
success stopping, Sn,

Pn > Sn,

then the current sample size is considered highly probable to achieve success at the primary
efficacy analysis. Accrual is stopped early at the current sample size, all patients are allowed
to complete follow-up, and the primary efficacy analysis is conducted on those n patients.
For instance if Sn is chosen to be 0.90, then stopping accrual at n patients is the equivalent
of using a trial’s early data to power the study at 90% rather than relying on pilot data,
expert opinion, and optimism.

If the predictive probability of success at the maximum sample size, Pmax, is lower
than the criteria for early futility stopping, Fn,

Pmax < Fn,

the trial is stopped early for futility. The logic here is that we should stop the trial imme-
diately if expending the rest of the available resources (enrolling additional patients and
additional follow-up for enrolled patients) is unlikely to produce a trial that achieves its
primary aim. Otherwise, if neither early success nor futility criteria are satisfied, accrual
continues and additional information is gathered for the next sample size selection analysis.

Accrual should not be paused for the sample size selection analyses; therefore, if a
bound is crossed, there may be slightly more than n patients in the trial when accrual is
stopped. Furthermore, the Data Safety Monitoring Board (DSMB) need not meet for each
sample size selection analysis. Rather, this information should be conveyed to either the
DSMB or another unblinded party with the authority to stop accrual.

While there are many sample size selection analyses, we emphasize there is a sin-
gle final analysis of the primary endpoint. And thus, we also emphasize the difference
between stopping accrual early in the case of predicted success and stopping the trial early
in the case of futility. If accrual stops early for predicted success or if the trial continues
to the maximum sample size, the primary analysis is conducted when all enrolled patients
have completed follow-up for the primary endpoint. In the dichotomous endpoint case,
this is when all patients have been assessed for the primary endpoint. In the time to event
(TTE) case, there is a specified period of follow-up after accrual is complete, for example,
6 months or 1 year, thus ensuring that each patient either produces a minimum amount of
exposure or experiences an event, and the primary analysis is conducted at the completion
of this follow-up period. Thus, we may stop accrual early based on the strength of early
evidence, which is allowed to develop with complete follow-up of the currently enrolled
patients. In the case of futility, the trial is stopped, meaning that both accrual is halted and
patients are no longer followed. This information would be conveyed to investigators, and
patients would be expected to cross to a therapy that has an expectation of benefit.

At each sample size selection analysis, there will be patients with complete infor-
mation (i.e., those for whom the primary endpoint is known) and more recently enrolled
patients with incomplete information (i.e., those for whom the primary endpoint is not yet
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688 BROGLIO ET AL.

available). We use patients with complete information (and partial information in the time-
to-event case) to predict the outcomes for patients with incomplete information. We use
Bayesian models that learn from the accruing information on the primary endpoint. Thus,
there is more uncertainty around the predictions early in the trial than later in the trial
when more primary endpoint data has been amassed. For example, when calculating Pmax

at early analyses, there may be fewer patients offering complete data than there are out-
standing patients, whereas at later analyses the majority of enrolled patients may offer
complete data and therefore more observed data are being used to predict outcomes for the
few outstanding patients.

In this setting, accrual rate and the time required to observe the primary endpoint are
important design elements. This adaptive design will function best when accrual of patients
is slower relative to observing the primary endpoint. At an extreme, if accrual is very fast
and time to the primary endpoint is very long, there could be no primary endpoint informa-
tion available at each sample size selection analysis, and thus a large amount of uncertainty
will remain in the predictive probability calculations, hindering the ability of the algorithm
to make the sample size selection decisions. As time to the primary endpoint grows shorter
and the ratio of available data to data to be predicted grows larger, Pn will converge to
either 0 or 1. Because there is little to no outstanding data, the predictive probability of
trial success with the current sample size either does or does not achieve its prespecified
goal. Thus, if the primary endpoint is known nearly instantly, such as within hours or days,
early success monitoring could be based on posterior probabilities while futility monitoring
remains based on predictive probabilities.

3. DICHOTOMOUS ENDPOINT

As an example, imagine a two-arm blinded randomized controlled clinical trial with
a dichotomous endpoint observed at 60 days. A traditional chi-squared test will be used to
compare groups.

3.1. Beta-Binomial Model

In this section we refer to the dichotomous endpoint generically as success or failure.
We assume the probability of success, θ j, has a Beta prior distribution:

[
θj

] ∼ Beta (α, β) ,

where j = c is the control arm and j = e is the experimental arm. At each sample size selec-
tion analysis the number of observed successes, xj, among the currently enrolled patients,
nj, follows a binomial distribution:

[
xj

] ∼ Binomial
(
nj, θj

)
.

We update the prior distribution with the currently observed data (xj, nj) and the resulting
posterior distribution (Gelman, 2003) is

[
θj|xj, nj

] ∼ Beta
(
α + xj, β + nj − xj

)
.
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BAYESIAN ADAPTIVE SAMPLE SIZE 689

Here, we assign the same vague prior to both the control and experimental group,
Beta(α,β). Informative priors could be selected and/or the priors could be allowed to
be different for the two arms. The prior is used, along with accumulating data from the
trial, only to predict outstanding data. The chi-squared test is used to compare groups
at the end of the trial. Therefore, using different priors for the control and experimen-
tal groups will only affect when to terminate accrual and not the primary analysis. If the
prior is skeptical (e.g., the treatment will perform more poorly than the control) the pre-
dictive probability of success will be lower and the trial will be less likely to stop early
for predicted success. More overwhelmingly positive data will be necessary to stop the
trial. Likewise, if an optimistic prior is used (e.g., the treatment will perform better than
the control) then the trial may stop accrual for predicted success too easily and the final
result will not reach statistical significance. This is equivalent to a fixed trial with an overly
optimistic treatment effect chosen during the design stage—the actual power is lower than
anticipated.

Determining the prior is analogous to estimating the control rates and treatment
effects in the design stage of any standard trial. Only in this design, we apply more vari-
ability than point estimates of the control rates and treatment effects and allow our prior
beliefs to be updated by accumulating information from within the trial.

3.2. Predictive Probability of Success at Current Sample Size

Predictive probabilities of trial success are calculated using two beta-binomial distri-
butions, one for the control group and one for the experimental group. Groups are modeled
independently.

At each sample size selection analysis with a total of nj patients enrolled, the number
of patients with a known outcome and who have achieved success is xj and the number with
a known outcome who have not achieved success is zj. The number of currently enrolled
patients with an unknown outcome is n∗

j. Thus, nj = xj + zj + n∗
j. Among the n∗

j patients,
we denote x∗

j as the number who will ultimately achieve success. x∗
j is a random variable

distributed beta-binomial,

x∗
j|xj, zj,n

∗
j ∼ Beta − binomial(n∗

j, α + xj, β + zj).

Each possible value of x∗
j has an associated probability, Pr(x∗

j), based upon the beta-
binomial distribution described already and given the observed xj and zj. Likewise, every
pair of data (xC + x∗

C, xE + x∗
E) can be applied to the chi-squared test to see whether it

achieves or fails to achieve the prespecified critical value for the hypothesis test.
The predictive probability of success at the current sample size, n, is then

Pn =
n∗

E∑

x∗
E=0

n∗
C∑

x∗
C=0

I
(
x∗

E, x∗
C

)
Pr

(
x∗

E

)
Pr

(
x∗

C

)
,

where I(x∗
E, x∗

C) is an indicator function that equals 1 for values of x∗
E and x∗

C that would
result in trial success (the chi-squared test producing a p-value below the critical value) and
equals 0 for values of x∗

E and x∗
C that would result in trial failure.
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690 BROGLIO ET AL.

3.3. Predictive Probability of Success at the Maximum Sample Size

For the predictive probability of success at the maximum sample size, we perform
a similar calculation as described already, but now assume the trial will continue to the
maximum sample size. This requires calculation of the predictive distribution including
patients who are not yet enrolled. Hence, in

x∗
j|xj, zj,n

∗
j ∼ Beta − binomial(n∗

j, α + xj, β + zj),

n∗
j is updated to include both patients who are enrolled but have not yet provided complete

outcomes and the Nmax/2 – nj patients who are yet to be enrolled to group j.
This calculation then proceeds as described earlier. We denote Pmax as the predictive

probability of trial success if the trial continues to the maximum sample size.

4. TIME-TO-EVENT ENDPOINT

We can also apply this design to a trial with a time-to-event endpoint. The final anal-
ysis could be a log-rank test, a Cox proportional hazards model, or a fully Bayesian model
where the posterior distributions of the hazard rates are compared between groups. Let us
assume a Cox proportional hazard model is prespecified with the inference on the hazard
ratio for treatment.

4.1. Gamma Exponential Model

At each sample size selection analysis currently enrolled subjects who have experi-
enced the event of interest contribute complete information to the Cox model that will be
used in the final analysis. Enrolled patients who have not yet experienced the event of inter-
est contribute exposure time to the Cox model; however, whether and when these patients
will experience an event remains uncertain. Therefore, we calculate a predictive distribution
for each patient’s future event time using simulation.

We assume exponential survival times and that the hazard rate on each arm λj has a
Gamma prior distribution:

λj ∼ �(α, β),

where α represents the prior number of events and β the prior exposure time in group j.
Therefore, α/β is the prior mean for the rate, λj.

At each sample size selection analysis with nj enrolled patients in group j, the total
number of observed events is EVj and the total observed exposure time is EXPj per group,
assuming each patient i in group j offers EXPi,j exposure. We update the prior distribu-
tion with the currently observed data (EVj, EXPj) and the resulting posterior distribution
(Gelman, 2003) is

λj ∼ �(α + EVj,β + EXPj).
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BAYESIAN ADAPTIVE SAMPLE SIZE 691

4.2. Predictive Probability of Success at Current Sample Size

The predictive probabilities of trial success in the TTE case are calculated using
Monte Carlo integration. For the predictive probability of trial success at the current sample
size, we assume accrual is stopped and the primary analysis is conducted after completion
of a prespecified amount of follow-up.

A single hazard rate, λj, is sampled from the posterior distribution. For each patient
who has not yet experienced an event, we sample an event time from an exponential
distribution with mean equal to the sampled hazard rate,

TTEi,j ∼ Exponential(λj).

Total trial duration is the accrual period plus a follow-up period. Assuming accrual is
stopped at the current sample size, all enrolled patients have the same remaining follow-
up period, for example, 6 months. If the sampled event time occurs before the end of this
follow-up, the event is considered observed at TTEi,j. For each patient i with a simulated
observed event, his or her exposure time is EXPi,j + TTEi,j. Otherwise, the patient is con-
sidered censored at the end of the trial, so his or her additional exposure time is EXPi,j +
follow-up (e.g., 6 months).

The final Cox proportional hazard analysis is conducted on the simulated complete
data set, and success or failure, as determined, for example, by comparing the p-value for
the treatment’s hazard ratio to 0.05, is recorded. This process is repeated 100,000 times, and
the proportion of simulations in which trial success is achieved is the predictive probability
of trial success at the current sample size, Pn.

4.3. Predictive Probability of Success at the Maximum Sample Size

For the predictive probability of success at the maximum sample size, Pmax, we
additionally consider accrual of each of the future patients to be enrolled to achieve the
maximum sample size. This scenario has the added complexity that if follow-up is a fixed
amount of time after the final patient is enrolled, then each patient yet to be accrued has a
different follow-up time. We assume an accrual rate for the future patients. This assump-
tion would be prespecified and could be, for example, the average of the accrual rate for
the trial, or the average accrual rate in the last 6 months. The total trial duration is the
total accrual time plus the follow-up period. Accrual times of future patients are simulated
from a Poisson process using the assumed accrual rate. Event times for future patients are
simulated as already described. If the event occurs before the end of the study, the event
is considered observed. Otherwise, the patient is considered censored at the end of the
trial. The final Cox proportional hazard analysis is conducted with the complete data set.
This is repeated 100,000 times and the proportion of simulations that result in trial success
represents the predictive probability of trial success at the maximum sample size, Pmax.

5. SAMPLE SIZE CONSIDERATIONS

Our Goldilocks trial design requires prespecification of several parameters, including
the minimum and maximum sample size; early stopping probabilities; number, frequency,
and timing of the sample size selection analyses; and in the TTE case the minimum follow-
up period after the final patient is enrolled. All these design parameters work in concert
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692 BROGLIO ET AL.

with each other and must be tuned to optimize the design’s performance. In addition, as
with traditional group sequential methods, the alpha level of the final analysis may need to
be adjusted to accommodate the sample size selection analyses and preserve the trial’s over-
all type I error rate. Thus, each Goldilocks trial design requires extensive trial simulation
under multiple null hypothesis scenarios, where there is no difference between treatment
and control, and under various alternative hypothesis scenarios, where there are varying
treatment effects.

The minimum sample size can be chosen clinically, as the minimum number of
patients the trial team or key stakeholders would be comfortable with before making a
decision to stop the trial or the minimum number of patients needed for a safety assess-
ment. Through simulation, if the trial appears highly unlikely to stop at the first sample
size selection analysis because of little accumulated primary endpoint information and
large uncertainty around the treatment effect, the minimum sample size may be increased.
Reducing the number of sample size selection analyses may allow for a higher alpha level
at the final analysis.

The maximum sample size can be chosen financially or operationally, as the maxi-
mum number of patients that the sponsor can afford, that can be reasonably enrolled in a
certain period of time, or, more ideally, chosen statistically as the sample size that provides
an adequate probability of success for the expected treatment effect. The first choice for
the maximum sample size may be that from a standard sample size calculation assuming a
fixed trial design. The suitability of the maximum sample size can be assessed by simula-
tion. If simulation results of the alternative hypothesis scenarios show a high probability of
success and a high probability of stopping accrual early, the maximum sample size can be
decreased. Alternatively, if simulations show the trial most certainly continuing to the max-
imum sample size and having an insufficient probability of success, the maximum sample
size should be increased.

Early stopping thresholds, Sn and Fn, are typically selected within certain ranges. For
example Sn is typically 80–99% and Fn is typically 2.5–20%. Sn and Fn may be held con-
stant throughout the trial, or may vary by sample size selection analysis such that a higher
threshold of certainty is required for stopping at smaller sample sizes and this is lowered
later in the trial when more data has accrued. These values are tuned by considering several
different simulation results. First, if the simulated trials are rarely stopping for futility in
the null hypothesis scenario then Fn should be increased, or if simulated trials are rarely
stopping accrual early for predicted success in optimistic alternative hypothesis scenarios
then Sn should be decreased, making it easier to stop early. Second, in the case of stopping
accrual early for success, if simulated trials that stop accrual early for success are failing
to be successful at the final analysis, the Sn criterion should be increased. In the case of
stopping early for futility, if simulated trials that stop early would have been successful
had they been allowed to continue to the maximum sample size, the Fn criterion should be
decreased. Some futility stopping under the alternative hypothesis is expected. For exam-
ple, in a standard trial with standard type II errors of 10–20% it is better to have the negative
trial stop sooner (via futility stopping) than later (at the maximum sample size).

Finally, the frequency of sample size selection analyses must be defined by either the
number of patients enrolled, after every 50 patients are enrolled, for example, or by calendar
time, every 4 weeks, for example. The frequency of the sample size selection analyses is
tied to the accrual rate and is, in part, an operational decision, but should be conducted
as often as feasible. Sample size selection analyses require only the primary endpoint data
elements, so conducting these analyses is a much more streamlined process as compared to
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BAYESIAN ADAPTIVE SAMPLE SIZE 693

a comprehensive interim safety analyses that may be conducted for a DSMB. Many sample
size selection analyses will increase the trial’s ability to respond to accruing data, but will
also slightly increase the probability of a type I error.

Trial results can be categorized as (1) stopping for predicted success and achieving
success at the final analysis, (2) stopping for predicted success and not achieving success
at the final analysis, (3) stopping early for futility, (4) continuing to the maximum sample
size and achieving success, and (5) continuing to the maximum sample size and not achiev-
ing success. Under the null hypothesis, type I error will be the sum of the probability of
stopping early for predicted success and achieving success and continuing to the maximum
sample size and achieving success. Under the alternative hypothesis, this sum is the trial’s
power. For all but the simplest, typically dichotomous, cases, simulation is necessary to
calculate the operating characteristics, including the overall type I error rate, of the trial.

The null hypothesis is that the control rate is equal to the treatment rate and the null
space is completely defined by this treatment effect, the control rate, and the accrual rate.
Type I error should be controlled across the entire null space and therefore across the ranges
of all reasonably likely control rates and accrual rates. Because type I error is simulation
based, it is also important to perform tens of thousands of simulations of each null scenario
to reduce simulation error in these calculations.

The type I error rate should be extensively explored in the simulation process and
trade-offs between parameters evaluated in order to control type I error at the desired level,
such as less than 5%. As the number of sample size selection analyses increases, the alpha
level at the final analysis may also need to be more stringent. With a high hurdle for success
at the final analysis, it will be more difficult to stop accrual early for success and more likely
to predict futility, so Sn and Fn may need to be relaxed to achieve desirable results.

6. EXAMPLE TRIAL: GENESEARCH BREAST LYMPH NODE ASSAY

Julian et al. (2008) provide an example of a Goldilocks trial design with a
dichotomous endpoint. This was a single-arm study of the GeneSearch Breast Lymph Node
(BLN) Assay for patients with breast cancer undergoing sentinel lymph node (SLN) biopsy.
The primary objective of the study was to characterize the test’s sensitivity and specificity.
The gold standard was histologic evaluation. A positive/negative result for metastasis in the
SLN was available intraoperatively. Because of the immediate nature of the primary end-
point, this trial used posterior probabilities for monitoring of success at the current sample
size and predictive probabilities for monitoring of futility at the maximum sample size.

Sample size selection analyses were planned starting when 200 patients were enrolled
and after every additional 50 patients. The predictive probability of trial success is based
upon achieving success for two endpoints. Because data availability was essentially imme-
diate, the trial would stop early for success if, based on the posterior distributions of the
sensitivity (π1) and specificity (π0),

Pr(π1 > 0.70 | Data) ≥ 0.985 and Pr(π0 > 0.90 | Data) ≥ 0.985.

The trial would stop early for futility if the predictive probability of trial success at the
maximum sample size of 700 patients was less than 5% (Fn). Simulation of the trial design
showed that these criteria controlled the trial’s overall type I error rate to less than 5%.
R code (R Core Development Team, 2011) to simulate this trial design is provided in the
appendix.
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694 BROGLIO ET AL.

Accrual was stopped early for success after 416 patients had been enrolled. The final
observed sensitivity was 87.6% (95% confidence Interval = 80.4%, 92.9%), and the final
observed specificity was 94.2% (95% confidence Interval = 90.9%, 96.6).

7. EXAMPLE TRIAL: TIME TO EVENT IN ONCOLOGY

This is a generic example of a Goldilocks trial design with a time-to-event endpoint.
The setting is a two-arm randomized trial in oncology where patients are equally allocated
to either a control or a treatment arm. The primary endpoint is overall survival (OS) mea-
sured from the date of randomization to the date of death from any cause or last follow-up.
The expected OS rate at 1 year for the control arm is 30%. The minimum sample size is
100 and the maximum sample size is 300. The follow-up period after accrual is complete is
1 year. Thus, if accrual is stopped early for predicted success or the trial continues accrual
to the maximum sample size of 300 patients, the primary analysis of OS will be conducted
after an additional 1 year of follow-up for all patients.

Design parameters were selected through the process of simulating and examining
the trial’s operating characteristics as described above. Sample size selection analyses are
planned starting when 100 patients are enrolled and after every additional 25 patients are
enrolled. Early stopping for futility is allowed starting with the 100 patient sample size
selection analysis and Fn is 10%. Stopping accrual early for predicted success is only
allowed starting with the 200 patient sample size selection analysis and Sn is 90%. Based
on the simulation of the type I error, in order to control the overall one-sided type I error at
2.5% considering 1-year OS rates for the control arm from 10% to 50% and accrual rates
in the range of 5 to 10 patients per month, the final analysis of OS is based on a one-sided
log-rank test at the α = 0.022 level.

Table 1 shows selected operating characteristics of this trial including the average
sample size, probabilities of early stopping, and probability of trial success under varying
assumptions of the hazard ratio (HR). Results assume OS at one year is 30% for the control
arm and that patients are accrued at the rate of 5 per month. Type I error is demonstrated
by the probability of a successful trial when there is no difference between the arms, when
the HR is 1.0. In this scenario, the probability of trial success is 0.023, and the trial stops
early for futility with 0.93 probability. The mean sample size is 153, indicating the trial is
likely to stop between the 100 and 200 patient sample size selection analyses. Trial power is

Table 1 Example operating characteristics assuming accrual of 5 patients per month

Control 1-year Treatment 1-year Hazard Mean (SD) Stop for Stop for Stop for
survival survival ratio sample size futility max N pred succ Probability of success

0.30 0.30 1.00 152.8 0.93 0.06 0.02 0.023
(62.1) (0.002)

0.30 0.38 0.80 215.4 0.46 0.26 0.29 0.39
(70.4) (0.018)

0.30 0.43 0.70 223.8 0.18 0.20 0.62 0.75
(54.5) (0.016)

0.30 0.49 0.60 209.5 0.04 0.05 0.91 0.95
(32.3) (0.005)

Note. Parenthetical values below proportion of trials that stop for predicted success (pred succ) are the values
that then fail to reach statistical significance at the final analysis.
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BAYESIAN ADAPTIVE SAMPLE SIZE 695

Table 2 Example operating characteristics assuming accrual of 10 patients per month

Control 1-year Treatment 1-year Hazard Mean (SD) Stop for Stop for Stop for
survival survival ratio sample size futility max N pred succ Probability of success

0.30 0.30 1.00 167.2 0.88 0.10 0.02 0.024
(68.8) (0.006)

0.30 0.38 0.80 223.5 0.44 0.34 0.22 0.35
(73,1) (0.025)

0.30 0.43 0.70 230.8 0.20 0.29 0.51 0.70
(60.4) (0.023)

0.30 0.49 0.60 219.7 0.06 0.11 0.83 0.93
(41.9) (0.007)

Note. Parenthetical values below proportion of trials that stop for predicted success (pred succ) are the values
that then fail to reach statistical significance at the final analysis.

demonstrated by probability of success in scenarios where the HR is less than 1. As the HR
decreases, the trial is able to stop for predicted success more frequently and the probability
of a successful trial increases.

Accrual rate is an important element in these trial designs. When events are observed
only after some follow-up time has elapsed, slower accrual allows for more information
available at each sample size selection analysis. Table 2 shows the operating characteristics
assuming an accrual rate of 10 patients per month. The fast accrual results in a decreased
ability to stop accrual early and thus higher mean sample sizes. As accrual becomes more
rapid, the total exposure time and number of observed events will decrease, so the trial also
has a decreased probability of success. We also report the proportion of trials that stop for
predicted success and fail to reach statistical significance. The probability of stopping for
predicted success but failing the primary analysis when the HR is 0.6 is 0.5% when accrual
is 5 patients per month and 0.7% when accrual is 10 patients per month.

Figure 1 shows the probability of trial success (left panel) and the mean sample size
(right panel) for this example Goldilocks design and a traditional group sequential design.
For the traditional group sequential design we used the gamma family spending function
with a parameter value of –4 for both the upper and lower bounds. For comparison pur-
poses, we assumed a maximum sample size of 300 patients, 95% power, a one-sided type
I error rate of 2.5%, and the same number of interim analyses, though we equally spaced
them across the expected information. This group sequential design required a maximum
of 203 events. The required one-sided p-value at the final analysis is 0.0199.

The Goldilocks design tends to have a higher probability of success as compared to
the traditional group sequential design (Fig. 1, left panel). By design, both have a 95%
probability of success when the true HR is 0.60 and no greater than a 2.5% probability of
success when the true HR is 1. For more moderate hazard ratios, the Goldilocks design has
approximately 5–10% higher probability of success.

At the accrual rate of 5 patients per month, the Goldilocks design does tend to have
larger mean sample sizes for the more moderate hazard ratios, the trade-off for a high
probability of success. At the accrual rate of 10 patients per month, the Goldilocks design
achieves a higher probability of success for the more moderate hazard ratios than does
the traditional group sequential design at a lower sample size. The Goldilocks design is
based on of the number of patients accrued rather than the number of events observed.
As accrual becomes faster relative to observed events, the Goldilocks design is able to stop
accrual for predicted success and continue follow-up of patients in order to observe the
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Figure 1 Probability of trial success (left) and mean sample size (right) for the Goldilocks TTE example and a tra-
ditional group sequential design. Solid lines are the Goldilocks design and dashed lines are the traditional design.
Circles represent an accrual rate of 5 patients per month, and triangles represent an accrual rate of 10 patients per
month.

necessary number of events, whereas the traditional group sequential design is only able
to stop accrual once the necessary events have been observed. In some settings, with a
traditional group sequential design, accrual could be complete before enough events have
been observed to stop a trial early.

We also use this example to illustrate how the accrual rate and the follow-up time
affects type I error. Table 3 shows type I error for 4 accrual rates (2, 5, 8, and 15 patients
per month) and 4 follow-up times (1, 6, 12, and 24 months) assuming 1 year OS in both
arms is 30%. These are based on 10,000 simulations per scenario. The standard error due
to simulation is 0.0016 (∼0.16%). Slower accrual rates and shorter follow-up times after
the end of accrual spend more type I error rate. The less outstanding data (patients with
unobserved events), the more certain are the predictions; therefore, random highs lead-
ing to accrual stopping will be less likely to regress to the mean. However, with longer
follow-up times there is more time for regression to the mean and random highs are no

Table 3 Type 1 error rates by accrual rate and follow-up time, assuming 1 year OS of 30% for control and
treatment

Follow-up time after last patient enrolled (months)
Accrual rate,
patients/month 1 6 12 24

2 0.032 0.028 0.025 0.023
5 0.029 0.025 0.023 0.022
8 0.028 0.022 0.022 0.019
15 0.026 0.022 0.020 0.018
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BAYESIAN ADAPTIVE SAMPLE SIZE 697

longer statistically significant at the end of follow-up. If accrual is expected to be slow,
then a greater type I error adjustment would be necessary. Here even with slow accrual
(unfeasibly slow in that the trial could take 12.5 years with 2-patient-per-month accrual)
the type I error is controlled for 12-month follow-up, the actual follow-up in this trial.

8. CONCLUSIONS

We present a Bayesian adaptive sample size algorithm, a Goldilocks trial design,
for optimizing the sample size of a Phase III or confirmatory trial within a prespecified
range. We show models and examples for dichotomous and time-to-event endpoints, though
the algorithm applies more generally and can be used regardless of the primary efficacy
analysis. We focused on superiority trials, though the algorithm extends to noninferiority
trials as well.

The Goldilocks design is a sequential design that offers many advantages. It is ideal
for responding to accumulating data during accrual, especially in settings where there is a
small to moderate delay between enrolling patients and observing their primary outcome,
and this design has been successfully implemented in several settings in all three branches
of the Food and Drug Administration (FDA), CDER (White, 2012), CBER (Oncolytics
Biotech, n.d.), and CDRH (AtriCure, n.d.; Jullian, 2008; Wilbur, 2010), as well as by the
National Cancer Institute (NCI)-sponsored CALGB (Muss 2009). It has been the design
used leading to multiple device approvals, including but not limited to AtriCure (n.d.),
Julian (2008), and Wilbur (2010). While the Goldilocks design shares some of the same
ideals as a group sequential design, there are some important differences. Interim analyses
in the Goldilocks design are based on the number of patients enrolled rather than the amount
of observed information, and complete follow-up of all enrolled patients is an explicit part
of the design. While a group sequential design would stop immediately upon crossing a
success bound, the Goldilocks design would stop accrual but allow for complete follow-up
of all patients. Thus, with a group sequential design, the last patient enrolled might con-
tribute very little to the inference. Furthermore, with a traditional group sequential design,
it may not be straightforward or prespecified how to analyze and report the trial results once
all enrolled patients have completed their assigned treatment and follow-up. Hampson and
Jennison (2013) illustrate a case of using group sequential design with delayed responses.
In the Goldilocks design, each patient enrolled contributes fully, by design and in a pre-
specified manner, to the statistical inference. Allowing for complete follow-up means that,
under the alternative hypothesis, the mean sample size may be smaller. Under the null, even
if the early data were promising enough to stop accrual early, we would expect regression
to mean during follow-up and to not attain success at the final analysis, thus preventing
a type I error. As such, less type I error is spent at each sample size selection analysis.
Results need not already be highly convincing for success (or futility) in order to stop the
trial early—only that the early data suggest a treatment effect such that, if the trend were
allowed to play out, we are convinced that success (or futility) would be declared.

Furthermore, the Goldilocks design is incredibly flexible. Any endpoint and any final
analysis, Bayesian or frequentist, can be accommodated. The early stopping values of Sn

and Fn can be calibrated to be more or less conservative. A natural extension of the design
described here is to incorporate earlier measures of the primary endpoint into the predictive
probability calculations. This improves the predictive ability of the algorithm and extends
the design’s usefulness into settings where the primary endpoint may be more long term.

D
ow

nl
oa

de
d 

by
 [

Sc
ot

t B
er

ry
] 

at
 1

1:
18

 2
2 

A
pr

il 
20

14
 



698 BROGLIO ET AL.

Unlike group sequential methods that consider endpoints individually, the predictive prob-
ability calculations can be extended to accommodate multiple endpoints, as was done in
Julian (2008). The vast majority of regulatory endpoints are binary and time to event, so
we do not present the continuous case. The design is generalizable to the continuous case
with appropriate specification of the prior and the posterior distributions for continuous
variables.

For any particular clinical trial, there is tremendous flexibility in applying the
Goldilocks design, as well as a large number of well-understood group sequential alter-
natives. Our time-to-event example includes a comparison to a traditional group sequential
trial. However, in our experience, the Goldilocks design will incorporate more frequent
interim analyses than is typically for a group sequential design, particularly because less
type I error may be spent at each interim analysis. When there are only two or three planned
interim analyses, a traditional group sequential trial will be less likely to stop early and
the difference in mean sample size will be even greater between the two approaches. If a
Goldilocks design bases stopping for predicted success on posterior probabilities, then that
boundary is likely to approximate one of the upper bounds in the family of group sequential
designs. Still, the Goldilocks design would offer greater flexibility and the use of predictive
probabilities for the futility boundary. Regardless, it is important to thoroughly evaluate any
adaptive design, to understand the benefits and risks, and to compare to alternative designs
(Gaydos, 2009; Patient-Centered Outcomes Research Institute [PCORI], 2012).

A common concern with any Bayesian approach is the specification of the prior distri-
bution. All trial designs require eliciting a prior belief in the control rates and the treatment
effects, and designs are based on these assumptions, whether they are written down in the
form of a prior distribution or not. If the primary analysis is frequentist, the prior distri-
butions used in the Goldilocks design will have no bearing at all on the final analysis;
they only lead to stopping being more or less aggressive. If a fully Bayesian approach is
specified, noninformative priors that have no effect on the inference can be used. Different
priors may be specified for use in the adaptive sample size algorithm than for the primary
analysis. In this manner, informative priors could be specified for the adaptive sample size
algorithm, but noninformative priors could be used for the primary analysis. If informative
priors are deemed appropriate, the influence of the priors should be thoroughly evaluated
at the design stage. This is analogous to any standard frequentist trial: A point prior in the
alternative hypothesis space is chosen during the design stage under which the power is
calculated, and then a noninformative prior (a standard frequentist test) is used in the anal-
ysis stage. The difference with the Bayesian approach is that our prior is updated as data
from the trial accumulate, so that the final sample size need not be too onerous or does not
include patients after the point where continuing the trial is futile. Then either a frequentist
test or a Bayesian test with a noninformative prior is typically used in the analysis stage.

Operating characteristics, and particularly type I error control, require simulation for
calculation. A benefit is that this forces designers to better understand their trials and how
they are likely to progress. For example, with simulated trials we can easily calculate, under
various alternative hypotheses, what proportion of trials that stop for futility would have
produced successful trials if left to run to the maximum. This is a seldom-reported value
in group sequential designs. Furthermore there is precedent for type I error calculation via
simulation by CDER, CBER, CDRH, and NIH. Drawbacks are that the absolute maximum
of the type I error rate over the null space cannot be calculated in closed form, and sim-
ulations, depending upon the trial, can be slow to run. Some adjustment of trial inputs is
necessary to control type I error.
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BAYESIAN ADAPTIVE SAMPLE SIZE 699

The Goldilocks design could be described as a design in which a minimum sample
size is specified and the sample size is increased (to a prespecified maximum) based on
interim analyses, or alternatively as a design in which a maximum sample size is speci-
fied and there is potential to decrease the sample size (to a prespecified minimum) based
on interim analyses. These are equivalent statements. Conduct of the trial does rely on
unblinded analyses of the treatment effect, and in that regard there is potential for the intro-
duction of operational bias (FDA, 2010). Thus, in conduct, it is important to follow the same
principles as for any other trial, and with the appropriate procedures in place the potential
for bias is minimal (He, 2012; PCORI, 2012): namely, that the rules of trial conduct be
completely prespecified and carefully adhered to, that interim results be kept confidential
and blinding maintained, and that a DSMB be tasked with trial oversight (FDA, 2010; He,
2012; PCORI, 2012). The DSMB charter should be explicit with regard to how the results
of the sample size selection analyses will be conveyed, to whom, and how the results will
be acted upon.

APPENDIX

This appendix provides R code (R Development Core Team, 2011) for simulating the
trial described in Julian et al. (2008).

library(VGAM)

#### Set design parameters

design.parameters <- list(

sens.goal = 0.7, # Goal sensitivity

spec.goal = 0.9, # Goal specificity

looks = seq(200, 700, by=50), # Frequency of analyses

sens.alpha = 0.1, # Priors for sensitivity

sens.beta = 0.1,

spec.alpha = 0.1, # and specificity

spec.beta = 0.1,

ref.alpha = 0.1, # Prior for incidence needed

ref.beta = 0.1, # to calc pred prob win @ max

sens.critv = 0.985, # Critical values for trial

success

spec.critv = 0.985, # .985 gives 0.025 type I error

min.hist.pos = 35, # Min Samples positive on

histology to stop early

fut.bound = 0.05 # Futility stopping bound

)

### Make a vector of the number of ’right’ responses for

### each possible total number of positives

needed.to.win.sens <- rep(NA,700)

needed.to.win.spec <- rep(NA,700)

# What’s fewest test positives we can have for N histology positives?

min.right.sens <- function(N, design.parameters){

x <- 0

post <- 0

while(post < design.parameters$sens.critv){
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700 BROGLIO ET AL.

x <- x+1
post <- 1-pbeta(design.parameters$sens.goal, .1+x, .1+N-x)
}

return(x)

}

# What’s fewest test negatives we can have for N histology positives?

min.right.spec <- function(N, design.parameters){

x <- 0

post <- 0

while(post < design.parameters$spec.critv){

x <- x+1
post <- 1-pbeta(design.parameters$spec.goal, .1+x, .1+N-x)
}

return(x)

}

for(n in 35:700){

needed.to.win.sens[n] <- min.right.sens(n, design.parameters)

needed.to.win.spec[n] <- min.right.spec(n, design.parameters)

}

### FUNCTION THAT GENERATES TRIAL DATA

make.data <- function(N, true.hist.pos, true.sens, true.spec){

# N is sample size

# generate whether each of N patients is a reference positive

hist.pos <- rbinom(N, 1, true.hist.pos)

# generate whether each of N patients tests positive

test.pos <- rbinom(N, 1, ifelse(hist.pos==1, true.sens,

1-true.spec))

# Combine & return

data <- cbind(hist.pos, test.pos)

return(data)

}

### Function that does the analysis at each interim (or final) analysis

primary.analysis <- function(N, data, design.parameters, pr){

pm <- design.parameters

tab2x2 <- table(data[1:N,1], data[1:N,2])

# Hist positives in rows

# Test positives in columns

# Table is:

# Hist -, Test - Hist -, Test +
# Hist +, Test - Hist +, Test +
# Sensitivity = Pr(Test + | Hist +)
# Probability exceed sensitivity goal

PostProbSens <- 1-pbeta(pm$sens.goal, pm$sens.alpha + tab2x2[2,2],

pm$sens.beta + tab2x2[2,1])

# Specificity = Pr(Test - | Hist -)

PostProbSpec <- 1-pbeta(pm$spec.goal, pm$spec.alpha + tab2x2[1,1],

pm$spec.beta + tab2x2[1,2])

# Predictive probability of trial success at max
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BAYESIAN ADAPTIVE SAMPLE SIZE 701

N.left <- max(pm$looks) - N

if(N.left > 0){

# Prob dist for number of hist positives remaining

x.left.hist.pos <- rbetabin.ab(10000, N.left,

pm$ref.alpha + tab2x2[2,1] + tab2x2[2,2],

pm$ref.beta + tab2x2[1,1] + tab2x2[1,2])

x.left.hist.neg <- N.left - x.left.hist.pos

x.left.hist.pos[x.left.hist.pos==0] <- 1 ####∗

x.left.hist.pos.test.pos <- rbetabin.ab(10000, x.left.hist.pos,

pm$sens.alpha + tab2x2[2,2],

pm$sens.beta + tab2x2[2,1])

x.left.hist.pos.test.pos[x.left.hist.pos==0] <- 0 ####∗

#### ∗ these two lines are here because if it draws 0

#### hist positives left, this gives an error.

#### so this allows the draw, but changes it back to 0

x.left.hist.neg.test.neg <- rbetabin.ab(10000, x.left.hist.neg,

pm$spec.alpha + tab2x2[1,1],

pm$spec.beta + tab2x2[1,2])

### Is number of test positives big enough to achieve sens goal.

hist.pos.at.max <- tab2x2[2,1]+tab2x2[2,2]+x.left.hist.pos
hist.pos.test.pos.at.max <- tab2x2[2,2] + x.left.hist.pos.test.pos

win.sens.at.max <- (hist.pos.test.pos.at.max >=
needed.to.win.sens[hist.pos.at.max])

### Is number of test negatives big enough to achieve spec goal.

hist.neg.at.max <- tab2x2[1,1]+tab2x2[1,2]+x.left.hist.neg
hist.neg.test.neg.at.max <- tab2x2[1,1] + x.left.hist.neg.test.neg

win.spec.at.max <- (hist.neg.test.neg.at.max >=
needed.to.win.spec[hist.neg.at.max])

pred.prob.both.goals.at.max <- mean(win.sens.at.max∗win.spec.at.max)
}else{

pred.prob.both.goals.at.max <- NA

}

# Function returns 1) total N

# 2) number positive on histology

# 3) post. prob sens meets goal

# 4) post. prob spec meets goal

# 5) pred prob sens&spec meet goal at Nmax

if(pr){print(c(N, c(tab2x2), PostProbSens, PostProbSpec,

pred.prob.both.goals.at.max))}

return(c(N, tab2x2[2,1]+tab2x2[2,2], PostProbSens, PostProbSpec,

pred.prob.both.goals.at.max))

}

#### CHECK TO SEE IF STOPPING BOUNDARIES MET

stop.check <- function(interim.analysis, design.parameters,pr){

go <- 1

if(interim.analysis[2] >= design.parameters$min.hist.pos &
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702 BROGLIO ET AL.

interim.analysis[3] >= design.parameters$sens.critv &

interim.analysis[4] >= design.parameters$spec.critv

){

go <- 0

win <- 1

stop <- 3

n.trial <- interim.analysis[1]

} else if(interim.analysis[1] >= max(design.parameters$looks)){

go <- 0

win <- 0

stop <- 2

n.trial <- interim.analysis[1]

} else if(interim.analysis[2] >= design.parameters$min.hist.pos &

interim.analysis[5] <= design.parameters$fut.bound){

go <- 0

win <- 0

stop <- 1

n.trial <- interim.analysis[1]

} else {

go <- 1

win <- NA

stop <- NA

n.trial <- NA

}

if(pr){print(c(go, win, stop, n.trial))}

return(c(go, win, stop, n.trial))

}

#### SIMULATES ONE TRIAL

sim.trial <- function(design.parameters, true.hist.pos, true.sens,

true.spec, pr=F){

### simulation data

data <- make.data(max(design.parameters$look), true.hist.pos,

true.sens, true.spec)

go <- 1

look <- 1

while(go==1){
n.at.look <- design.parameters$look[look]

test.statistics <- primary.analysis(n.at.look, data, design.

parameters,pr)

trial.result <- stop.check(test.statistics, design.parameters,pr)

go <- trial.result[1]

if(go==1){
look <- look + 1

}

}

# Return

# 1. Win=1, Lose=0
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BAYESIAN ADAPTIVE SAMPLE SIZE 703

# 2. Why stop, 1=Futility, 2=Max N, 3=Early Success

# 3. Sample size

# 4. Observed sensitivity

# 5. Observed specificity

# 6. Post Prob Sens meets goal

# 7. Post Prob Spec meets goal

N <- trial.result[4]

return(c(trial.result[2:4], mean(data[1:N,2][data[1:N,1]==1]),
1-mean(data[1:N,2][data[1:N,1]==0]),
test.statistics[3:4]))

}

##### SIMULATES Nsims trials and summarizes results.

##### if long=c(T,T,T,T,T) then it produces more output.

##### turn each to F to turn off.

##### will print details for first "pr" simulated trials

sim.N.trials.summarize <- function(Nsims, design.parameters, true.hist.pos,

true.sens, true.spec, pr=10, long=rep(T,5)){
results.matrix <- matrix(nrow=Nsims, ncol=7)
for(s in 1:Nsims){

results.matrix[s,] <- sim.trial(design.parameters, true.hist.pos,

true.sens, true.spec, s<=pr)
}

t1 <- round(table(factor(results.matrix[,1], levels=0:1,
labels=c("Fail","Success")))/Nsims, 3)

t2 <- round(table(factor(results.matrix[,2], levels=1:3,
labels=c("Futility","MaxN","EarlySuccess")))/Nsims, 3)

t3 <- round(table(factor(results.matrix[,3],design.parameters$looks),

factor(results.matrix[,1],levels=0:1, labels=c("Fail", "Success")))/

Nsims, 3)

t4 <- round(table(factor(results.matrix[,3],design.parameters$looks),

factor(results.matrix[,2],levels=1:3,
labels=c("Futility","MaxN","EarlySuccess")))/Nsims, 3)

t5 <- round(table(

factor(as.numeric(results.matrix[,6] >= design.parameters$sens.critv),

levels=0:1,
labels=c("Lose Sens","Win Sens")),

factor(as.numeric(results.matrix[,7] >= design.parameters$spec.critv),

levels=0:1,
labels=c("Lose Spec","Win Spec")))/Nsims, 3)

if(long[1]){print(t1)}

if(long[2]){print(t2)}

if(long[3]){print(t3)}

if(long[4]){print(t4)}

if(long[5]){print(t5)}

cat("\n\n")
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return(c(Power=mean(results.matrix[,1]), PrFutStop=mean(results.matrix
[,2]==1)

, PrMaxN=mean(results.matrix[,2]==2)
, PrEarlySuc=mean(results.matrix[,2]==3)
, MeanN=mean(results.matrix[,3])
, MeanSens=mean(results.matrix[,4])
, MeanSpec=mean(results.matrix[,5])
))

}
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