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We have already encountered several examples of models in which response variables are
linear functions of two or more explanatory (or predictor) variables. For example, we have
been routinely expressing an individual’s phenotypic value as the sum of genotypic and
environmental values. A more complicated example is the use of linear regression to decom-
pose an individual’s genotypic value into average effects of individual alleles and residual
contributions due to interactions between alleles (Chapters 4 and 5). Such linear models
not only form the backbone of parameter estimation in quantitative genetics (Chapters 21–
31), but are also the basis for incorporating marker (and other genomic) information into
modern quantitative-genetic inference (Chapters 20, 30, and 31).

This chapter provides the foundational tools for the analysis of linear models, which
are developed more fully, and extended to the powerful mixed model, in Chapter 10. We
start by introducing multiple regression, wherein two or more variables are used to make
predictions about a response variable. A review of elementary matrix algebra then follows,
starting with matrix notation and building up to matrix multiplication and solutions of
simultaneous equations using matrix inversion. We next use these results to develop tools
for statistical analysis, considering the expectations and covariance matrices of transformed
random vectors. We then introduce the multivariate normal distribution, which is by far the
most important distribution in quantitative-genetics theory, and conclude with the analysis
of the geometry (eigenvalues and eigenvectors) of variance-covariance matrices. Those with
strong statistical backgrounds will find little new in this chapter, other than perhaps some
immediate contact with quantitative genetics in the examples and familiarization with our
notation. Additional background material is given in Appendix 3.

MULTIPLE REGRESSION

As a point of departure, consider the multiple regression

y = α+ β1z1 + β2z2 + · · ·+ βnzn + e (9.1a)

where y is the response variable, and the zi are the predictor (or explanatory) variables
used to predict the value of the response variable. This multivariate equation is similar
to the expression for a simple linear regression (Equation 3.12a) except that y is now a
function of n predictor variables, rather than just one. The variables y, z1, . . . , zn represent
observed measures, whereasα and β1, . . . , βn are constants to be estimated using some best-
fit criterion. As in the case of simple linear regression, e (the residual error) is the deviation
between the observed (y) and predicted (or fitted) value ( ŷ ) of the response variable,

y = ŷ + e, where ŷ = α+
n∑
i=1

βizi (9.1b)

Recall that the use of a linear model involves no assumptions regarding the true form of
relationship between y and z1, . . . , zn, nor is any assumption about the residuals being nor-
mally distributed required. It simply gives the best linear approximation. Many statistical
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techniques, including path analysis (Appendix 2) and analysis of variance (Chapter 22), are
based on versions of Equation 9.1.

The terms β1, . . . , βn are known as partial regression coefficients. The interpretation
of βi is the expected change in y given a unit change in zi while all other predictor values
are held constant. It is important to note that the partial regression coefficient associated
with predictor variable zi often differs from the regression coefficient, β′i, that is obtain in
a univariate regression based solely on zi, viz., y = α + β′izi + e (Example 9.3). Suppose,
for example, that a simple regression of y on z1 has a slope of zero. This might lead to the
suggestion that there is no relationship between z1 and y. However, it is conceivable that z1

actually has a strong positive effect on y that is obscured by positive correlations of z1 with
other variables that have negative influences on y. A multiple regression that included the
appropriate variables would clarify this situation by yielding a positive value of β1.

Because it is usually impossible for biologists to evaluate partial regression coefficients
by empirically imposing constancy on all extraneous variables, we require a more indirect
approach to the problem. From Chapter 3, the covariance of y and a predictor variable is

σ(y, zi) = σ [(α+ β1z1 + β2z2 + · · ·+ βnzn + e), zi] (9.2a)

= β1σ(z1, zi) + β2σ(z2, zi) + · · ·+ βnσ(zn, zi) + σ(e, zi)

The term σ(α, zi) has dropped out because the covariance of zi with a constant (α) is zero.
By applying Equation 9.2a to each predictor variable, we obtain a set of n equations in n
unknowns (β1, . . . , βn),

σ(y, z1) = β1σ
2(z1) + β2σ(z1, z2) + · · ·+βnσ(z1, zn) + σ(z1, e)

σ(y, z2)= β1σ(z1, z2) + β2σ
2(z2) + · · ·+βnσ(z2, zn) + σ(z2, e)

...
...

...
. . .

...
...

σ(y, zn)= β1σ(z1, zn) +β2σ(z2, zn) + · · · +βnσ
2(zn) +σ(zn, e)

(9.2b)

As in univariate regression, our task is to find the set of constants (α and the partial regres-
sion coefficients, βi) that gives the best linear fit of the conditional expectation of y given
z1, · · · , zn. Again, the criterion we choose for “best” relies on the least-squares approach,
which minimizes the squared differences between observed and expected values (i.e., the
squared residuals). Thus, our task is to find that set of α, β1, · · · , βn giving ŷ = α +

∑
βizi

such that E[(y − ŷ )2|z1, · · · , zn] = E[ e2 ] is minimized. Taking derivatives of this expecta-
tion with respect to α and the βi and setting each equal to zero, it can be shown that the
set of equations given by Equation 9.2b is, in fact, the least-squares solution to Equation
9.1 (WL Example A6.4). If the appropriate variances and covariances are known (i.e., we
know their true population values), the βi can be obtained exactly. If these are unknown,
as is usually the case, the least-squares estimates bi are obtained from Equation 9.2b by
substituting the observed (estimated) variances and covariances, Var(zi) and Cov(zi, zj),
for their (unknown) population values, σ2(zi) and σ(zi, zj).

Finally, recall from Example 3.4 that one can also express the solutions of a least-squared
regression entirely in terms of sums of squares and sums of cross-products (Equation 3.15d).
This is the standard solution in most statistic textbooks, as they treat the predictor variables
(the observed data, zi) as fixed. Conversely, predictor variables in this book are very often
treated as random because this is what is usually most relevant in most quantitative-genetic
applications, wherein we are attempting to make inferences on the nature of some underly-
ing true least-square regression based on a sample. In this setting, expressing the solutions
in terms of variances and covariances is most appropriate. In other settings, such as re-
gressing on sex or age, it may be more intuitive to think of sums of squares/cross-products
than in terms of variances and covariances. These two approaches (sums of squares/cross-
products and variances/covariances) are equivalent if we simply substitute (co)variance
components by their sample estimates, which are expressed as sums of squares and cross-
products (Example 3.4).



LINEAR MODELS AND MATRIX ALGEBRA 3

The properties of least-squares multiple regression are analogous to those for simple
regression (Chapter 3). First, the procedure yields a solution such that the average deviation
of y from its predicted value ŷ, E[e], is zero. Hence E[ y ] = E[ ŷ ], implying

ȳ = a+ b1z̄1 + · · ·+ bnz̄n (9.3a)

Thus, once the fitted values b1, . . . , bn are obtained from Equation 9.2b, the intercept is
obtained by a = ȳ −

∑n
i biz̄i. Using Eqution 9.3a, we can rewrite Equation 9.1a as

y − y =
n∑
i=1

βi(zi − zi) + e (9.3b)

implying that

y = y +
n∑
i=1

βi(zi − zi) + e (9.3c)

Second, least-squares analysis gives a solution in which the residual errors are uncor-
related with the predictor variables. Thus, the terms σ(e, zi) can be dropped from Equation
9.2b. Third, the partial regression coefficients are entirely defined by variances and co-
variances. However, unlike simple regression coefficients, which depend on only a single
variance and covariance, each partial regression coefficient is a function of the variances
and covariances of all measured variables. Notice that if n = 1, then σ(y, z1) = β1σ

2(z1),
and we recover the univariate solution, β1 = σ(y, z1)/σ2(z1).

A simple pattern exists in each of the n equations in 9.2b. The ith equation defines the
covariance of y and zi as the sum of two types of quantities: a single term, which is the
product of the ith partial regression coefficient and the variance of zi, and a set of (n − 1)
terms, each of which is the product of a partial regression coefficient and the covariance of
zi with the corresponding predictor variable. This general pattern suggests an alternative
way of writing Equation 9.2b,


σ2(z1) σ(z1, z2) . . . σ(z1, zn)
σ(z1, z2) σ2(z2) . . . σ(z2, zn)

...
...

. . .
...

σ(z1, zn) σ(z2, zn) . . . σ2(zn)



β1

β2
...
βn

 =


σ(y, z1)
σ(y, z2)

...
σ(y, zn)

 (9.4a)

The table of variances and covariances on the left is referred to as a matrix, while the columns
of partial regression coefficients and of covariances involving y are called vectors. If these
matrices and vectors are abbreviated, respectively, as V, β, and c, then Equation 9.4a can
be written even more compactly as

Vn×nβn×1 = cn×1 (9.4b)

where c denotes the vector of covariances between the predictor and response variables.
The standard procedure of denoting matrices as bold capital letters and vectors as

bold lowercase letters is adhered to in this book. Notice that V, which is generally called
a covariance matrix, is symmetrical about the main diagonal. As we shall see shortly, the
ith equation in 9.2b can be recovered from Equation 9.4a by multiplying the elements in
β by the corresponding elements in the ith horizontal row of the matrix V, i.e.,

∑
βjVij .

Although a great deal of notational simplicity has been gained by condensing the system
of Equations 9.2b to matrix form, this does not alter the fact that the solution of a large
system of simultaneous equations is a tedious task if performed by hand. Fortunately, such
solutions are rapidly accomplished on computers. Before considering matrix methods in
more detail, we present an application of Equation 9.1 to quantitative genetics.
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An Application to Multivariate Selection

Karl Pearson developed the technique of multiple regression in 1896, although some of
the fundamentals can be traced to his predecessors (Pearson 1920; Stigler 1986). Pearson
is perhaps best known as one of the founders of statistical methodology, but his intense
interest in evolution may have been the primary motivating force underlying many of his
theoretical endeavors. Almost all of his major papers, including the one of 1896, contain
rigorous analyses of data gathered by his contemporaries on matters such as resemblance
between relatives, natural selection, correlation between characters, and assortative mating
(recall Example 7.7). The foresight of these studies is remarkable considering that they
were performed prior to the existence of a genetic interpretation for the expression and
inheritance of polygenic traits.

Pearson’s (1896, 1903) invention of multiple regression developed out of the need for
a technique to decompose the observed directional selection on a character into its direct
and various indirect components. In Chapter 3 we defined the selection differential S (the
within-generation change in the mean phenotype due to selection) as a measure of the total
directional selection on a character. However, S cannot be considered to be a measure of the
direct forces of selection on a character unless that character is uncorrelated with all other
selected traits. An unselected character can appear to be under selection if other characters
with which it is correlated are under directional selection. Alternatively, a character under
strong directional selection may exhibit a negligible selection differential if the indirect
effects of selection on correlated traits are sufficiently compensatory.

As a hypothetical example, consider fitness measured by the number of visits to a
flower by a pollinator. It is observed that larger flowers obtain more pollinators (S for
flower size is positive), but also that flower size and nectar volume are positively correlated.
Hence, pollinators might be visiting larger flowers simply because they have more nectar.
A multiple regression of pollinator visit number on both flower size and nectar volume can
resolve which trait is the actual target of selection (provided that neither is correlated to
other, unmeasured, targets of selection).

Because he did not employ matrix notation, some of the mathematics in Pearson’s
papers can be rather difficult to follow. Lande and Arnold (1983) did a great service by
extending this work and rephrasing it in matrix notation. Suppose that a large number of
individuals in a population have been measured for n characters and for fitness. Individual
fitness can then be approximated by the linear model

w = α+ β1z1 + · · ·+ βnzn + e (9.5a)

where w is relative fitness (observed fitness divided by the mean fitness in the population,
i.e., w = W/W ), and z1, . . . , zn are the phenotypic measures of the n characters. The in-
terpretation of βi is the expected change in w given a unit change in trait i while all other
traits are held constant. Recall from Chapter 3 that the selection differential for the ith trait
is defined as the covariance between phenotype and relative fitness, Si = σ(zi, w). Thus,
we have

Si = σ(zi, w) = σ(zi, α+ β1z1 + · · ·+ βnzn + e)
= β1σ(zi, z1) + · · ·+ βnσ(zi, zn) + σ(zi, e) (9.5b)

Note that this expression is of the same form as Equation 9.2b, so that by taking the βi to be
the partial regression coefficients we haveσ(zi, e) = 0. This expression can also be compactly
written as s = Vβ (Equation 9.4b), where the vector of covariances (s) has its i element
given by Si. Finally, note that the selection differential of any trait may be partitioned into
a component estimating the direct selection on the character and the sum of components
from indirect selection on all correlated characters,

Si = βiσ
2(zi) +

n∑
j 6=i

βjσ(zi, zj) (9.5c)
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It is important to realize that the labels “direct” and “indirect” apply strictly to the specific
set of characters included in the analysis; the partial regression coefficients are subject to
change if a new analysis includes additional correlated characters that are under selection.
Returning to our flower example, suppose that β for size is negative and β for nectar volume
positive. This suggests that the pollinators favor smaller flowers with more nectar. The
positive correlation between size and nectar volume obscured this relationship, resulting
(Equation 9.5c) in a positive value of S for flower size.

Example 9.1. A morphological analysis of a pentatomid bug (Euschistus variolarius) popu-
lation performed by Lande and Arnold (1983) provides a good example of the insight that
can be gained from a multivariate approach. The bugs were collected along the shore of Lake
Michigan after a storm. Of the 94 individuals that were recovered, 39 were alive. All individ-
uals were measured for four characters: head and thorax width, and scutellum and forewing
length. The data were then logarithmically transformed to more closely approximate normal-
ity (Chapter 14). All surviving bugs were assumed to have equal fitness (W = 1), and all
dead bugs to have zero fitness (W = 0). Hence, mean fitness is the fraction (p) of individuals
that survived, giving relative fitnesses, w = W/W , as

w =
{

1/p if the individual survived

0 if the individual did not survive

The selection differential for each of the characters is simply the difference between the mean
phenotype of the 39 survivors and the mean of the entire sample. These are reported in units
of phenotypic standard deviations in the following table, along with the partial regression
coefficients of relative fitness on the four morphological characters. Here * and ** indicate
significance at the 5% and 1% levels. All of the phenotypic correlations were highly significant.

Selection Partial Regression
Character Differential Coef. of Fitness Phenotypic Correlations

zi Si βi H T S F

Head (H) –0.11 –0.7 1.00 0.72 0.50 0.60
Thorax (T) –0.06 11.6** 1.00 0.59 0.71
Scutellum (S) –0.28* –2.8 1.00 0.62
Forewing (F) –0.43** –16.6** 1.00

The estimates of the partial regression coefficients nicely illustrate two points discussed
earlier. First, despite the strong directional selection (β) operating directly on thorax size, the
selection differential (S) for thorax size is negligible. This lack of apparent selection results be-
cause the positive correlation between thorax width and wing length is coupled with negative
forces of selection on the latter character. Second, there is a significant negative selection differ-
ential on scutellum length even though there is no significant direct selection on the character.
The negative selection differential is largely an indirect consequence of the strong selection
for smaller wing length. WL Chapters 29 and 30 examine Lande-Arnold fitness estimation
in considerable detail. We note in passing that given the 0,1 nature of the response variable,
logistic regression (Chapter 14; WL Chapters 14 and 29) is a more appropriate analysis of these
data than a linear model.

ELEMENTARY MATRIX ALGEBRA

The solutions of systems of linear equations, such as those introduced above, generally
involve the use of matrices and vectors of variables. For those with little familiarity with
such constructs and their manipulations, the remainder of the chapter provides an overview
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of the basic tools of matrix algebra, with a focus on useful results for the analysis of linear
models.

Basic Notation

A matrix is simply a rectangular array of numbers. Some examples are:

a =

 12
13
47

 b = ( 2 0 5 21 ) C =

 3 1 2
2 5 4
1 1 2

 D =

 0 1
3 4
2 9


A matrix with r rows and c columns is said to have dimensionality r×c (a useful mnemonic
for remembering this order is railroad car). In the examples above, D has three rows and
two columns, and is thus a 3 × 2 matrix. An r × 1 matrix, such as a, is a column vector
(c = 1), while a 1×cmatrix, such as b, is a row vector (r = 1). A matrix in which the number
of rows equals the number of columns, such as C, is called a square matrix. Numbers are
also matrices (of dimensionality 1× 1) and are often referred to as scalars.

A matrix is completely specified by the elements that comprise it, with Mij denoting
the element in the ith row and jth column of matrix M. Using the sample matrices above,
C23 = 4 is the element in the second row and third column of C. Likewise, C32 = 1 is the
element in the third row and second column. Two matrices are equal if and only if all of their
corresponding elements are equal. Dimensionality is important, as operations on matrices
(such as addition or multiplication) are only defined when matrix dimensions agree in the
appropriate manner (as is discussed below).

Partitioned Matrices

It is often useful to work with partitioned matrices wherein each element in a matrix is
itself a matrix. There are several ways to partition a matrix. For example, we could write
the matrix C above as

C =

 3 1 2
2 5 4
1 1 2

 =


3

... 1 2
· · · · · · · · · · · ·
2

... 5 4

1
... 1 2

 =
(

a b
d B

)

where

a = ( 3 ) , b = ( 1 2 ) , d =
(

2
1

)
, B =

(
5 4
1 2

)
Alternatively, we could partition C into a single row vector whose elements are themselves
column vectors,

C = ( c1 c2 c3 ) where c1 =

 3
2
1

 , c2 =

 1
5
1

 , c3 =

 2
4
2


or as a column vector whose elements are row vectors,

C =

b1

b2

b3

 where b1 = ( 3 1 2 ) , b2 = ( 2 5 4 ) , b3 = ( 1 1 2 )

As we will shortly see, this partition of a matrix as either a set of row or column vectors
forms the basis of matrix multiplication.



LINEAR MODELS AND MATRIX ALGEBRA 7

Addition and Subtraction

Addition and subtraction of matrices is straightforward. To form a new matrix A + B = C,
A and B must have the same dimensionality (A and B have the same number of columns
and the same number of rows), so that they have corresponding elements. One then simply
adds these corresponding elements, Cij = Aij + Bij . Subtraction is defined similarly. For
example, if

A =

 3 0
1 2
0 1

 and B =

 1 2
2 1
1 0


then

C = A + B =

 4 2
3 3
1 1

 and D = A−B =

 2 −2
−1 1
−1 1


Multiplication

Multiplying a matrix by a scalar (a 1× 1 matrix) is also straightforward. If M = aN, where
a is a scalar, then Mij = aNij . Each element of N is simply multiplied by the scalar. For
example,

(−2)
(

1 0
3 1

)
=
(
−2 0
−6 −2

)
Matrix multiplication is a little more involved. We start by considering the dot product

of two vectors, as this forms the basic operation of matrix multiplication. Letting a and b
be two n-dimensional vectors, their dot product a · b is a scalar given by

a · b =
n∑
i=1

aibi

For example, for the two vectors

a =


1
2
3
4

 and b = ( 4 5 7 9 )

the dot product is a · b = (1 × 4) + (2 × 5) + (3 × 7) + (4 × 9) = 71. The dot product
ignores whether the vectors are row, column, or mixed, but is not defined if the vectors
have different lengths. As we will see, this restriction determines whether the product of
two matrices is defined.

The dot product operator allows us to express systems of equations compactly in matrix
form. Consider the following system of three equations and three unknowns,

x1 + 2x2 + x3 = 3
2x1 − 2x2 − 4x3 = 6
8x1 − 4x2 + 3x3 = 9

This can be written in matrix form as Ax = c, with 1 2 1
2 −2 −4
8 −8 3

x1

x2

x3

 =

 3
6
9


This matrix representation recovers the system of equations using dot products. The dot
product of the first row of A with the column vector x (which is defined because each vector



8 CHAPTER 9

has three elements) recovers the first equation. The last two equations similarly follow as
the dot products of the second and third rows, respectively, of A on x.

Now consider the matrix Lr×b = Mr×cNc×b produced by multiplying the r× cmatrix
M by the c× b matrix N. It is important to note the matching c subscripts, with the number
of columns of M matching the number of rows of N. Partitioning M as a column vector of
r row vectors,

M =


m1

m2
...

mr

 where mi = (Mi1 Mi2 · · · Mic )

and N as a row vector of b column vectors,

N = ( n1 n2 · · · nb ) where nj =


N1j

N2j

...
Ncj


the ijth element of L is given by the dot product

Lij = mi · nj =
c∑

k=1

MikNkj (9.6a)

Recall that this dot product is only defined if the vectors mi and nj have the same number
of elements, which requires that the number of columns in M must equal the number of
rows in N. The resulting matrix L is of dimension r × b with

L =


m1 · n1 m1 · n2 · · · m1 · nb

m2 · n1 m2 · n2 · · · m2 · nb
...

...
. . .

...
mr · n1 mr · n2 · · · mr · nb

 (9.6b)

Note that using this definition, the matrix product given by Equation 9.4a recovers the set
of equations given by Equation 9.2b.

Example 9.2. Compute the product L = MN where

M =

 3 1 2
2 5 4
1 1 2

 and N =

 4 1 0
1 1 3
3 2 2



Writing M =

m1

m2

m3

 and N = ( n1 n2 n3 ), we have

m1 = ( 3 1 2 ) , m2 = ( 2 5 4 ) , m3 = ( 1 1 2 )

and

n1 =

 4
1
3

 , n2 =

 1
1
2

 , n3 =

 0
3
2
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The resulting matrix L is 3× 3. Applying Equation 9.6b, the element in the first row and first
column of L is the dot product of the first row vector of M with the first column vector of N,

L11 = m1 · n1 = ( 3 1 2 )

 4
1
3

 =
3∑
k=1

M1kNk1

= M11N11 +M12N21 +M13N31 = (3× 4) + (1× 1) + (2× 3) = 19
Computing the other elements yields

L =

m1 · n1 m1 · n2 m1 · n3

m2 · n1 m2 · n2 m2 · n3

m3 · n1 m3 · n2 m3 · n3

 =

 19 8 7
25 15 23
11 6 7


These straightforward, but tedious, calculations for each element in the new matrix are easy
performed on a computer. Indeed, most statistical and math packages have all the matrix
operations introduced in this chapter as built-in functions.

As suggested above, certain dimensional properties must be satisfied when two ma-
trices are to be multiplied. Specifically, because the dot product is defined only for vectors
of the same length, for the matrix product MN to be defined, the number of columns in M
must equal the number of rows in N. Matrices satisfying this row-column restriction are
said to conform. Thus, while(

3 0
1 2

)
2×2

(
4
3

)
2×1

=
(

12
10

)
2×1

,

(
4
3

)
2×1

(
3 0
1 2

)
2×2

is undefined.

Writing
Mr×cNc×b = Lr×b

shows that the inner indices must match, while the outer indices (r and b) give the number of
rows and columns, respectively, of the resulting matrix. A second key point is that the order
in which matrices are multiplied is critical. In general, AB is not equal to BA. Indeed, even
if the matricies conform in one order, they many not in the opposite order. In particular,
unless one matrix is r × c and the other is c × r, the two orders of multiplication will not
conform (note that two square matrices, r = c, of the same dimension conform in either
order).

For example, when the order of the matrices in Example 9.2 is reversed,

NM =

 4 1 0
1 1 3
3 2 2

 3 1 2
2 5 4
1 1 2

 =

 14 9 12
8 9 12
15 15 18


which differs from MN. Because order is important in matrix multiplication, it has specific
terminology. For the product AB, we say that matrix B is premultiplied by the matrix A,
or that matrix A is postmultiplied by the matrix B.

Transposition

Another useful matrix operation is transposition. The transpose of a matrix A is written AT

(while not used in this book, the notation A′ is also widely used), and is obtained simply
by switching rows and columns of the original matrix, with ATij = Aji. If A is r × c, then
AT is c× r. As an example,  3 1 2

2 5 4
1 1 2

T

=

 3 2 1
1 5 1
2 4 2


( 7 4 5 )T =

 7
4
5
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A symmetric matrix satisfies A = AT , and is necessarily square. An important example
of a square, symmetric matrix is a covariance matrix (Equation 9.4a). Matrix expressions
involving transposes often arise as a result of matrix derivatives (Equations A3.28 and
A3.29). For example, the derivative (with respect to a vector, x) of Ax is the matrix AT .

A useful identity (when A and B conform) for transposition is that

(AB)T = BTAT (9.7a)

which holds for any number of conformable matrices, e.g.,

(ABC)T = CTBTAT (9.7b)

Vectors in statistics and quantitative genetics are generally written as column vectors
and we follow this convention by using lowercase bold letters, e.g., a, for a column vector
and aT for the corresponding row vector. With this convention, we distinguish between
two vector products, the inner product which yields a scalar and the outer product which
yields a matrix. For the two n-dimensional column vectors a and b,

a =

 a1
...
an

 b =

 b1
...
bn


their inner product is given by

( a1 · · · an )

 b1
...
bn

 = aTb =
n∑
i=1

aibi (9.8a)

while their outer product yields the n× n matrix a1
...
an

 ( b1 · · · bn ) = abT =


a1b1 a1b2 · · · a1bn
a2b1 a2b2 · · · a2bn

...
...

. . .
...

anb1 anb2 · · · anbn

 (9.8b)

Inner products frequently appear in statistics and quantitative genetics, as they rep-
resent weighted sums. For example, the regression given by Equation 9.1 can be expressed
as

y = α+ βT z + e, where β =


β1

β2
...
βn

 , z =


z1

z2
...
zn


Another example would be a weighted marker score (occasionally called a polygenic score),
S = βT z, for an individual, where z is a vector of marker values (e.g., zj = 0, 1, or 2,
respectively, for biallelic marker genotypes mjmj , Mjmj , and MjMj) for that individual
and βj is the weighted assigned to the jth marker (i.e., each copy of Mj adds an amount βj
to the score).

Outer products appear in covariance matrices. Consider a (n × 1) vector e of random
variables, each with mean zero. The resulting (n × n) covariance matrix, Cov(e), has its ij
element as E[ eiej ] = σij , where

Cov(e) = E[ eTe ] = E

 e1
...
en

 ( e1 · · · en )



=


E[e1e1] E[e1e2] · · · E[e1en]
E[e2e1] E[e2e2] · · · E[e2en]

...
...

. . .
...

E[ene1] E[ene2] · · · E[enen]

 =


σ2

1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
...

. . .
...

σn1 σn2 · · · σ2
n
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Inverses and Solutions to Systems of Equations

While matrix multiplication provides a compact way of writing systems of equations, we
also need a compact notation for expressing the solutions of such systems. This is provided
by the inverse of a matrix, an operation analogous to scalar division. The importance of
matrix inversion can be noted by first considering the solution of the simple scalar equation
ax = b for x. Multiplying both sides by a−1, we have (a−1a)x = 1 · x = x = a−1b. Now
consider a square matrix A. The inverse of A, denoted A−1, satisfies A−1A = I = AA−1,
where I, the identity matrix, is a square matrix with diagonal elements equal to one and
all other elements equal to zero. The identity matrix serves the role that 1 plays in scalar
multiplication. Just as 1×a = a×1 = a in scalar multiplication, for any matrix A = IA = AI.
A matrix is called nonsingular if its inverse exists. Conditions under which this occurs are
discussed in the next section. A useful property of inverses is that if the matrix product AB
is a square matrix (where A and B are square and both of their inverses exist), then

(AB)−1 = B−1A−1 (9.9)

The fundamental relationship between the inverse of a matrix and the solution of
systems of linear equations can be seen as follows. For a square nonsingular matrix A, the
unique solution for x in the matrix equation Ax = c is obtained by premultiplying by A−1,

A−1Ax = x = A−1c (9.10a)

If A−1 does not exist (A is said to be singular), then there are either no solutions (the set
of equations is inconsistent), or there are infinitely-many solutions. Consider the follow two
sets of equations,

Set one: x1 + 2x2 = 3
2x1 + 4x2 = 6 Set two: x1 + 2x2 = 3

2x1 + 4x2 = 3

For both sets, the left-hand side of the second equation is just twice the left-hand set of the
first equation. Set one is consistent, with a line of solutions, x1 = 3− 2x2. More generally,
the solution set of a consistent system could be a plane or hyperplane (whereas it is a point
when the coefficient matrix is nonsingular). Set two is inconsistent, as no values of x1 and
x2 can satisfy both equations.

When A is either singular or nonsquare, solutions for x (for a consistent system of
equations) can still be obtained using generalized inverses (denoted by A−) in place of
A−1 (Appendix 3). As we have seen, the solutions returned in such cases are certain linear
combinations of the elements of x, rather than a unique value for x (see Appendix 3 for
details.) Recalling Equation 9.4b, the solution of the multiple regression equation can be
expressed as

β = V−1c (9.10b)

Likewise, for the Pearson-Lande-Arnold regression giving the best linear predictor of fitness,

β = P−1s (9.10c)

where P is the covariance matrix for phenotypic measures z1, . . . , zn, and s is the vector of
selection differentials for the n characters.

Before developing the formal method for inverting a matrix, we consider two extreme
(but very useful) cases that lead to simple expressions for the inverse. First, if the matrix is
diagonal (all off-diagonal elements are zero), then the matrix inverse is also diagonal, with
A−1
ii = 1/Aii. For example,

for A =

 a 0 0
0 b 0
0 0 c

 , then A−1 =

 a−1 0 0
0 b−1 0
0 0 c−1
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Note that if any of the diagonal elements of A are zero, A−1 is not defined, as 1/0 is
undefined. Second, for any 2× 2 matrix,

A =
(
a b
c d

)
, then A−1 =

1
ad− bc

(
d −b
−c a

)
(9.11)

To check this result, note that

AA−1 =
1

ad− bc

(
a b
c d

)(
d −b
−c a

)

=
1

ad− bc

(
ad− bc 0

0 ad− bc

)
= I

If ad = bc, the inverse does not exist, as division by zero is undefined.

Example 9.3. Consider the multiple regression of y on two predictor variables, z1 and z2,
so that y = α + β1z1 + β2z2 + e. We solve for the βi, as the estimate of α follows as
y − β1z1 − β2z2. In the notation of Equation 9.4b, we have

c =

σ(y, z1)

σ(y, z2)

 V =

 σ2(z1) σ(z1, z2)

σ(z1, z2) σ2(z2)


Recalling that σ(z1, z2) = ρ12 σ(z1)σ(z2), Equation 9.11 gives

V−1 =
1

σ2(z1)σ2(z2) (1− ρ2
12)

 σ2(z2) −σ(z1, z2)

−σ(z1, z2) σ2(z1)


The inverse exists provided both characters have nonzero variance and are not completely
correlated (|ρ12| 6= 1). Recalling Equation 9.10b, the partial regression coefficients are given
by β = V−1c, orβ1

β2

 =
1

σ2(z1)σ2(z2) (1− ρ2
12)

 σ2(z2) −σ(z1, z2)

−σ(z1, z2) σ2(z1)

σ(y, z1)

σ(y, z2)


Again using σ(z1, z2) = ρ12 σ(z1)σ(z2), this equation reduces to

β1 =
1

1− ρ2
12

[
β′1 − ρ12

σ(y, z2)
σ(z1)σ(z2)

]
and

β2 =
1

1− ρ2
12

[
β′2 − ρ12

σ(y, z1)
σ(z1)σ(z2)

]
where

β′1 =
σ(y, z1)
σ2(z1)

and β′2 =
σ(y, z2)
σ2(z2)

are the univariate regression slopes (y = α′+β′izi+e; Equation 3.14b). Note that only when
the predictor variables are uncorrelated (ρ12 = 0), do the partial regression coefficients β1

and β2 reduce to the univariate regression slopes, β′1 and β′2.
For example, consider our earlier hypothetical example of pollinator visits (y) as a func-

tion of flower size (z1) and nectar volume (z2). The univariate regression y = µ + β′1z1 of
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number of visits as a function of just flower size has a regression slope of β′1, while the regres-
sion coefficients on flower size when both size and nectar volume are included in multiple
regression (y = µ+β1z1 +β2z2) is β1. β1 and β′1 are only equal when there is no correlation
between size and volume.

Determinants and Minors

For a 2× 2 matrix, the quantity

|A| = A11A22 −A12A21 (9.12a)

is called the determinant, which more generally is denoted by det(A) or |A|. As with the
2- dimensional case, A−1 exists for a square matrix A (of any dimensionality) if and only if
det(A) 6= 0. For square matrices with dimensionality greater than two, the determinant is
obtained recursively from the general expression

|A| =
n∑
j=1

Aij(−1)i+j |Aij | (9.12b)

where i is any fixed row of the matrix A and Aij is the (n− 1)× (n− 1) submatrix obtained
by deleting the ith row and jth column from A. Such a submatrix is known as a minor.
In words, each of the n quantities in this equation is the product of three components:
the element in the row around which one is working, −1 to the (i + j)th power, and the
determinant of the ijth minor. In applying Equation 9.12b, one starts with the original n×n
matrix and works down until the minors are reduced to 2× 2 matrices whose determinants
are scalars of the formA11A22−A12A21. A useful result is that the determinant of a diagonal
matrix is the product of the diagonal elements of that matrix, so that if

Aij =
{
ai i = j

0 i 6= j
then |A | =

n∏
i=1

ai (9.12c)

The next section shows how determinants are used in the computation of a matrix inverse.

Example 9.4. Compute the determinant of

A =

 1 1 1
1 3 2
1 2 1


Letting i = 1, i.e., using the elements in the first row of A,

|A| = 1 · (−1)1+1

∣∣∣∣ 3 2
2 1

∣∣∣∣+ 1 · (−1)1+2

∣∣∣∣ 1 2
1 1

∣∣∣∣+ 1 · (−1)1+3

∣∣∣∣ 1 3
1 2

∣∣∣∣
Using Equation 9.12a to obtain the determinants of the 2× 2 matrices, this simplifies to

|A| = [1× (3− 4)]− [1× (1− 2)] + [1× (2− 3)] = −1

The same answer is obtained regardless of which row is used, and expanding around a column,
instead of a row, produces the same result. Thus, in order to reduce the number of computations
required to obtain a determinant, it is useful to expand using the row or column that contains
the most zeros. As with all other matrix operations presented in this chapter, these calculations
are almost always performed using the build-in matrix functions in most computer packages.
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Example 9.5. To see further connections between the determinant and the solution to a set
of equations, consider the following two systems of equations:

Set one:
x1 + x2 = 1

2x1 + 2x2 = 2 Set two:
0.9999 · x1 + x2 = 1

2x1 + 2x2 = 2

The determinant for the coefficient matrix associated with set one is zero, and there is no
unique solution, rather a line of solutions, x1 = 1 − x2. In contrast, the determinant for
the matrix associated with set two is nonzero, hence its inverse exists and there is a unique
solution. However, the determinant nearly zero, 0.0002. Such a matrix is said to be nearly
singular, meaning that although the two sets of equations are distinct, they overlap so closely
that there is little additional information from one (or more) of the equations. For this set of
equations,

A−1 =
(
−10, 000 5000
−10, 000 −4999.5

)
, x =

(
−3.63× 10−12

1

)
'
(

0
1

)

While there technically is a unique solution, it is extremely sensitive to the coefficients in the set
of equations, and a very small change (such as through measurement error) can dramatically
change the solution. For example, replacing the first equation by x1 + 0.9999 ·x2 = 1, yields
the solution of x1 = 1, x2 ' 0.

Computing Inverses

The general solution of a matrix inverse is

A−1
ji =

(−1)i+j |Aij |
|A| (9.13)

where A−1
ji denotes the jith element of A−1, and Aij denotes the ijth minor of A. The

reversed subscripts (ji versus ij) in the left and right expressions arise because the right-
hand side computes an element in the transpose of the inverse (see Example 9.6). It can be
seen from Equation 9.13 that a matrix can only be inverted if it has a nonzero determinant.
Thus, a matrix is singular if its determinant is zero. This occurs whenever a matrix contains
a row (or column) that can be written as a weighted sum of the other rows (or columns).
In the context of a linear model, this happens if one of the n equations can be written as a
combination of the others, a situation that is equivalent to there being n unknowns but less
than n independent equations.

Example 9.6. Compute the inverse of

A =

 3 1 2
2 5 4
1 1 2
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First, find the determinants of the minors,

|A11| =
∣∣∣∣ 5 4
1 2

∣∣∣∣ = 6 |A23| =
∣∣∣∣ 3 1
1 1

∣∣∣∣ = 2

|A12| =
∣∣∣∣ 2 4
1 2

∣∣∣∣ = 0 |A31| =
∣∣∣∣ 1 2
5 4

∣∣∣∣ = −6

|A13| =
∣∣∣∣ 2 5
1 1

∣∣∣∣ = −3 |A32| =
∣∣∣∣ 3 2
2 4

∣∣∣∣ = 8

|A21| =
∣∣∣∣ 1 2
1 2

∣∣∣∣ = 0 |A33| =
∣∣∣∣ 3 1
2 5

∣∣∣∣ = 13

|A22| =
∣∣∣∣ 3 2
1 2

∣∣∣∣ = 4

Using Equation 9.12b and expanding using the first row of A gives

|A| = 3|A11| − |A12|+ 2|A13| = 12

Returning to the matrix in brackets in Equation 9.13, we obtain

1
12

 1× 6 −1× 0 1×−3
−1× 0 1× 4 −1× 2
1×−6 −1× 8 1× 13

 =
1
12

 6 0 −3
0 4 −2
−6 −8 13


and then taking the transpose,

A−1 =
1
12

 6 0 −6
0 4 −8
−3 −2 13


To verify that this is indeed the inverse of A, multiply A−1 by A,

1
12

 6 0 −6
0 4 −8
−3 −2 13

 3 1 2
2 5 4
1 1 2

 =
1
12

 12 0 0
0 12 0
0 0 12

 =

 1 0 0
0 1 0
0 0 1


Again, these tedious calculations are performed using matrix inversion routines available in
standard packages.

EXPECTATIONS OF RANDOM VECTORS AND MATRICES

Matrix algebra provides a powerful approach for analyzing linear combinations of random
variables. Let x be a column vector containing n random variables, x = (x1, x2, · · · , xn)T .
We may wish to construct a new univariate (scalar) random variable y by taking some linear
combination of the elements of x,

y =
n∑
i=1

aixi = aTx

where a = (a1, a2, · · · , an)T is a column vector of constants. Likewise, we can construct a
new k-dimensional vector y by premultiplying x by a k × n matrix A of constants, yk×1 =
Ak×nxn×1. Here y is a vector of k weighted sums, the jth of which is

yj =
n∑
i=1

Ajixi = aTj x



16 CHAPTER 9

where aj denotes the jth row of A. More generally, an (n×k) matrix X of random variables
can be transformed into a newm×` dimensional matrix, Y, of elements consisting of linear
combinations of the elements of X by

Ym×` = Am×nXn×kBk×` (9.14)

where the matrices A and B are constants with dimensions as subscripted.
If X is a matrix whose elements are random variables, then the expected value of X is

a matrix E[X] containing the expected value of each element of X. If X and Z are matrices
of the same dimension, then

E[X + Z] = E[X] + E[Z] (9.15)

This easily follows because the ijth element of E[X + Z] is E[xij + zij ] = E[xij ] + E[zij ].
Similarly, the expectation of Y as defined in Equation 9.14 is

E[Y] = E[AXB] = AE[X]B (9.16a)

For example, for y = Xb where b is an n× 1 column vector,

E[y] = E[Xb] = E[X]b (9.16b)

If X is a matrix of fixed constants, then E[y] = Xb. Likewise, for y = aTx =
∑n
i aixi,

E[y] = E[aTx] = aTE[x] (9.16c)

COVARIANCE MATRICES OF TRANSFORMED VECTORS

To develop expressions for variances and covariances of linear combinations of random
variables, we must first introduce the concept of quadratic forms. Consider an n×n square
matrix A and an n× 1 column vector x. From the rules of matrix multiplication,

xTAx =
n∑
i=1

n∑
j=1

Aijxixj (9.17a)

Expressions of this form are called quadratic forms (or quadratic products) as they involve
squares (x2

i ) and cross-products (xixj), and yield a scalar. A generalization of a quadratic
form is the bilinear form, bTAa, where b and a are, respectively, n× 1 and m× 1 column
vectors and A is an n × m matrix. Indexing the matrices and vectors in this expression
by their dimensions, bT1×nAn×mam×1, shows that the resulting matrix product defined and
yields a 1×1 matrix; in other words, a scalar. As scalars, bilinear forms equal their transposes
(as the transpose of a scalar simply returns that scalar), giving the useful identity

bTAa =
(
bTAa

)T
= aTATb (9.17b)

Again let x be a column vector of n random variables. A compact way to express the n
variances and n(n− 1)/2 covariances associated with the elements of x is the n× n matrix
V, where Vij = σ(xi, xj) is the covariance between the random variables xi and xj . We will
generally refer to V as a covariance matrix, noting that the diagonal elements represent the
variances and off-diagonal elements the covariances. The V matrix is symmetric (V = VT ), as

Vij = σ(xi, xj) = σ(xj , xi) = Vji (9.18a)
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Note that we can write the covariance matrix as an outer product. Letting E[x] = µ, then

V = E
[
(x− µ)(x− µ)T

]
(9.18b)

This follows as Equation 9.8b gives the ijth element of Equation 9.18b as E[(xi − µi)(xj −
µj)] = σ(xi, xj).

Now consider a univariate random variable, y =
∑
ck xk, generated from a linear

combination of the elements of x. In matrix notation, y = cTx, where c is a column vector
of constants. The variance of y can be expressed as a quadratic form involving the covariance
matrix V for the elements of x,

σ2
(
cTx

)
= σ2

(
n∑
i=1

cixi

)
= σ

 n∑
i=1

ci xi ,
n∑
j=1

cj xj


=

n∑
i=1

n∑
j=1

σ (ci xi, cj xj) =
n∑
i=1

n∑
j=1

ci cj σ (xi, xj)

= cTV c (9.19)

Note that if V is a proper covariance matrix, then cTVc ≥ 0 for all c, as this quadratic
product represents the variance (and hence ≥ 0) of some index of the elements of x.

Similarly, the covariance between two univariate random variables created from dif-
ferent linear combinations of x is given by the bilinear form

σ(aTx,bTx) = aTV b (9.20)

If we transform x to two new vectors, y`×1 = A`×nxn×1 and zm×1 = Bm×nxn×1, then
instead of a single covariance we have an `×m dimensional matrix of covariances, denoted
σ(y, z), whose ijth element is σ(yi, zj). Letting µy = Aµ and µz = Bµ, with E(x) = µ,
then σ(y, z) can be expressed in terms of V, the covariance matrix of x,

σ(y, z) = σ(Ax,Bx)

= E
[
(y− µy)(z− µz)T

]
= E

[
A(x− µ)(x− µ)TBT

]
= AV BT (9.21a)

In particular, the covariance matrix for y = Ax is

σ(y,y) = AV AT (9.21b)

so that the covariance between yi and yj is given by the ijth element of the matrix product
AVAT .

Finally, note that if x is a vector of random variables with expected value µ, then the
expected value of the (scalar) quadratic product xTAx is

E(xTAx) = tr(AV) + µTAµ (9.22)

where V is the covariance matrix for the elements of x, and the trace of a square matrix,
tr(M) =

∑
Mii, is the sum of its diagonal values (Searle 1971). Note that when x is a

scalar and A = (1), Equation 9.22 collapses to E[x2] = σ2 + µ2. More generally, E[xixj ] =
σ(xi, xj) + µiµj .
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Example 9.7 Consider three traits with the following covariance structure: σ2(x1) = 10,
σ2(x2) = 20, σ2(x3) = 30, σ(x1, x2) = −5, σ(x1, x3) = 10, and σ(x2, x3) = 0, yielding
the covariance matrix

V =

 10 −5 10
−5 20 0
10 0 30


Further, assume the vector of means for these variables is µT = (10, 4,−3). Consider two
new indices constructed from these variables, with y1 = 2x1−3x2 +4x3 and y2 = x2−2x3.
We can express these as inner products, yi = cTi x, where

c1 =

 2
−3

4

 , c2 =

 0
1
−2


From Equation 9.19, the resulting variances become σ2(y1) = c1

TV c1 = 920 and σ2(y2) =
c2
TV c2 = 140. Applying Equation 9.20, the covariance between these two indices is

σ(y1, y2) = c1
TV c2 = −350, yielding their correlation as

ρ(y1, y2) =
σ(y1, y2)√

σ2(y1) · σ2(y2)
=

−350√
920 · 140

= 0.975

Finally, consider the following quadratic function of x,

y = x2
1 − 2x1x2 + 4x2x3 + 3x2

2 − 4x2
3

We can write this in matrix form as xTAx, where

A =

 1 −1 0
−1 3 2

0 2 −4


The expected value of y follows from Equation 9.22, with E[y] = µTAµ + tr(AV), where
µTAµ = −16 and

AV =

 15 −25 10
−5 65 50
−50 40 −120


which has a trace of 15+65−120 = −40, yielding an expected value ofE[y] = −16−40 =
−56.

THE MULTIVARIATE NORMAL DISTRIBUTION

As we have seen above, matrix notation provides a compact way to express vectors of
random variables. We now consider the most commonly assumed distribution for such
vectors, the multivariate analog of the normal distribution discussed in Chapter 2. Much
of the machinery of quantitative genetics is based on this distribution, which we hereafter
denote as the MVN.

Consider the probability density function for n independent normal random variables,
where xi is normally distributed with mean µi and variance σ2

i , which we denote as xi ∼
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N(µi, σ2
i ), with x = (x1. · · · , xn)T . In this case, because the variables are independent, the

joint probability density function is simply the product of each univariate density,

p(x) =
n∏
i=1

p(xi) =
n∏
i=1

(2π)−1/2σ−1
i exp

(
− (xi − µi)2

2σ2
i

)

= (2π)−n/2
(

n∏
i=1

σi

)−1

exp

(
−

n∑
i=1

(xi − µi)2

2σ2
i

)
(9.23)

We can express this equation more compactly in matrix form by defining the matrices

V =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 · · · · · · σ2

n

 and µ =


µ1

µ2
...
µn


Because V is diagonal, its determinant is simply the product of the diagonal elements

|V| =
n∏
i=1

σ2
i

Likewise, V−1 is also diagonal, with ith diagonal element 1/σ2
i . Hence, using quadratic

products, we have
n∑
i=1

(xi − µi)2

σ2
i

= (x− µ)T V−1 (x− µ)

Substituting in these expressions, Equation 9.23 can be rewritten as

p(x) = (2π)−n/2 |V|−1/2 exp
[
−1

2
(x− µ)T V−1 (x− µ)

]
(9.24)

We will also write this density as p(x,µ,V) when we wish to stress that it is a function of
the mean vector µ and the covariance matrix V.

More generally, when the elements of x are correlated (V is not diagonal), Equation
9.24 gives the probability density function for a vector of multivariate normally distributed
random variables, with mean vector µ and covariance matrix V. We denote this by

x ∼MVNn(µ,V)

where the subscript indicating the dimensionality of x is usually omitted. The multivariate
normal distribution is also referred to as the Gaussian distribution. We restrict our attention
to those situations where V is nonsingular, in which case it is positive-definite (namely,
cTVc > 0 for all vectors c 6= 0; WL Appendix 5). When V is singular, some of the elements
of x are linear functions of other elements in x, and hence we can construct a reduced vector
of variables whose covariance matrix is now nonsingular.

Properties of the MVN

As in the case of its univariate counterpart, the MVN is expected to arise naturally when
the quantities of interest result from a large number of underlying variables. Because this
condition seems (at least at first glance) to describe many biological systems, the MVN
is a natural starting point in biometrical analysis. Further details on the wide variety of
applications of the MVN to multivariate statistics can be found in the introductory texts by
Morrison (1976) and Johnson and Wichern (2002) and in the more advanced treatment by
Anderson (2003). The MVN has a number of useful properties, which we summarize below.
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1. If x ∼ MVN, then the distribution of any subset of the variables in x is also
MVN. For example, each xi is normally distributed and each pair (xi, xj) is bivari-
ate normally distributed.

2. If x ∼ MVN, then any linear combination of the elements of x is also
MVN. Specifically, if x ∼ MVNn(µ,V), a is a vector of constants, and Am×n
is a matrix of constants, then

for y = x + a, y ∼MVNn(µ+ a,V) (9.25a)

for y = aTx =
n∑
k=1

aixi, y ∼ N(aTµ,aTV a) (9.25b)

for ym×1 = Am×nxn×1, y ∼MVNm

(
Aµ,ATVA

)
(9.25c)

3. Conditional distributions associated with the MVN are also multivariate normal. Consider
the partitioning of x into two components, an (m × 1) column vector x1 and an
[(n−m)× 1] column vector x2 of the remaining variables, e.g.,

x =
(

x1

x2

)
The mean vector and covariance matrix can be partitioned similarly as

µ =
(
µ1

µ2

)
and V =

Vx1x1 Vx1x2

VT
x1x2

Vx2x2

 (9.26)

where them×m and (n−m)×(n−m) matrices Vx1x1 and Vx2x2 are, respectively,
the covariance matrices for x1 and x2, while the m× (n−m) matrix Vx1x2 is the
matrix of covariances between the elements of x1 and x2. If we condition on x2, the
resulting conditional random variable, x1|x2, is MVN with (m× 1) mean vector

µx1|x2
= µ1 + Vx1x2V−1

x2x2
(x2 − µ2) (9.27)

and (m×m) covariance matrix

Vx1|x2
= Vx1x1 −Vx1x2V−1

x2x2
VT

x1x2
(9.28)

A proof can be found in most multivariate statistics texts, e.g., Morrison (1976).

4. If x ∼MVN, the regression of any subset of x on another subset is linear and homoscedas-
tic. Rewriting Equation 9.27 in terms of a regression of the predicted value of the
vector x1 given an observed value of the vector x2, we have

x1 = µ1 + Vx1x2V−1
x2x2

(x2 − µ2) + e (9.29a)

where
e ∼MVNm

(
0,Vx1|x2

)
(9.29b)

Extending the terminology of a univariate regression (Chapter 3) to this multivari-
ate setting, one can think of x1 as the response variable (a vector in this case) and
x2 as the predictor variable (also now a vector). Hence, Vx1x2 is the covariance be-
tween the response and predictor variances, while Vx2x2 is the (co)variance struc-
ture of the predictor variables. This generalizes the univariate slope ofσ(y, x)σ−2(x)
to an m× (n−m) matrix of slopes, Vx1x2V−1

x2x2
, in a multivariate setting.
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Example 9.8. Consider the regression of the phenotypic value of an offspring (zo) on that of
its parents (zs and zd for sire and dam, respectively). Assume that the joint distribution of zo,
zs, and zd is multivariate normal. For the simplest case of noninbred and unrelated parents,
no epistasis or genotype-environment correlation, the covariance matrix can be obtained from
the theory of correlation between relatives (Chapter 7), giving the joint distribution as zo

zs
zd

 ∼ MVN

µo
µs
µd

 , σ2
z ·

 1 h2/2 h2/2
h2/2 1 0
h2/2 0 1

 (9.30a)

where the off-diagonal elements, σ2
A/2 = (h2/2)σ2

z , follow from the parent-offspring covari-
ance. Let

x1 = ( zo ) , x2 =
(
zs
zd

)
giving

Vx1,x1 = σ2
z , Vx1,x2 =

h2σ2
z

2
( 1 1 ) , Vx2,x2 = σ2

z

(
1 0
0 1

)
From Equation 9.29a, the regression of offspring value on parental values is linear and ho-
moscedastic with

zo = µo +
h2σ2

z

2
( 1 1 )σ−2

z

(
1 0
0 1

)(
zs − µs
zd − µd

)
+ e

= µo +
h2

2
(zs − µs) +

h2

2
(zd − µd) + e (9.30b)

where, from Equations 9.28 and 9.29b, the residual error is normally distributed with mean
zero and variance

σ2
e = σ2

z −
h2σ2

z

2
( 1 1 )σ−2

z

(
1 0
0 1

)
h2σ2

z

2

(
1
1

)
= σ2

z

(
1− h4

2

)
(9.30c)

This same approach allows one to consider more complex situations. For example, sup-
pose that the parents assortatively mate (with phenotypic correlation ρz). From Table 7.5, the
parent-offspring covariance now becomes σ2

A(1 +ρz)/2, and the resulting covariance matrix
becomes

σ2
z ·

 1 h2(1 + ρz)/2 h2(1 + ρz)/2
h2(1 + ρz)/2 1 ρz
h2(1 + ρz)/2 ρz 1

 (9.30d)

Similarly, when the parent are inbred and/or related, Equation 7.4b gives the covari-
ances between an offspring and its sire and dam as (2σ2

A)(Θss + Θsd)/2 and (2σ2
A)(Θdd +

Θsd)/2, respectively, while Equation 7.11a gives the covariance between sire and dam as
σA(s, d) = 2Θsdσ

2
A. Finally, the phenotypic variance of an inbred individual is σ2

A(1 + f) +
σ2
E = σ2

z + σ2
Af = σ2

z(1 + fh2). Incorporating these expressions, the resulting covariance
matrix becomes

σ2
z ·

 1 + f0h
2 h2(Θss + Θsd) h2(Θdd + Θsd)

h2(Θss + Θsd) 1 + fsh
2 2h2Θsd

h2(Θdd + Θsd) 2h2Θsd 1 + fdh
2

 (9.30d)

Recalling Equation 7.3b allows us to entirely write this matrix in terms of the three coefficients
of coancestry associated with the parents (Θss,Θdd, and Θsd), as fx = 2Θxx − 1, while
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fo = Θsd. Equation 9.11 easily allows one to invert the 2 × 2 matrix Vx2,x2 associated
with the parents, and using the approach leading to Equationa 9.30b and 9.30c yields the
regression and associated residual variance under these more complex cases.

Example 9.9. The previous example dealt with the prediction of the phenotypic value of an
offspring given its parental phenotypic values. The same approach can be used to predict an
offspring’s additive genetic (or breeding) value (Ao) given knowledge of the parental values
(As,Ad). Again assuming that the joint distribution is multivariate normal and that the parents
are unrelated and noninbred, the joint distribution can be written asAo

As
Ad

 ∼ MVN

µo
µs
µd

 , σ2
A

 1 1/2 1/2
1/2 1 0
1/2 0 1

 (9.31a)

Proceeding in the same fashion as in Example 9.8, the conditional distribution of offspring
additive genetic values, given the parental values, is normal, so that the regression of offspring
additive genetic value on parental value is linear and homoscedastic with

Ao = µo +
As − µs

2
+
Ad − µd

2
+ e (9.31b)

and
e ∼ N(0, σ2

A/2) (9.31c)

Finally, an important merger of concepts from this and the previous example is the predic-
tion of an offspring’s breeding value (Ao) given the phenotypes (zs, zd) of its parents. Assuming
multivariate normality,Ao

zs
zd

 ∼ MVN

 0
µs
µd

 , σ2
z

 h2 h2/2 h2/2
h2/2 1 0
h2/2 0 1

 (9.31d)

Elements that differ from Equation 9.30a are that the expected value of Ao is zero (from the
definition of breeding values), and σ2(Ao) = σ2

A = h2σ2
z . Using the same approach as in

Example 9.8 yields

Ao =
h2

2
(zs − µs) +

h2

2
(zd − µd) + e, σ2

e = σ2
A

(
1− h4

2

)
(9.31e)

Under more general settings (such as inbred and/or related parents), the covariance matrix in
Equation 9.31d is replaced by Equation 9.30d, subject to the minor change that the 1,1 element
(1 + f0h

2) is replaced by h2(1 + fo). Notice that the prediction of breeding values from
phenotypic information under very general types of relationships is a function of h2 and the
coefficients of coancestry of the measured (i.e., phenotyped) relatives. This serves as a lead-in
to the very general method of BLUP for predicting breeding values given a set of phenotypic
values on a known group of relatives (Chapter 30).

MATRIX GEOMETRY

Eigenvalues and Eigenvectors

A vector can be thought of as an arrow, corresponding to a direction in space, as it has
a length and an orientation. Similarly, a matrix can be thought of as describing a vector
transformation, so that when one multiplies a vector by that matrix, it generates a new
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vector. Such a transformation generally has the effect that the resulting vector is both rotated
in direction and scaled (shrinking or expanding its length) relative to the original vector.
Hence, the new vector b = Ac usually points in a different direction than c as well as
usually having a different length. However, a set of vectors exists for any square matrix that
satisfy

Ay = λy (9.32)

Namely, the new vector (λy) is still in the same direction (as multiplying a vector by a
constant does not change its orientation, except for reflecting it about the origin when
λ < 0), although it is scaled so that its new length is an amount λ of the original length.
Vectors that satisfy Equation 9.32 are called the eigenvectors of that matrix, with λ as the
corresponding eigenvalue for a given eigenvector. For such vectors, the only action of
the matrix transformation is to scale their length by some amount, λ. These vectors thus
represent the inherent axes associated with the vector transformation given by A, and
the set of all such vectors, along with their corresponding scalar multipliers, completely
describes the geometry of this transformation. Note that if y is an eigenvector, then so is
ay, as A(ay) = a(Ay) = λ(ay), while the associated eigenvalue, λ, remains unchanged.
Hence, we typically scale eigenvectors to be of unit length to yield unit or normalized
eigenvectors, which are typically denoted by e.

The resulting collection of eigenvectors and their associated scaling eigenvalues are
called the eigenstructure of a matrix. This structure provides powerful insight into the
geometric aspects of a matrix, such as the major axes of variation in a covariance matrix.
Appendix 3 examines the singular value decomposition (SVD) that generalizes this concept
to nonsquare matrices, while WL Appendix 5 examines eigenstructure in more detail.

Notice that if a matrix has an eigenvalue of zero, then from Equation 9.32, there is some
vector that satisfies Ae = 0, namely that one can write at least one of the rows of A as
a linear combination of the other rows. Put another way, if one has a set of n equations,
one or more of these equations is redundant, as it is simply a linear combination of other
equations, and hence there is no unique solution to the system of equations. Recall that the
determinant of a matrix is zero in such cases, and hence we have an important result that
the determinant of a matrix is zero when it has one (or more) zero eigenvalues.

The eigenvalues of an n-dimensional square matrix, A, are solutions of Equation 9.32,
which can be written as (A−λ I)y = 0. This implies that the determinant of (A−λ I) must
equal zero, which gives rise to the characteristic equation for λ,

|A− λI| = 0 (9.33a)

whose solution yields the eigenvalues of A. This equation can be also be expressed using
the Laplace expansion,

|A− λI| = (−λ)n + S1(−λ)n−1 + · · ·+ Sn−1(−λ)1 + Sn = 0 (9.33b)

where Si is the sum of all principal minors (minors including diagonal elements of the
original matrix) of order i. Finding the eigenvalues thus requires solving a polynomial
equation of order n, implying that there are exactly n eigenvalues (some of which may be
identical, i.e., repeated). In practice, for n > 2 this is accomplished numerically, and most
analysis packages offer routines to accomplish this task.

Two of these principal minors are easily obtained and provide information on the
nature of the eigenvalues. The only principal minor having the same order of the matrix is
the full matrix itself, which means that Sn = |A|, the determinant of A. S1 is also related to
an important matrix quantity, the trace,

tr(A) =
n∑
i=1

Aii (9.34a)
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Observe thatS1 = tr(A), as the only principal minors of order one are the diagonal elements
themselves, the sum of which equals the trace. Both the trace and determinant can be
expressed as functions of the eigenvalues, with

tr(A) =
n∑
i=1

λi and |A| =
n∏
i=1

λi (9.34b)

Hence, A is singular (|A| = 0) if, and only if, at least one eigenvalue is zero. As we will
see, if A is a covariance matrix, then its trace (the sum of its eigenvalues) measures its total
amount of variation, as the eigenvalues of a covariance matrix are nonnegative (λi ≥ 0).
Another useful result is that the diagonal elements in a diagonal matrix correspond to its
eigenvalues.

A final useful concept is the idea of the rank of a square matrix, which its number of
nonzero eigenvalues. Essentially, this is the amount of information (number of independent
equations) that are specified by a matrix. A square n× n matrix of full rank was n nonzero
eigenvalues and hence is nonsingular (a unique inverse exists).

Example 9.10. Consider the following matrix,

A =
(

1 2
2 1

)
. Hence, det (A− λI) = det

(
1− λ 2

2 1− λ

)
Using Equation 9.12a to compute the determinant and solving Equation 9.33a yields (1 −
λ)2−4 = 0, or the quadratic equation λ2−2λ−3 = 0, which solutions of 3 and−1. Noting
that S1 = tr(A) = 2 and S2 = det(A) =−3, we also recover this equation using Equation 9.33b,
|A− λI| = (−λ)2 + S1(−λ)1 + S2 = λ2 − 2λ− 3.

Next, note that the vectors yT1 = (1, 1) and yT2 = (1,−1) correspond to the eigenvectors
of A, as

Ay1 =
(

1 2
2 1

)(
1
1

)
= 3 ·

(
1
1

)
, and Ay2 =

(
1 2
2 1

)(
1
−1

)
= (−1) ·

(
1
−1

)
Hence, y1 is an eigenvector associated withλ1 = 3, while y2 is an eigenvector associated with
λ2 = −1. Recalling that the length of a vector x is given by ||x|| =

√
xTx (WL Appendix

5), the lengths of both y1 and y2 are
√

2. Hence, the two unit eigenvectors are given by
ei = yi/

√
2. Note that yT1 y2 = 1 · 1 + (−1) · 1 = 0, which implies (WL Appendix 5) that

these two vectors are orthogonal (at right angles) to each other.

Example 9.11. Insight into the role of zero eigenvalues can be gained by considering two
systems of linear equations, where in both cases the corresponding matrix of coefficients is
singular. This implies that some of the equations are redundant with each other (i.e., are linear
combinations of the others). However, the determinant is a very coarse measure of the amount
of redundancy, as it simply indicates that at least one equation is redundant. The number of
zero eigenvalues goes much further, giving the number of redundant equations. Consider the
following two sets of equations:

Set one:
x1 + x2 + x1 = 1

2x1 + 2x2 + 2x3 = 2
3x1 + 3x2 + 3x3 = 3

Set two:
x1 + x2 + x3 = 1

2x1 + 2x2 + 2x3 = 2
x1 − x2 − 2x3 = 3

Clearly, set one consists of three redundant equations (all are multiples of each other), while set
two contains at least one redundant equation, as the first and second equations are multiples
of each other. The corresponding coefficient matrices for these sets become

A1 =

 1 1 1
2 2 2
3 3 3

 , A2 =

 1 1 1
2 2 2
1 −1 −2
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As expected, both of these matrices have determinants of zero. A1 has eigenvalues of 6, 0,
and 0, while the eigenvalues for A2 are 2.79,−1.79, and 0. Note in both cases that the trace (6
and 1, respectively) equals the sum of the eigenvalues. Because A1 contains only one nonzero
eigenvalue (it has rank 1), only one relationship can be estimated from set one: the solution is
the plane defined as all points satisfying x1 = 1− x2 − x3. Set two, by virtue of having two
nonzero eigenvalues (it has rank 2), yields two relationships (x2 = x1 +5 and x3 = 2x1−4).
This importance the number of nonzero eigenvalues will reappear next chapter when we
examine the number of fixed effects in a linear model that we can uniquely estimate.

Principal Components of the Variance-covariance Matrix

An important application of eigenstructure is principal component analysis (PCA), the
eigenanalysis of a covariance matrix. Consider a random vector, x, with an associated
covariance matrix, V. We are often interested in how the variance of the elements of x
can be decomposed into independent components. For example, even though we may be
measuringnvariables, only one or two of these may account for the majority of the variation.
If this is the case, we may wish to exclude those variables contributing very little variation
from further analysis. More generally, if random variables are correlated, then certain linear
combinations of the elements of x may account for most of the variance. PCA extracts these
combinations by decomposing the variance of x into the contributions from a series of
orthogonal vectors, the first (PC1) of which explains the most variation possible for any
single vector, the second (PC2) the next possible amount, and so on until we account for the
entire variance of x. These vectors (or axes) correspond to the eigenvectors of V associated
with the largest, second largest, and so on, eigenvalues.

Our starting point for PCA is to note that the eigenvalues of a covariance matrix are
never negative, and are all positive if V is nonsingular. A matrix, V, with all positive
eigenvalues is said to be positive definite, and this implies that cTVc > 0 for values of
c (other than the trivial case c = 0). Recall (Equation 9.19) that this quadratic product is
non-negative as it corresponds to the variance of the linear combination cTx. Because all of
the eigenvalues of V are non-negative, their sum represents the total variance implicit in
the elements of x. From Equation 9.34b, this sum is simply the trace of V, tr(V). A matrix V
is said to be non-negative definite if cTVc ≥ 0, which happens when all its eigenvalues are
non-negative, so that a covariance matrix, even if singular, is always non-negative definite,
and a nonsingular covariance matrix is always positive definite.

Suppose that V is an n-dimensional covariance matrix, and we order its eigenvalues
from largest to smallest, λ1 ≥ λ2 ≥ · · · ≥ λn, with their associated (unit-length) eigenvectors
denoted by e1, e2, · · · , en, respectively. λ1 is referred to as the leading eigenvalue, with e1

the leading eigenvector. It can be shown (WL Appendix 5) that the maximum variance
for any linear combination of the elements of x (y = cT1 x, subject to the constraint that
||c1|| = 1), is

max
[
σ2(y)

]
= max
||c1||=1

[
σ2
(
cT1 x

)]
= max
||c1||=1

[
cT1 Vc1

]
= λ1

which occurs when c1 = e1. This vector is the first principal component (often abbreviated
as PC1), and accounts for a fraction λ1/tr(V) of the total variation in x. We can partition
the remaining variance in x after the removal of PC1 in a similar fashion. For example, the
vector c2, that is orthogonal to PC1 (cT2 c1 = 0) and maximizes the remaining variance can
be shown to be e2, which accounts for a fraction λ2/tr(V) of the total variation in x. By
proceeding in this fashion, we can see that the ith PC is given by ei, and that the amount of
variation it accounts for is

λi

/ n∑
k=1

λk =
λi

tr(V)
(9.35a)
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Figure 9.1. A joint scree and cumulative variance plot. The horizontal axis gives the eigen-
value number (λi corresponds to PCi), while the vertical axis jointly displays a scree plot
(filled circles, the corresponding eigenvalue, λi) and the cumulative variance associated with
the first i PCs (open circles; Equation 9.35b).

Figure 9.2. The impact of increasing the difference between the major and minor eigenvalues
(λ1 − λ2) while their sum is held constant. When the two eigenvalues are equal, the spread
of x values about their mean is spherical, while it becomes increasingly elongated as the dif-
ference between the eigenvalues increases. Any tilt in this elongated distribution is generated
by correlations between elements of x (the orientation being given by the direction of the
associated eigenvectors, e1 and e2).

Put another way, λi/tr(V) is the fraction of that total variance explained by the linear
combination eTi x. It follows that the fraction of total variation accounted for by the first k
PCs is

λ1 + · · ·+ λk
tr(V)

(9.35b)

A graph of Equation 9.35a as a function of k is called a cumulative variance plot (Figure
9.1).

Another useful visual display of the eigenstructure is a scree plot, which graphs the
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eigenvalues ranked from largest to smallest (Figure 9.1). The term scree refers to the loose
pile of rocks that comprise the steep slope of a mountain, as most scree plots display a
rapid falloff, akin to what one would see in a scree field. Suppose the eigenvalues of V
are roughly similar in magnitude (a relatively flat scree plot). For three dimensions this
implies that the distribution of x is roughly spherical (i.e., a 3D plot of the elements of
x corresponds to a soccer ball) and hence has little structure. As the eigenvalues become
increasingly dissimilar, the scree plots starts to show a dramatic falloff in values, and the
distribution of values of x becomes stretched and elongated, generating some axes with
larger, and others with smaller, variances. Figure 9.2 shows the impact in two dimension
when the trace of a matrix (the sum of its eigenvalues) is held constant, while the difference
between λ1 and λ2 increases.

A nearly flat scree plot indicates very little structure in V, while a typical scree plot
(a rapid decline in eigenvalues) indicates that much of the variance is concentrated in a
few directions (or major axes). Another way to state this is that a small variance in the
eigenvalues, σ2(λ), implies little structure (roughly equal variance in all directions) in the
structure of x, while the distribution of x becomes increasing concentrated in a smaller
number of directions as the variance in the eigenvalues increases.

Example 9.12 Here we perform PCA for the covariance matrix given in Example 9.7,

V =

 10 −5 10
−5 20 0
10 0 30


The eigenvalues and their associated eigenvectors are found to be λ1 = 34.41, λ2 = 21.12,
and λ3 = 4.47, with

e1 =

 0.400
−0.139

0.906

 , e2 =

 0.218
−0.948
−0.238

 , e3 =

 0.892
0.287
−0.349


Hence, PC1 accounts for λ1/tr(V) = 34.41/60 = 57% of the total variation of V. There are
several ways to interpret PC1. The first is as the direction of the maximal axis of variation (e.g.,
Figure 9.2). A second is that the weighted index yi = eT1 z (a new composite variable),

y1 = 0.400z1 − 0.139z2 + 0.906z3

accounts for 57% of the total variation by itself.
Similarly, PC2 accounts for λ2/tr(V) = 21.12/60 = 35% of the total variance, and gives

the direction of the most variation orthogonal to PC1 (eTi e2 = 0). The weighted index corre-
sponding to PC2 is

y2 = 0.218z1 − 0.948z2 − 0.238z3

Using the two dimensional vector yT = (y1, y2) accounts for (34.31+21.12)/60 or 93% of the
variation of x. This illustrates one use of PCA, which is for dimensional reduction, extracting
a set of weighted indices of much lower dimension than the original vector as a proxy for the
variation in x.

Example 9.13 As we will see in Chapter 20, an important application of PCA is in controlling
for population structure in genome-wide association studies (GWAS). The basic idea of a
GWAS is to search for marker-trait associations using densely-packed SNPs. For the kth SNP
marker (assumed to be biallelic), individuals are grouped into three genotype classes (MkMk,
Mkmk, and mkmk), trait means are computed for each class, and a marker-effect examined
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using ANOVA (i.e., an among-group difference in trait means). One simple linear model to
test for an effect from SNP k would be the regression

z = µ+ βknk + e (9.36a)

where z is the trait value, µ is the population mean, nk denotes the number of copies of
allele Mk in an indvidual (with values of 0, 1, or 2), and 2βk is the difference in average
trait value between the two different SNPr homozygotes. A significant value of βk indicates
a marker-trait association.

Marker-trait associations can arise from linkage disequilibrium (LD) between the marker
and a very closely-linked QTL (Chapter 5). However, they can also arise from population
structure. Suppose our GWAS sample, unbeknownst to the investigator, consists of two pop-
ulations, with population one trending to be taller than population two. Further, because
of population structure, some marker allele frequencies differ between the populations. A
marker that is predictive of group membership (e.g., an allele very common in population one
but very rare in population two) will show a marker-trait association even when it is unlinked
to any QTLs for height.

This complication from population structure arises when subpopulations in the sample
differ in mean trait value (the subpopulation mean µ∗ 6= µ). If one could first adjust for any
subpopulation-specific differences, then any remaining marker-trait associations are likely due
to LD with nearby QTLs. In a typical GWAS, a very large number of markers are scored, and
these provide information on any population structure. To adjust for structure, the investigator
first constructs a marker covariance matrix using markers outside of those on the chromosome
being tested. A PCA analysis of this covariance matrix would look for the presence of structure
by examining either a scree or a cumulative variance plot, and choose the first p PCs by some
criteria. Let mi denote the marker vector for individual i for these scored markers, for example
with the value for element j being 0, 1, or 2, depending on the number of copies of alleleMj in
individual i. The idea is to predict the mean trait value in a subpopulation (µ∗) by regression
on these PCs,

z = µ+
p∑
`=1

γ`z`,i + βknk + e (9.36b)

= µ∗ + βknk + e (9.36c)

Here, z`,i = eT` mi is the value for individual i in the index of marker information given by PC
`. The γ` are the best fit predictors (partial regression coefficients) of how PC ` influences the
overall mean (which are fit along with µ and βk by least-squares). Hence, µ∗ = µ+

∑
γ`z`,i

is the predicted mean given the population from which individual i is drawn, leaving βknk as
any residual effect from marker k (which was not used in the population structure correction).

Example 9.14 A related issue to the population structure correction in a GWAS is accessing
the amount of shared relatedness among all pairwise combinations over a collection of n
individuals (Chapter 20). This is done by constructing an n× nmatrix whose ijth element is
an estimate of 2Θij , twice the coefficient of coancestry (Chapters 7 and 8). Note that 2Θ is the
expected fraction of the genome shared by two individuals and is also the coefficient on the
amount of additive genetic variance that contributes to their phenotypic correlation (Equation
7.11a). When estimated from pedigree data alone, this is called the numerator relationship
matrix, and is denoted by A. When estimated solely from marker data (Chapter 8), this is
usually denoted by G and called the genomic relationship matrix (Chapters 30 and 31). One
delicate issue with marker data is that there is no guarantee the matrix constructed from all
pairwise estimators will be non-negative definite (and hence a proper covariance matrix).
Ways to both ensure this, and also calculate G in a single matrix operation, were provided by
VanRaden (2007, 2008).

The starting point is the marker information matrix, M. For a set of m markers scored
over n individuals, M is n × m, with the ith row corresponding to the marker genotypes
for individual i, while the jth column shows the genotypes for marker j over all scored
individuals. At each SNP, we count the number of copies of the so-called reference allele (one
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allele at the SNP is set to value 1, the alternative to value 0; Chapter 8), with Mij denoting
the number of reference alleles at locus i in individual j, which takes on values of 0, 1, and 2
for, respectively, SNP genotypes at locus i of 00, 10, and 11 (VanRanden 2007). Alternatively,
SNP data is often coded by subtracting one from each category, giving scores of −1, 0, and
1 (VanRanden 2008). As a toy example, suppose that four SNPs are scored in each of three
individuals, resulting in the 3× 4 matrix (using the VanRanden 2007 coding)

M =

 1 0 1 1
1 −1 1 −1
−1 0 0 0


This indicates that individual one has genotypes of 11, 10, 11, and 11 at the four markers,
individual two has genotypes of 11, 00, 11, and 00, and individual three has genotypes of 00,
10, 10, and 10. The 3× 3 and 4× 4 matrices, MMT and MTM respectively, become

MMT =

 3 1 −1
1 4 −1
−1 −1 1

 MTM =


3 −1 2 0
−1 1 −1 1

2 −1 2 0
0 1 0 2


Mn×mMT

m×n corresponds to the covariance matrix for marker scores (genotypes) among in-
dividuals, and as will be shortly demonstrated, can be used to construct G. Diagonal elements
correspond to the number of homozygotes for individuals, showing that individuals one, two,
and three have, respectively, 3, 4, and 1 homozygotes among their four scored markers. Off
diagonal elements correspond to the similarity (in marker genotypes) of the two individuals.
Individuals one and two are more similar accross the markers, while one and three, as well
as two and three, are more dissimilar (negative values). More generally, the dimensionality of
this square matrix is the number of individuals, n.

Conversely, the m ×m matrix, MT
m×nMn×m, quantifies the covariance over markers,

with negative values showing indicating negative associations between alleles at two different
markers and positive value indicating positive associations. This is the matrix from which PCs
are extracted to correct for population structure (Example 9.13). The dimensionality of this
square matrix is the number of markers, m, and often mÀ n, so that this matrix is expected
to be singular (the maximum number of positive eigenvalues is the smaller of n and m),

VanRaden (2007, 2008) proposed two methods (Equations 8.15b and 8.16b) for using M
to generate an estimate of G. Define the allele-frequency matrix P whose ith column is given
by 2pi1 when the VanRanden (2007) marker coding scheme (0, 1, 2) is used. Namely, a vector
whose values are all 2pi, the frequency of the reference allele at locus i. When markers are
scored by the VanRandem (2008) coding (−1, 0, 1), then the ith column is given by 2(pi−0.5)1.
Finally, define Z = M−P. With these definitions, Van Randen’s first method is

ĜV R1 =
ZZT

2
∑m
i=1 pi(1− pi)

(9.37a)

When using the VanRaden (2007) coding, this recovers Equation 8.16a in matrix form. This
estimate weights all marker loci equally.

VanRanden’s second method weights the information from each locus, by defining the
diagonal matrix D whose iith element is given by

Dii =
1

m 2 pi(1− pi)
(9.37b)

with
ĜV R2 = ZDZT (9.37c)

which, when using VanRanden’s (2007) coding recovers Equation 8.15b. This estimator places
more weight on loci with rare alleles.
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To demonstrate that Equations 9.37a and 9.37c generate non-negative definite matrices,
we need to show that cTGc ≥ 0 for all vectors c. Ignoring the positive constant in the
denominator of Equation 9.37a, we have

cT ĜV R1 c = cTZZT c = yTy =
∑

y2
i ≥ 0

with the vector y = ZT c. Similarly,

cT ĜV R2 c = cTZDZT c = zT z =
∑

z2
i ≥ 0

where the vector z = D1/2 ZT c, with the square root matrix defined by Equation A3.7a.
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