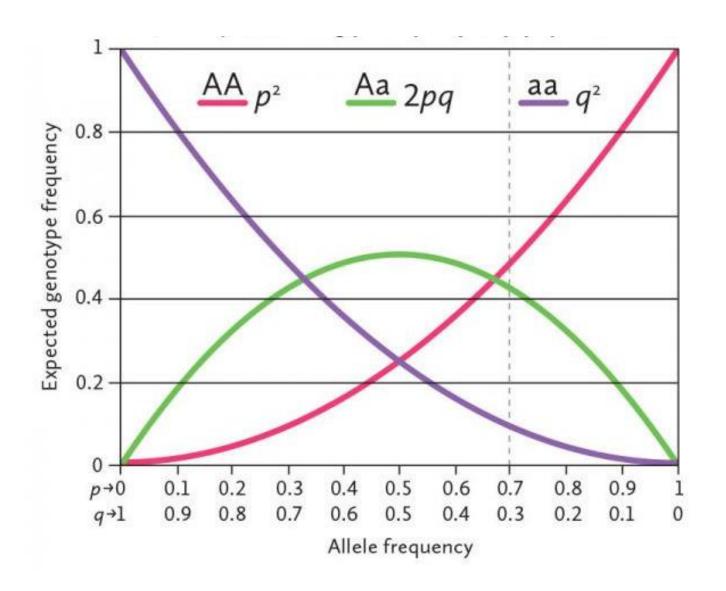
Small Populations: Inbreeding

Inbreeding

- Mating between related individuals
 - Individual instances
 - generally outbreeding population; one-off matings of related individuals
 - Regular systems of inbreeding
 - e.g. creating recombinant inbred lines
 - Local breeding structures
 - e.g. based on proximity; assortative mating
 - Overall relatedness within small populations


Common misperception

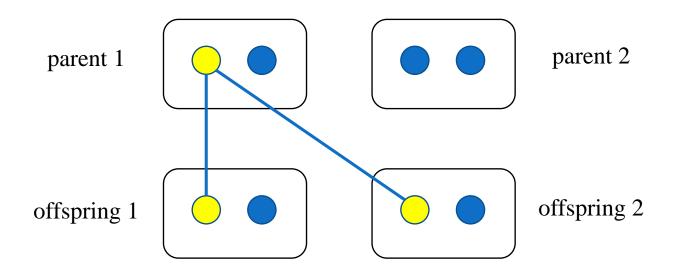
- Inbreeding leads to departures from Hardy-Weinberg equilibrium genotype frequencies.
 - Not necessarily true.
 - (And: departures from H-W genotype frequencies lead to an excess of homozygotes, uncovering rare recessive alleles. This can be true, but not necessarily a function of inbreeding *per se*).

The actual problem

- In smaller populations, drift is a stronger force than selection deleterious alleles can increase in frequency.
- * The frequency of a homozygous genotype increases as the allele frequency increases.
 - Recessive deleterious alleles are uncovered.
- Also ... allele frequencies depend on population sizes.
 - If a population contains 20 diploid individuals, the rarest allele has a frequency of 1/40.

H-W genotype frequencies

Small population sizes


- Rare alleles can become common via drift.
- Deleterious homozygous genotypes become more likely.

• Increase in relatedness between individuals is also a consequence of small population sizes.

Inbreeding

• Individuals in the population tend to carry more and more alleles that are identical by descent (IBD).

Identity by Descent (IBD)

• Alleles that derive from a common ancestral allele are IBD.

Inbreeding Coefficient

• Measure inbreeding via the **Inbreeding** Coefficient:

 $F_t = Pr$ (2 alleles w/in an individual at a locus are IBD)

Inbreeding coefficient in gen t+1

• Generating inbreeding: F_{t+1}

Sample the first allele, then ...

• this allele is sampled again (new inbreeding in gen t+1)

or

 a second allele is sampled, but it was already IBD with the first allele at gen t (old inbreeding)

Inbreeding coefficient in gen t+1

•
$$F_{t+1} = \frac{1}{2N} + (1 - \frac{1}{2N})F_t$$

N = population size (# individuals)

new inbreeding

old inbreeding

• If
$$F_0 = 0$$
, then:

$$F_t = 1 - (1 - \frac{1}{2N})^t$$

Inbreeding Coefficient

- Increases over time as alleles in a population are lost to drift.
- Eventually, one allele will become fixed in a population ...
- $F_t = Pr$ (2 alleles w/in an individual at a locus are IBD) \Rightarrow 1.

Inbreeding exercise

- statgen.ncsu.edu/dahlia/inbreeding
 - [click on 'go']
- Simulates a small population over time.
- First value in each row is the generation number, starting at zero.
- Next are the genotypes of the thirteen individuals in the population.
 - [how many alleles are there at this locus?]

- Successive generations are simulated until only two alleles are left in the pop.
 - How many generations did this take?
 - Will this be the same every time the simulation is run? Why or why not?
- What are your expectations for the inbreeding coefficient of this population at this point?
- What are your expectations for genotype frequencies at this point?
 - Do you expect H-W genotype frequencies in this population?

- What information does the second-tolast column (next to the genos) provide?
 - Can this number increase between generations? Why or why not?
- What information does the final column provide?
 - Does this value always decrease over time? Why or why not?
- At the bottom of the page, a χ^2 statistic is given. The null hypothesis tested is: "H₀: genotype frequencies follow H-W expectations." What results do you get?

Some take-home messages

- Small populations are affected strongly by drift.
- Alleles will be lost over time.
 - Which alleles are lost is random.
- The inbreeding coefficient increases over time as alleles are lost.
- We still may expect to find H-W genotype frequencies in the population.
- * Genetic variation is reduced over time.