Fundamentals vs. Applications

Big picture context

Theory

Applications

- Describe something about the world
- Collect data
- Analyze it

Describe something about the world

- "Holy cow, that's crazy"
 - https://www.bbc.com/travel/article/20210 915-a-british-beast-rarer-than-the-panda

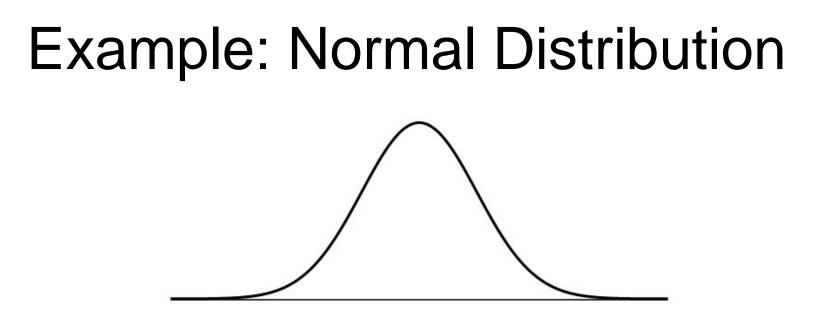
• What's their inbreeding coefficient?

Big picture context

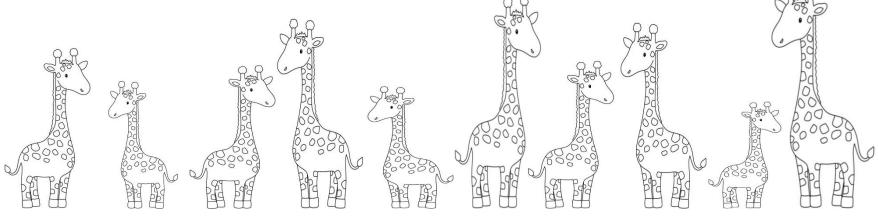
Theory

- What's an inbreeding coefficient??
- Need a framework
 - Assumptions
 - Definition of terms
 - Not subjective/open to interpretation.
- Model

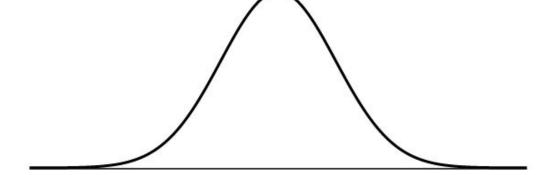
Applications


- Describe something about the world
- Collect data
- Analyze it

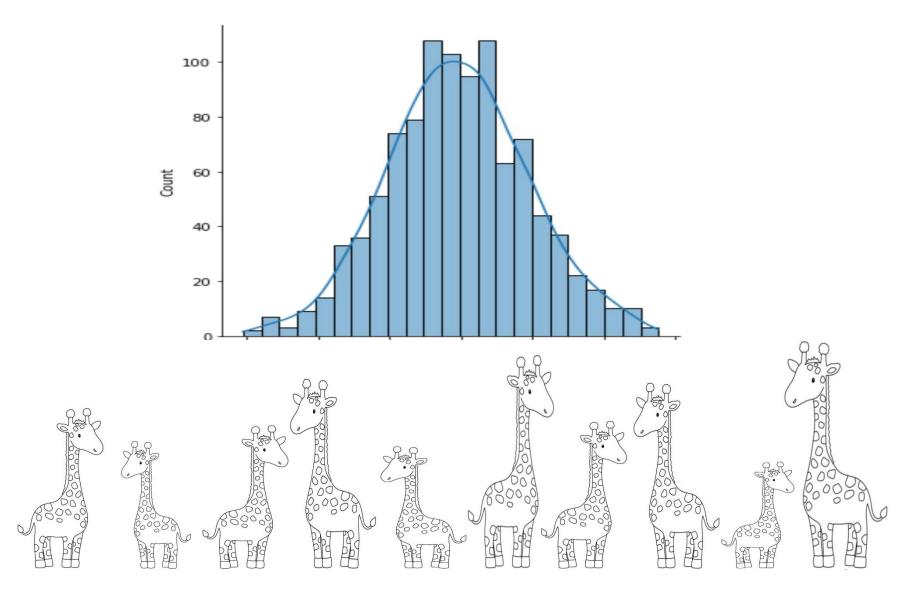
Models


- Mathematical representations of real life processes.
 - Simplifications do not try to capture all the complexities/nuances of real life.
- Provide a way to predict/understand behavior.
 - can describe current behavior,
 - or predict future behavior.
- A good model can do this even if it's a simplification of the real life process.

Models


• Many ways models can be created.

• Height is often modeled using a normal distribution.


Normal distribution

• Defined with an equation:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Height data tends to look Normal

Height data tends to look Normal

• Of course, height isn't actually generated by the equation ...

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

• The normal distribution just tends to capture the data well.

Population Genetics Models

- Often defined by a list of assumptions.
 - We'll see a lot of these coming up.

- The assumptions dictate the dynamics of alleles over time.
 - Simplifications of real life.
 - Allow us to predict behavior using mathematical equations.

Reminder: big picture context

Theory

- Model
- A framework
 - Not subjective/open to interpretation.
 - Assumptions
 - Definition of terms

What's an inbreeding coefficient??

Applications

- Describe something about the world
- Collect data

• Analyze it

Parameters

- Mathematical constructs
- Can be used to define a model
- Can be defined by the model

• Normal distribution:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

 μ and σ^2 are parameters

Parameters

- Defined by equations
- Can be functions of other parameters

•
$$\mu = E[X]$$

• $\sigma^2 = E[(X - \mu)^2]$

- The inbreeding coefficient is a parameter, defined by an equation
 - we'll see it later on in the class.

Reminder: big picture context

Theory

- Model
- A framework
 - Not subjective/open to interpretation.
 - Assumptions
 - Definition of terms

An inbreeding coefficient is a parameter, defined by an equation.

Applications

- Describe something about the world
- Collect data
- Analyze it

The inbreeding coefficient is a parameter.

- Parameters are defined using an equation ... do not involve data.
- What do we do with data?
- Need an estimator.
 - Also an equation (one for data).
- Can have many different estimators of the same parameter.
 - each with different equations.

Estimators

- Equations:
 - functions of the data.

• These equations often look nothing like the equation that defines the parameter.

Why do we have models?

• Why not just use estimators since they're what's important for summarizing the data?

Models provide a context

- Inbreeding coefficient: parameter
 - defined via an equation
- Estimator for the inbreeding coefficient
 - can be many different versions
 - e.g. via Anova; via Bayesian approach
 - each with different properties
- The definition of the parameter stays the same

Reminder: big picture context

Theory

- Model
- A framework
 - Not subjective/open to interpretation.
 - Assumptions
 - Definition of terms

An inbreeding coefficient is a parameter, defined by an equation.

Applications

- Describe something about the world
- Collect data
- Analyze it

The estimator for the inbreeding coefficient is defined by its own equation.

The model provides a context

- A context for evaluating estimators/ estimates
 - comparing results from different approaches
- If you don't understand the model assumptions and the definitions, it's much harder to evaluate your results.

This class is focused on models

- What they are
 - Their assumptions
 - The consequences of these assumptions
 - What happens when you modify the assumptions
- How terms are defined
 - Parameters, not estimators
 - (some exceptions)
- Understanding the fundamentals puts you in a better position for learning the applications.