Hardy-Weinberg genotype frequencies

 If alleles come together at random to form genotypes, then genotype frequencies will be products of allele frequencies:

$$P(AA) = p^{2}$$

$$P(Aa) = 2pq$$

$$P(aa) = q^{2}$$

 Otherwise, there is Hardy-Weinberg disequilibrium (HWD)

Linkage Disequilibrium (LD)

 Alleles at one locus are correlated with alleles at a second locus on a population level.

$ \mathbf{A} $	$ \mathbf{A} $	$ \mathbf{A} $	$ \mathbf{A} $	A	A	A	$ \mathbf{A} $	a	a	a	a
В	В	B	B	В	В	b	b	b	b	b	b

If you sample a haplotype at random from the population, does knowing the allele at the first locus of this haplotype give you information about the allele at the second locus?

Linkage Disequilibrium

• One usual measure of LD is:

$$D_{AB} = P_{AB} - p_A p_B$$

- $P_A = 8/12$
- $P_{\rm B} = 6/12$
- $P_{AB} = 6/12$
- $D_{AB} = 1/6$

Linkage Disequilibrium

• One usual measure of LD is:

$$D_{AB} = P_{AB} - p_A p_B$$

LD is a measure of extant haplotypes

- Estimates do not rely on or measure inheritance
- LD does not measure how often alleles are transmitted together

Properties of LD

• One usual measure of LD is:

$$D_{AB} = P_{AB} - p_A p_B$$

■
$$\mathbf{D}_{\mathbf{A}\mathbf{B}} = -\mathbf{D}_{\mathbf{A}\mathbf{b}} = -\mathbf{D}_{\mathbf{a}\mathbf{B}} = \mathbf{D}_{\mathbf{a}\mathbf{b}}$$
 \leftarrow can denote as \mathbf{D}

a

	В	b	e	quiv.	В	b	
\	$P_{AB} = p_A p_B + D_{AB}$	$P_{Ab} = p_A p_b + D_{Ab}$	p_A	A	$P_{AB} = p_A p_B + D$	$P_{Ab} = p_A p_b - D$	p_A
l	$P_{aB} = p_a p_B + D_{aB}$	$P_{ab} = p_a p_b + D_{ab}$	p_a	a	$P_{aB} = p_a p_B - D$	$P_{ab} = p_a p_b + D$	p _a
	p_{B}	p_b			p_{B}	p_b	

Bounds on LD

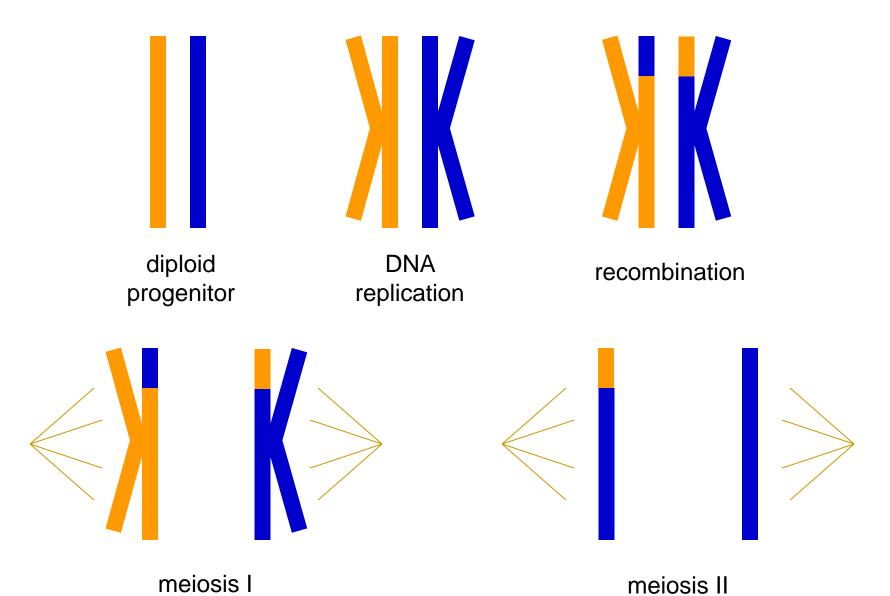
- $\bullet 0 \le p_A p_B + D_{AB} \le \min(p_A, p_B)$
- $\bullet 0 \le p_A p_b D_{AB} \le \min(p_A, p_b)$
- $\bullet 0 \le p_a p_B D_{AB} \le \min(p_a, p_B)$
- $0 \le p_a p_b + D_{AB} \le \min(p_a, p_b)$
- \blacksquare max $(-p_A p_B, -p_a p_b) \le D_{AB} \le \min(p_A p_b, p_a p_B)$

Other Measures of LD

• D' ("D-prime") normalize D by the maximum value it can obtain:

$$D'_{AB} = \begin{cases} D_{AB} / [max(-p_A p_B, -p_a p_b)] & \text{if } D_{AB} < 0 \\ D_{AB} / [min (p_A p_b, p_a p_B)] & \text{if } D_{AB} > 0 \end{cases}$$

LD can be created by


- Mixing of populations.
- Population substructure (non-random mating within populations).
- Mutations creating new haplotypes.
- Selection favoring certain alleles.
- Founder effects.
- Genetic drift.

LD decays over time

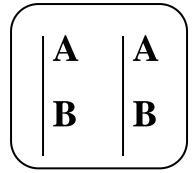
■ LD *decays* because of recombination

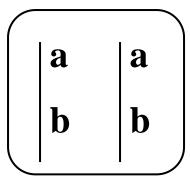
- $D_{AB}(g) = (1 r)^g \times D_{AB}(0)$
 - r = recombination rate, g = number of generations
- Although this predicts the expected value of LD over time, there is a large variance around the mean.
- Populations with similar starting values can be quite different after time.

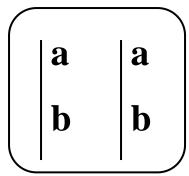
Reminder: meiosis & recombination (extremely simplified)

Consider Two Populations

Population 1 haplotypes:

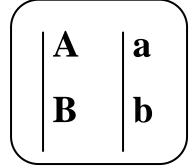

| $ \mathbf{A} $ |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| В | В | В | В | В | В | В |

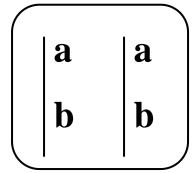

Population 2 haplotypes:

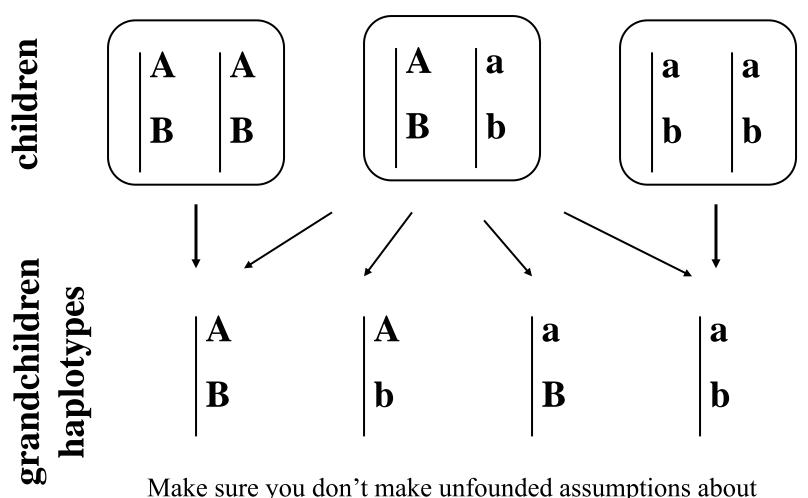

a	a	a	a	a	a	a
b	b	b	b	b	b	b

If These Populations Mix

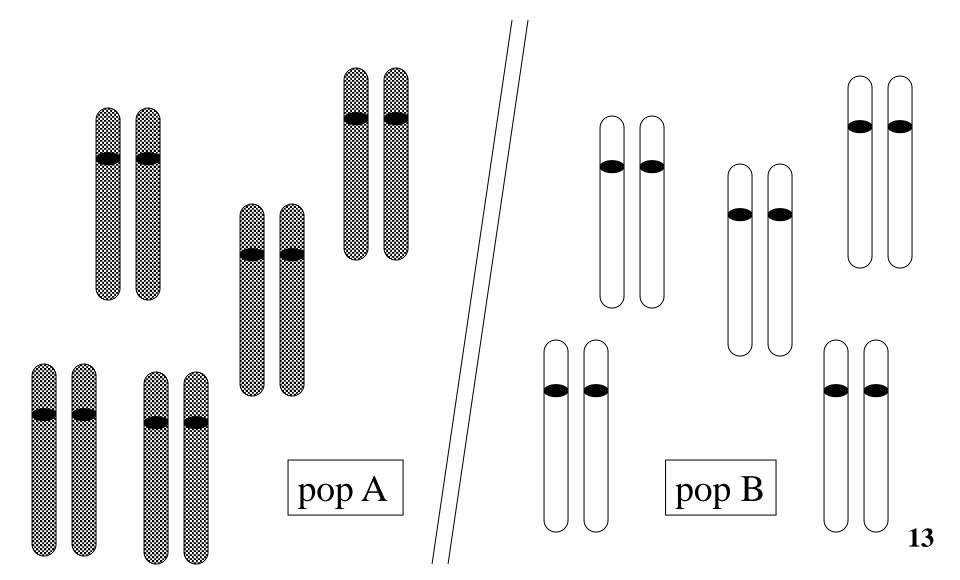
Some individuals directly after mixing:





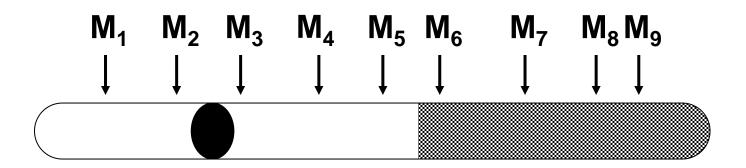

Their possible children:

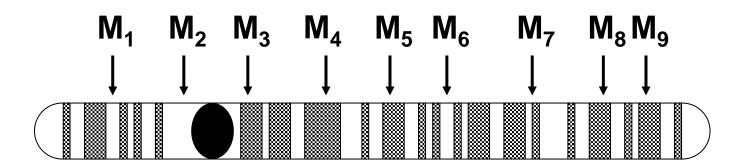
$$\left(egin{array}{c|c} \mathbf{A} & \mathbf{A} \\ \mathbf{B} & \mathbf{B} \end{array}
ight)$$

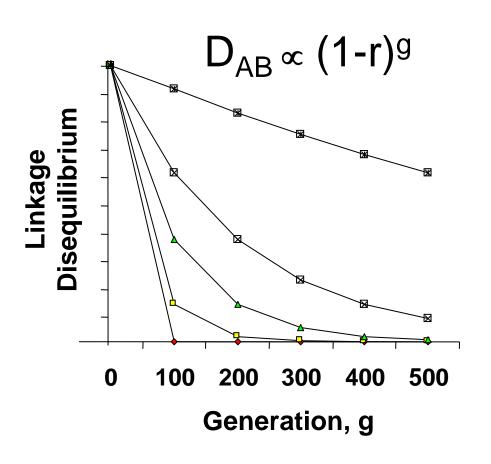


Haplotype Possibilities for the Grandchildren

Make sure you don't make unfounded assumptions about the probability of seeing any given haplotype! (e.g. 0.5)


Consider this on a chromosome-wide basis


Possible full-chromosome haplotypes


After a few generations ...

After many generations (many recombination events)

Linkage Disequilibrium versus Generations Since its Creation

Recomb. Rate (r)

Linkage versus LD

Linkage is *defined by* recombination.

- Recombination occurs during meiosis and thus, in turn, is observed via inheritance.
- Loci whose recombination rates are < 0.5 are linked.
- Loci whose recombination rates are = 0.5 are unlinked.
- Linkage is measured via correlated *transmission* of alleles.

LD is *affected by* recombination (over time).

- LD measures correlation between alleles in a population.
- LD is based on extant haplotypes and estimates do not rely on or measure inheritance.
- LD breaks down over time via recombination.
- LD does *not* measure correlated *transmission* of alleles.