Forensic Genetics

Module 15 – Section 3 & 4 Exercises

Section 3 Group Work

Allelic Independence

Bayesian Exercise

A rapid test for covid-19 is set up outside a supermarket and is available to anyone who wishes. The test has a false-positive rate of 5% and a false-negative rate of 30%.

If the disease has a prevalence in that population of 20%. What is the probability a person who tests positive does actually have the disease? i.e. calculate Pr(B|A) if A is the event that a test is positive, and B is the event that a person has the disease. Use Bayes' Theorem.

NIST Data

Go to https://strbase.nist.gov/NISTpop.htm

and look at "Excel file of revised allele frequencies."

How many loci appear not to be in Hardy-Weinberg Equilibrium?

Section 4 Group Work

LR Calculations

Exercise 1a: LR - Binary Model

Consider a simple two-person mixture profile (e.g. contributors are unrelated, ignoring population structure, no drop-outs/dropins), where $G_C = ABCD$. Let K denote a known contributor with observed profile $G_K = CD$, and S the POI with profile $G_S = AB$.

$$ullet$$
 $G_S=AB$ and $G_K=CD$, with
$$H_p: {\sf K}+{\sf POI}\;({\sf S}) \quad {\sf and} \quad H_d: {\sf K}+{\sf Unknown}\;({\sf U})$$

What are the LRs for $p_A = p_B = p_C = p_D = 0.1$?

Exercise 1b: LR - Binary Model

Consider a simple two-person mixture profile (e.g. contributors are unrelated, ignoring population structure, no drop-outs/dropins), where $G_C = ABCD$. Let K denote a known contributor with observed profile $G_K = CD$, and S the POI with profile $G_S = AB$.

$$ullet$$
 $G_S=AB$ and $G_K=CD$, with
$$H_p: {\sf K}+{\sf POI}\;({\sf S}) \quad {\sf and} \quad H_d: {\sf K}+{\sf Unknown}\;({\sf U})$$

$$ullet$$
 $G_S=AB$ and $G_K=CD$, with
$$H_p: {\sf K}+{\sf S} \quad {\sf and} \qquad H_d: {\sf 2U}$$

What are the LRs for $p_A = p_B = p_C = p_D = 0.1$?

Exercise 1c: LR - Binary Model

Consider a simple two-person mixture profile (e.g. contributors are unrelated, ignoring population structure, no drop-outs/dropins), where $G_C = ABCD$. Let K denote a known contributor with observed profile $G_K = CD$, and S the POI with profile $G_S = AB$.

$$ullet$$
 $G_S=AB$ and $G_K=CD$, with
$$H_p: {\sf K}+{\sf POI}\;({\sf S}) \quad {\sf and} \quad H_d: {\sf K}+{\sf Unknown}\;({\sf U})$$

$$ullet$$
 $G_S=AB$ and $G_K=CD$, with
$$H_p: {\sf K}+{\sf S} \quad {\sf and} \qquad H_d: {\sf 2U}$$

 \bullet $G_S = AB$ and the second contributor is unknown

$$H_p$$
: S + U and H_d : 2U

What are the LRs for $p_A = p_B = p_C = p_D = 0.1$?

Exercise 2: LR - Binary Model

- a) Considering the previous exercise, what do you expect to happen to the LRs if we use match probabilities instead of profile probabilities? *Increase, decrease or stay the same?*
- b) Verify your answer by using the appropriate Balding-Nichols formula with $\theta = 0.03$ in Exercise 1a.
- c) Ignoring a known contributor under H_d (but not under H_p) is favorable/unfavorable/irrelevant to the defendant? (Hint: compare your answers from 1a and 1b).