Introduction to Natural Selection

Ryan Hernandez

Goals

- Learn about the population genetics of natural selection
- How to write a simple simulation with natural selection

Basic Biology of Human Genome

Functional non-coding mutations

Life Cycle

Modern Human Genomics: A CASE FOR RARE VARIANTS?

$$
1.1 \times 10^{-8} \times 6 \times 10^{9}=66 \text { [muts } / \text { person] }
$$

$$
\begin{aligned}
& 66 \quad[\mathrm{muts} / \mathrm{p}] \\
& \times \quad 130 \mathrm{M}[\mathrm{p} / \mathrm{y}] \\
& \div \quad 3 \mathrm{~B}[\mathrm{bp}] \\
& \hline 2.86 \mathrm{muts} / \mathrm{bp} / \mathrm{yr}
\end{aligned}
$$

SEQUENCING DATA

Chromosome	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6
1	A	C	A	G	C	C
2	A	T	G	A	C	T
3	G	T	G	A	T	T
4	A	C	G	A	C	T
\# Pairwise differences	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$

$$
\pi=\text { average pairwise diversity }
$$

SEQUENCING DATA

Chromosome	SNP 1	SNP 2	SNP3	SNP 4	SNP 5	SNP 6
1	A	C	A	G	C	C
2	A	T	G	A	C	T
3	G	T	G	A	T	T
4	A	C	G	A	C	T
\# Pairwise differences	3	4	3	3	3	3
\# Compared	6	6	6	6	6	6

$$
\pi=\text { average pairwise diversity }
$$

SEQUENCING DATA

Chromosome	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6
1	A	C	A	G	C	C
2	A	T	G	A	C	T
3	G	T	G	A	T	T
4	A	C	G	A	C	T
\# Pairwise differences	3	4	3	3	3	3
\# Compared	6	6	6	6	6	6
Avg. Pairwise Diff	0.5	0.67	0.5	0.5	0.5	0.5

Number of variants: 6 SNPs
Diversity (π): 3.1667/L

SEQUENCING DATA

Chromosome	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6
1	A	C	A	G	C	C
2	A	T	G	A	C	T
3	G	T	G	A	T	T
4	A	C	G	A	C	T
Minor Allele	A	C	A	G	C	T
MAF	0.25	0.5	0.25	0.25	0.25	0.25

MAF	5	1

Minor Allele Frequency

SEQUENCING DATA

Chromosome	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6
1	A	C	A	G	C	C
2	A	T	G	A	C	T
3	G	T	G	A	T	T
4	A	C	G	A	C	T
Minor Allele	A	C	A	G	C	T
MAF	0.25	0.5	0.25	0.25	0.25	0.25

> | MAF | 5 | 1 |
| :--- | :--- | :--- |

SEQUENCING DATA

Chromosome	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6
1	A	C	A	G	C	C
2	A	T	G	A	C	T
3	G	T	G	A	T	T
4	A	C	G	A	C	T
Chimp	A	C	A	G	C	T

SEQUENCING DATA

Chromosome	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6
1	A	C	A	G	C	C
2	A	T	G	A	C	T
3	G	T	G	A	T	T
4	A	C	G	A	C	T
Chimp	A	C	A	G	C	T

SEQUENCING DATA

Site-Frequency Spectrum

	*			*	*		*	*			*	*	*	*		*	*	*	*		*	*	*
1	C		A	T	T	C	G	A	A	G	C	G	A	T	C	A	G	G	C	T	A	T	A
2	c		A	T	T	T	G	A	G	A	C	G	A	T	C	A	G	G	C	T	A	T	A
3	C		G	T	T	T	G	A	G	A	C	G	A	T	T	A	G	G	C	C	A	T	A
4	C		A	T	T	C	G	A	G	A	C	G	A	T	C	A	G	G	C	T	A	T	A
outgroup	T		A	C	C	C	A	G		A	G	A	T	A	C	G	C	A	T	T	T	A	T
			non-coding																				
			= synonymous																				
			= nonsynonymous																				

SITE-FREQUENCY SPECTRUM

The proportion of derived mutations at each frequency in a sample of chromosomes

The Effect of Negative Selection

Chromosomes in
a population

THE EfFECT OF NEGATIVE SELECTION

Chromosomes in a population with standing variation

Deleterious
mutations will arise in the next generation

Negative selection: the action of
natural selection purging deleterious mutations.

SITE-FREQUENCY SPECTRUM

SITE-FREQUENCY SPECTRUM

MAJORITY OF HUMAN GENETIC VARIATION IS RARE

Class	Fraction of variants $<1 \%$
Missense	92.6%
Synonymous	88.5%
Non-coding	82.3%

OBSERVED EFFECT OF SELECTION

OBSERVED EFFECT OF SELECTION

Observed Effect of SELECTION

Site-Frequency Spectrum

The proportion of SNPs at each frequency in a sample of chromosomes.

Site-Frequency Spectrum

```
\squareNM
- AfAm (Human)
- Ch (RheMac)
\square In (RheMac)
```

\square Rufi (rice)
■ Indica (rice)

- Japonica (rice)
 derived count in sample of 12 chrs.

Population Genetics

- Imagine a population of diploid individuals

- Principles of random mating:
- Any two individuals are equally likely to mate and reproduce to populate the next generation.
- Either chromosome is equally likely to be passed on.

Hardy-Weinberg Principle

- Assumptions:
- Diploid organism
- Sexual reproduction
- Non-overlapping generations
- Only two alleles
- Random mating
- Conclusion I:

Both allele AND genotype frequencies will remain constant at HWE generation after generation... forever!

$$
\begin{aligned}
& P=p^{2} \\
& Q=2 p(1-p) \\
& R=(1-p)^{2}
\end{aligned}
$$

Hardy-Weinberg Principle

- Imagine a population of diploid individuals

Hardy-Weinberg Principle

- Imagine a population of diploid individuals

$$
\begin{aligned}
& p^{2}=0.3025 \\
& 2 p(1-p)=0.495 \\
& (1-p)^{2}=0.2025
\end{aligned}
$$

- Conclusion 2: A single round of random mating will return the population to HWE frequencies!

Hardy-Weinberg Principle

- Assumptions:

- Diploid organism
- Sexual reproduction
- Non-overlapping generations
- Only two alleles
- Random mating
- Identical frequencies in males/females
- Infinite population size
- No migration
- No mutation
- No natural selection

Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

HapMap YRI (Africans)

Graham Coop

Genetic Drift

- In finite populations, allele frequencies can and do change over time.
- In fact, EVERY genetic variant will either be lost from the population $(p=0)$ or fixed in the population $(p=1)$ some time in the future.
- The most common model for finite populations is the Wright-Fisher model.
- This model makes explicit use of the binomial distribution.

Bernoulli Distribution

Jacob Bernoulli 1655-I705

- One of the simplest probability distributions
- A discrete probability distribution
- Classic example: tossing a coin
- If a coin toss comes up heads with probability p, it results in tails with probability 1-p.
- If X is a Bernoulli Random Variable, x is an observation we write:

$$
f(x \mid p)= \begin{cases}p & \text { if } x=1 \\ 1-p & \text { if } x=0\end{cases}
$$

- The Expected Value is $E[X]=p$, and the Variance is $V[X]=p(1-p)$.

Binomial Distribution

- We introduced the Bernoulli Distribution, where we imagine a coin flip resulting in heads with probability p.
- But if we flipped the coin N times, how many heads would we expect?
- What is the probability that we get heads all N times?
- The number of "successes" in a fixed number of trials is described by the Binomial Distribution.
- Written out, if the probability of each success is p, then the probability we observe j successes in N trials is:

$$
P(j \mid N, p)=\binom{N}{j} p^{j}(1-p)^{N-j} ;\binom{N}{j}=\frac{N!}{j!(N-j)!}
$$

Binomial Mean and Variance

- The mean of a Binomial Random Variable is:
- $E[J]=N p$
- With variance:
- $V[J]=p(1-p) / N$

Wright-Fisher Model

Sewall Wright: 1889-1988

Sir Ronald Fisher 1890-I962

- Suppose a population of N individuals.
- Let $X(\mathrm{t})$ be the \#chromosomes carrying an allele A in generation t :

$$
\begin{aligned}
P(X(t+1)=j \mid X(t)=i) & =\binom{N}{j} p^{j}(1-p)^{N-j} \\
=\operatorname{Bin}(j \mid N, i / N) & =\binom{N}{j}\left(\frac{i}{N}\right)^{j}\left(\frac{N-i}{N}\right)^{N-j}
\end{aligned}
$$

Wright-Fisher Model ($\mathrm{N}=100$)

Demographic Effects

- What do you think will happen if a population grows? Or shrinks?

Wright-Fisher Model

Sewall Wright: 1889-1988

Sir Ronald Fisher 1890-I962

- Suppose a population of N individuals.
- Let $X(\mathrm{t})$ be the \#chromosomes carrying an allele A in generation t :

$$
\begin{aligned}
P(X(t+1)=j \mid X(t)=i) & =\binom{N}{j} p^{j}(1-p)^{N-j} \\
=\operatorname{Bin}(j \mid N, i / N) & =\binom{N}{j}\left(\frac{i}{N}\right)^{j}\left(\frac{N-i}{N}\right)^{N-j}
\end{aligned}
$$

Wright-Fisher Model with Expansion

- $N_{0}=100$

Wright-Fisher Model with Contraction

- $\mathrm{N}_{0}=100$

Hardy-Weinberg Principle

- Assumptions:
- Diploid organism
- Sexual reproduction
- Non-overlapping generations
- Only two alleles
- Random mating
- Identical frequencies in males/females
- Infinite population size
- No migration
- No mutation
- No natural selection
- What happens when we allow natural selection to occur?
- Allele frequencies can change!

Natural Selection

- Usually parameterized in terms of a dominance coefficient (h), and a selection coefficient (s), with wildtype fitness set to I :

Genotype	AA	Aa	aa
Frequency	p^{2}	2 pq	q^{2}
Fitness	1	$1+\mathrm{hs}$	$1+\mathrm{s}$

- $h=l$ is completely dominant
- $\mathrm{h}=0$ is completely recessive
- $h=0.5$ is "genic" selection, or "codominance", or "additive" fitness

Natural Selection

Genotype	AA	Aa	aa
Frequency	p^{2}	2 pq	q^{2}
Fitness	1	$1+\mathrm{hs}$	$1+\mathrm{s}$

- How do we model the change in allele frequencies?
- What is fitness?!
- Refers to the average number of offspring individuals with a particular genotype will have.
- Wild-type individuals have on average 1 offspring, while homozygous derived individuals have on average $1+$ s offspring.

Natural Selection

Genotype	AA	Aa	aa
Frequency	p^{2}	2 pq	q^{2}
Fitness	1	$1+\mathrm{hs}$	$1+\mathrm{s}$

- In this case, s is the absolute fitness.
- If the population size is fixed, then we need to consider relative fitness.
- That is, how fit is an individual genotype relative to the population.
- For this, we need to know average population fitness!

$$
\bar{w}=p^{2}(1)+2 p q(1+h s)+q^{2}(1+s)=1+s q(2 h p+q)
$$

Natural Selection

Genotype	AA	Aa	aa
Frequency	p^{2}	2 pq	q^{2}
Fitness	1	$1+\mathrm{hs}$	$1+\mathrm{s}$

- The expected frequency in the next generation $\left(q^{\prime}\right)$ is then the density of offspring produced by carriers of the derived allele divided by the population fitness:

$$
q^{\prime}=\frac{q^{2}(1+s)+p q(1+h s)}{1+s q(2 h p+q)}
$$

Natural Selection

- Trajectory of selected allele with various selection coefficients under genic selection ($h=0.5$) in an "infinite" population

Hardy-Weinberg Principle

- Assumptions:
- Diploid organism
- Sexual reproduction
- Non-overlapping generations
- Only two alleles
- Random mating
- Identical frequencies in males/females
- Infinite population size
- No migration
- No mutation
- No natural selection
- What happens with natural selection in a finite population?
- Directional selection AND drift!

Natural Selection $N=100 ; s=0.1 ; h=0.5$

Natural Selection

- Estimating the probability of fixation of a new mutation ($\mathrm{p}_{0}=\mathrm{I} / \mathrm{N}$)
- 5000 simulations: $\mathrm{N}=100 ; \mathrm{h}=0.5$
${ }_{51} \bullet \operatorname{Pr}\left(\right.$ Fixation $\left.\mid \mathrm{s}=0, \mathrm{p}_{0}\right)=\mathrm{p} 0!!$

Natural Selection

Time-course data from artificial selection/ancient DNA

- Let's estimate some selection coefficients!
- Given 2 alleles at a locus with frequencies p_{0} and q_{0}, and fitnesses w_{1} and w_{2} (with w the population-wide fitness).
- Expected freq. in next generation is: $p_{1}=p^{\prime}=p_{0} w_{1} / w$.
- We can then write:

$$
\frac{p_{1}}{q_{1}}=\frac{p_{0} w_{1} / w}{q_{0} w_{2} / w}=\left(\frac{p_{0}}{q_{0}}\right)\left(\frac{w_{1}}{w_{2}}\right)
$$

- Using induction, you could prove for any generation t :

$$
\frac{p_{t}}{q_{t}}=\frac{p_{0} w_{1} / w}{q_{0} w_{2} / w}=\left(\frac{p_{0}}{q_{0}}\right)\left(\frac{w_{1}}{w_{2}}\right)^{t}
$$

Natural Selection

- Taking the natural log of this equation:

$$
\log \left(\frac{p_{t}}{q_{t}}\right)=\log \left(\frac{w_{1}}{w_{2}}\right) t+\log \left(\frac{p_{0}}{q_{0}}\right)
$$

- Which is now a linear function of t, the number of generations.
- Therefore, the ratio of the fitnesses $w_{1} / w_{2}=\mathrm{e}^{\text {slope }}$

Natural Selection

- Experiment: Set up a population of bacteria in a chemostat, and let them reproduce.
- Sample roughly every 5 generations.
- A slope of 0.139 implies: $w_{1}=\mathrm{e}^{0.139}=1.15$
- Assume $w_{2}=1$.
- Thus, allele p has a I5\% fitness advantage over allele q !

Summary

- Hardy-Weinberg Equilibrium requires many assumptions, all of which are routinely violated in natural populations.
- Nevertheless, the vast majority of variants are in HWE.
- Deviations almost always due to technical artifacts!
- Simulating Wright-Fisher models is easy!
- Natural selection changes the expected allele frequency in the next generation.
- But drift still acts in finite populations!

