Neutrality and some of its deviations

Ryan Hernandez

Goals

- Learn about the population genetics view of the life cycle
- A few Pop Gen summary statistics
- Revisit Hardy-Weinberg Equilibrium - Assumptions \& violations

Basic Biology of Human Genome

Functional non-coding mutations

Life Cycle

Modern Human Genomics: A CASE FOR RARE VARIANTS?

$$
1.1 \times 10^{-8} \times 6 \times 10^{9}=66 \text { [muts } / \text { person] }
$$

$$
\begin{aligned}
& 66 \quad[\mathrm{muts} / \mathrm{p}] \\
& \times \quad 130 \mathrm{M}[\mathrm{p} / \mathrm{y}] \\
& \div \quad 3 \mathrm{~B}[\mathrm{bp}] \\
& \hline 2.86 \mathrm{muts} / \mathrm{bp} / \mathrm{yr}
\end{aligned}
$$

MUTATION RATE EVOLUTION IN PRIMATES

SEQUENCING DATA

Chromosome	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6
1	A	C	A	G	C	C
2	A	T	G	A	C	T
3	G	T	G	A	T	T
4	A	C	G	A	C	T

$$
\pi=\text { average pairwise diversity }
$$

SEQUENCING DATA

Chromosome	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6
1	A	C	A	G	C	C
2	A	T	G	A	C	T
3	G	T	G	A	T	T
4	A	C	G	A	C	T

$$
\pi=\text { average pairwise diversity }
$$

SEQUENCING DATA

Chromosome	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6
1	A	C	A	G	C	C
2	A	T	G	A	C	T
3	G	T	G	A	T	T
4	A	C	G	A	C	T
\# Pairwise differences	3	4	3	3	3	3
\# Compared	6	6	6	6	6	6
Avg. Pairwise Diff	0.5	0.67	0.5	0.5	0.5	0.5

Number of variants: 6 SNPs
Diversity (π): 3.1667/L

Diversity Across Populations

SEQUENCING DATA

Chromosome	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6
1	A	C	A	G	C	C
2	A	T	G	A	C	T
3	G	T	G	A	T	T
4	A	C	G	A	C	T
Minor Allele	G	T	A	G	T	C
MAF	0.25	0.5	0.25	0.25	0.25	0.25

SEQUENCING DATA

Chromosome	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6
1	A	C	A	G	C	C
2	A	T	G	A	C	T
3	G	T	G	A	T	T
4	A	C	G	A	C	T
Minor Allele	G	T	A	G	T	C
MAF	0.25	0.5	0.25	0.25	0.25	0.25
MAF 5	1			1/4		2/4
		12		Minor Allele Frequency		

SEQUENCING DATA

Chromosome	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6
1	A	C	A	G	C	C
2	A	T	G	A	C	T
3	G	T	G	A	T	T
4	A	C	G	A	C	T
Chimp	A	C	A	G	C	T

SEQUENCING DATA

Chromosome	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6
1	A	C	A	G	C	C
2	A	T	G	A	C	T
3	G	T	G	A	T	T
4	A	C	G	A	C	T
Chimp	A	C	A	G	C	T

SEQUENCING DATA

Chromosome	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6
1	A	C	A	G	C	C
2	A	T	G	A	C	T
3	G	T	G	A	T	T
4	A	C	G	A	C	T
Chimp	A	C	A	G	C	T
Derived count	1	2	3	3	1	1
				Site-Frequency Spectrum (SFS)		
	$\begin{gathered} 1 \\ \text { ved fre } \end{gathered}$	$\stackrel{2}{\text { uency ir }^{2}}$	$\begin{gathered} 3 \\ \text { mple } \end{gathered}$			

Site-Frequency Spectrum

	*		*													*	*					
1	C	A	T	T	C	G			\bigcirc		G	A		C	A	G	G	C	T	A	T	A
2	C	A	T	T	T	G	A	G	A		G	A	T	C	A	G	G	c	T	A	T	A
3	C	G	T	T	T	G	A	G	A		G	A	T	T	A	G	G	c	c	A	T	A
4	C	A	T	T	C	G	A	G	A		G	A	T	C	A	G	G	C	T	A	T	A
outgroup	T	A	C	c	c	A	G	G	A		A	T		c	G	c	A	T	T	T	A	T
	= non-coding = synonymous * - Substitution between = nonsynonymous species	= non-coding = synonymous $\quad *$ - Substitution between = nonsynonymous species																				

Site-Frequency Spectrum

The proportion of derived mutations at each frequency in a sample of chromosomes

SITE-FREQUENCY SPECTRUM

What evolutionary forces could cause an

excess of rare variants? (one-word-answersplease)

The Effect of Negative Selection

Chromosomes in
a population

The Effect of Negative Selection

Chromosomes in a population with standing variation

Deleterious
mutations will
arise in the next
generation

Negative selection: the action of natural selection purging deleterious mutations.

Site-Frequency Spectrum

SITE-FREQUENCY SPECTRUM

The Effect of Population Growth

Chromosomes in a population with standing variation

SITE-FREQUENCY SPECTRUM

SITE-FREQUENCY SPECTRUM

Majority of human genetic variation is rare

Class	Fraction of variants $<1 \%$
Missense	92.6%
Synonymous	88.5%
Non-coding	82.3%

Observed Effect of Selection

PolyPhen2

Observed Effect of Selection

PolyPhen2

Observed Effect of Selection

Site-Frequency Spectrum

The proportion of SNPs at each frequency in a sample of chromosomes.

Site-Frequency Spectrum

■ Rufi (rice)

- AfAm (Human)
- Ch (RheMac)
- Indica (rice)
- In (RheMac)
- Japonica (rice)

What evolutionary forces could cause an

 excess of high frequency derived variants? (one-word-answers-please)
Site-Frequency Spectrum

```
SNM
- AfAm (Human)
- Ch (RheMac)
- In (RheMac)
```

\square Rufi (rice)

- Indica (rice)
- Japonica (rice)
 derived count in sample of 12 chrs.

Population Genetics

- Imagine a population of diploid individuals

- Principles of random mating:
- Any two individuals are equally likely to mate and reproduce to populate the next generation.
- Either chromosome is equally likely to be passed on.

Hardy-Weinberg
 Principle

 I877-I947 1862-I937
What are the assumptions of the HardyWeinberg Principle?

Hardy-Weinberg Principle

- Assumptions:
- Diploid organism
- Sexual reproduction
- Non-overlapping generations
- Only two alleles
- Random mating

- Identical frequencies in males/females
- Infinite population size
- No migration
- No mutation
- No natural selection
- Conclusion I:

Both allele AND genotype frequencies will remain constant at HWE generation after generation... forever!

Hardy-Weinberg Principle

- Imagine a population of diploid individuals

Hardy-Weinberg Principle

- Imagine a population of diploid individuals

$$
\begin{aligned}
& p^{2}=0.3025 \\
& 2 p(1-p)=0.495 \\
& (1-p)^{2}=0.2025
\end{aligned}
$$

- Conclusion 2: A single round of random mating will return the population to HWE frequencies!

Hardy-Weinberg Principle

- Assumptions:

- Diploid organism
- Sexual reproduction
- Non-overlapping generations
- Only two alleles
- Random mating
- Identical frequencies in males/females
- Infinite population size
- No migration
- No mutation
- No natural selection

Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium

HapMap YRI (Africans)

Graham Coop

Summary

- Hardy-Weinberg Equilibrium requires many assumptions, all of which are routinely violated in natural populations.
- Nevertheless, the vast majority of variants are in HWE.
- Deviations almost always due to technical artifacts!
- Natural selection changes the expected allele frequency in the next generation.
- But drift still acts in finite populations!

