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Goals

• Simulate the standard neutral model, demographic 
effects, and natural selection
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Hardy-Weinberg 
Principle

Godfrey H. Hardy:
1877-1947

Wilhelm Weinberg:
1862-1937• Assumptions:

• Diploid organism

• Sexual reproduction

• Non-overlapping generations

• Only two alleles

• Random mating

• Identical frequencies in 
males/females

• Infinite population size

• No migration

• No mutation

• No natural selection

• Conclusion 1:
Both allele AND genotype frequencies will 
remain constant at HWE generation after 
generation...  forever!

P=p2 

Q=2p(1-p) 
R=(1-p)23



Hardy-Weinberg Principle

• Imagine a population of diploid individuals
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R = 0.01
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Hardy-Weinberg Principle

• Imagine a population of diploid individuals

P = 0.5

R = 0.4

Q = 0.1
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• Conclusion 2: A single round of random mating will return the 
population to HWE frequencies!

p = P +Q/2 = 0.55

2p(1� p) = 0.495
p2 = 0.3025

(1� p)2 = 0.2025
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Hardy-Weinberg 
Principle

Godfrey H. Hardy:
1877-1947

Wilhelm Weinberg:
1862-1937• Assumptions:

• Diploid organism

• Sexual reproduction

• Non-overlapping generations

• Only two alleles

• Random mating

• Identical frequencies in 
males/females

• Infinite population size

• No migration

• No mutation

• No natural selection
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• In finite populations, allele frequencies can and do change 
over time.

• In fact, EVERY genetic variant will either be lost from the 
population (p=0) or fixed in the population (p=1) some time 
in the future.

• The most common model for finite populations is the 
Wright-Fisher model.

• This model makes explicit use of the binomial distribution.

Genetic Drift
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P (X(t+ 1) = j|X(t) = i)

• Suppose a population of N individuals.

• Let X(t) be the #chromosomes carrying an allele A in generation t:

Wright-Fisher Model

Sewall Wright:
1889-1988

Sir Ronald Fisher
1890-1962

P (X(t+ 1) = j|X(t) = i) = Bin(j|N, i/N)
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• A simple R function to simulation genetic drift: 
 
 
 
 
 
 
 
 
 

• Run it in R using:   
 
f=WF(100, 0.5, 200)  
plot(f)

WF=function(N, p, G){  
  t=array(NA,dim=G);  
  t[1] = p;  
  for(i in 2:G){  
    t[i] = rbinom(1,N,t[i-1])/N;  
  }  
  return(t);  
}

Wright-Fisher Model
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Starting frequency
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Breakout Groups

• Please work together to code this up and 
generate the plot. 

• Let us know if you have questions, or call 
for help! (“Ask for help” feature in Zoom)

• What happens in your plot?

• Were you able to get any fixations or 
losses?
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Wright-Fisher Model
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Demographic Effects

• Population changes size at a given 
generation
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• Suppose a population of N individuals.

• Let X(t) be the #chromosomes carrying an allele A in generation t:

Wright-Fisher Model

Sewall Wright:
1889-1988

Sir Ronald Fisher
1890-1962

P (X(t+ 1) = j|X(t) = i)

= Bin(j|N, i/N) =
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• A simple R function to simulation demographic effects: 
 
 
 
 
 
 
 
 
 
 

• Run it using:  

f=WFdemog(100, 0.5, 200, 50, 100)  
plot(f)

WFdemog = function(N, p, G, Gd, v){
    t=array(,dim=G);
    t[1] = p;
    for(i in 2:G){
        if(i == Gd){
            N = N*v;
       }
       t[i] = rbinom(1,N,t[i-1])/N;
    }
    return(t);
}

Wright-Fisher Model
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Starting frequency

Generations to simulate

Gen demographic event happens

Magnitude of size change



Breakout Groups
• Please work together to code this up and 

generate the plot. 

• Let us know if you have questions, or call 
for help!

• What happens in your plot?

• Were you able to get any fixations or 
losses?

• Can you simulate a 10-fold contraction?

• How does it change the trajectory?
15



Wright-Fisher Model with Expansion
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Wright-Fisher Model with Contraction
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• Run it using:  WFdemog(100, 0.5, 200, 50, 0.1)



• Assumptions:

• Diploid organism

• Sexual reproduction

• Non-overlapping generations

• Only two alleles

• Random mating

• Identical frequencies in 
males/females

• Infinite population size

• No migration

• No mutation

• No natural selection

Hardy-Weinberg Principle

• What happens when we allow natural selection to occur?

• Alleles change frequency!

18



• The expected frequency in the next generation ( ) is 
then the density of offspring produced by carriers of 
the derived allele divided by the population fitness:

•

q′ 

q′ =
q2(1 + s) + pq(1 + hs)

1 + sq(2hp + q)

19

Natural Selection
Genotype AA Aa aa

Frequency p2 2pq q2

Fitness 1 1+hs 1+s



Natural Selection
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• Trajectory of selected allele with various selection 
coefficients under genic selection (h=0.5) in an 
“infinite” population
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• Assumptions:

• Diploid organism

• Sexual reproduction

• Non-overlapping generations

• Only two alleles

• Random mating

• Identical frequencies in 
males/females

• Infinite population size

• No migration

• No mutation

• No natural selection

Hardy-Weinberg Principle

• What happens with natural selection in a finite population?

• Directional selection AND drift!

21



Simulating Natural Selection
• First write an R function for the change in allele 

frequencies:
fitfreq = function(q, h, s){  
  p=1-q;  
  return((q^2*(1+s) + p*q*(1+h*s))/( 1 + s*q*(2*h*p+q)));  
}

• Now use this in an updated WF simulator:
 
 
WF.sel=function(N, q, h, s, G){  
  t=array(NA, dim=G);  
  t[1] = q;  
  for(i in 2:G){  
    t[i] = rbinom(1, N, fitfreq(t[i-1], h, s))/N;  
  }  
  return(t);  
} 22
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Breakout Groups
• Please work together to code this up. 

• Can you simulate a trajectory for 100 
generations with these characteristics:

• Population size = 100

• Initial frequency is 1%

• Allele has a 50% fitness advantage

• What happens in your plot?

• Were you able to get any fixations or 
losses?

23



Natural Selection
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WF.sel(100, 0.01, 0.5, 0.1, 100)
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Simulating Natural Selection
• How would you simulate both selection AND 

demographic effects?

• Now use this in an updated WF simulator:
 
 
WF.demsel=function(N, q, h, s, G, Gd, v){  
  t=array(NA,dim=G);  
  t[1] = q;  
  for(i in 2:G){  
    if(i == Gd){  
      N = N*v;  
    }  
    t[i] = rbinom(1, N, fitfreq(t[i-1], h, s))/N;  
  }  
  return(t);  
}

25
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Breakout Groups

• Please work together to code this up. 

• Can you add 100-fold population growth at 
generation 50 to your previous simulation?

• What happens in your plot?

• What if the initial frequency is 50%?

26



Wright-Fisher Model with Contraction

27

• Run it using:  WF.demsel(100,0.5,0.5,0.1,100,50,100)
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What parameters generated these?
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SUMMARY

Overlapping genes pose an evolutionary dilemma as
one DNA sequence evolves under the selection pres-
sures of multiple proteins. Here, we perform system-
atic statistical andmutational analyses of the overlap-
ping HIV-1 genes tat and rev and engineer exhaustive
libraries of non-overlapped viruses to perform deep
mutational scanning of each gene independently.
We find a ‘‘segregated’’ organization in which over-
lapped sites encode functional residues of one gene
or the other, but never both. Furthermore, this organi-
zation eliminates unfit genotypes, providing a fitness
advantage to the population. Our comprehensive
analysis reveals the extraordinary manner in which
HIV minimizes the constraint of overlapping genes
and repurposes that constraint to its own advantage.
Thus, overlaps are not just consequences of evolu-
tionary constraints, but rather can provide population
fitness advantages.

INTRODUCTION

The sequencing of the first complete DNA genome, FX174, re-
vealed the startling discovery that genes can overlap with one
another (Barrell et al., 1976; Sanger et al., 1977). Since this
initial observation, overlapping reading frames have been
observed in most viruses and across all domains of life (Bel-
shaw et al., 2007; Makalowska et al., 2005; Rogozin et al.,
2002). In viruses, these regions are traditionally thought to
arise as consequences of error-prone polymerases and con-
straints on the size of viral capsid proteins (Belshaw et al.,
2007; Chirico et al., 2010). For instance, high polymerase error
rates favor short genomes thereby decreasing the probability
of catastrophic mutations, while the viral capsid imposes a
biophysical limit on genome size. Other models suggest that
overlap formation is driven by selection pressures favoring
evolutionary innovation (Brandes and Linial, 2016; Keese and
Gibbs, 1992; Rancurel et al., 2009; Sabath et al., 2012), as
overlaps are also found in large genomes. Regardless, once

present in a genome, overlapping genes must balance nucle-
otide usage so that the functions of each reading frame are
satisfied. Several studies have used computational methods
to estimate gene-wide selective forces (Hein and Støvlbaek,
1995; Sabath et al., 2008; Wei and Zhang, 2014) but only a
few have generated experimental data (Kawano et al., 2013).
Computational analyses of protein structure have demon-
strated that overlapped proteins in all viruses tend toward
intrinsic disorder (Rancurel et al., 2009), but how structured
and/or functional regions are divided at the amino acid level
remains unknown. It is possible to envisage two extreme
models for this simultaneous evolution: (1) a ‘‘segregated’’
model in which the amino acid/nucleotide preferences for
one gene dominate and the other gene accommodates with
no observable benefit to itself, or (2) a ‘‘shared’’ model in
which both genes exert selective forces at the same site, en-
forcing strong conservation in both frames (Figure S1). It is un-
likely that segregated or shared decisions are uniform over an
entire overlap, so defining the selective forces on a per residue
basis becomes critical to understanding how the functions of a
pair of proteins can be properly balanced.
HIV-1 provides a compelling model as it contains eight

distinct areas of coding overlap (Figure S2A) constituting
!8% of its entire genome, and extensive sequence informa-
tion from many virus isolates is available (Foley et al., 2013)
(https://www.hiv.lanl.gov/content/index). The tat and rev regu-
latory genes (Figure 1A) are a particularly interesting case as
both are essential for virus replication and thus experience
strong simultaneous selective pressure, both have well-estab-
lished functions and assays, and both have partial structures
available to help interpret the functional consequences of
sequence variants (Figure S2B) (Daugherty et al., 2010; DiMat-
tia et al., 2010; Tahirov et al., 2010). Tat activates transcrip-
tional elongation at the HIV-1 promoter via its interactions
with host transcription factors (most notably P-TEFb) and an
RNA element at the 50 end of viral transcripts known as
trans-activation response element (TAR) (Ott et al., 2011).
Rev facilitates the nuclear export of partially spliced and un-
spliced viral RNAs that encode essential late-stage viral pro-
teins and genomic RNA for packaging (Pollard and Malim,
1998). Rev binds as an oligomer to an RNA element present
in viral introns known as the Rev response element (RRE)
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and guides the RNAs to the cytoplasm via interactions with the
Crm1 nuclear export machinery.
In order to understand the consequences of the tat/rev

overlap for viral evolution, we compare sequence conserva-
tion in patient isolates to comprehensive residue-by-residue
functional maps of Tat and Rev generated by alanine scan-
ning. We further compare these datasets to replication exper-
iments in viruses in which we removed the tat/rev overlap and
subsequently measured the experimental fitness of every
amino acid at each position in each protein independently.
We find that HIV-1 has evolved in a segregated manner—to
separate functionally important amino acids for Tat and
Rev—and moreover, the arrangement decreases sampling
of unfit genotypes, thereby turning an apparent genetic
constraint into a fitness advantage. The combination of
these orthogonal datasets provides the most complete pic-
ture of an overlap to date and demonstrates another way in
which HIV-1 has efficiently utilized the coding capacity of
its small genome to optimally arrange its core regulatory
machinery.

Figure 1. Organization and Conservation of
HIV-1 Overlaps
(A) Layout of the Genetic Organization of the tat/

rev overlap in HIV-1. ARM, arginine rich motif/nu-

clear localization sequence; OD, oligomerization

domain; NES, nuclear export sequence. In HIV-1

NL4-3 Tat is 86 residues, although many patient

genes are 101 residues (gray box).

(B) Individual gene entropy analysis for overlapped

and single-frame regions in the HIV-1 genome (see

Figure S2A). Entropy values were computed at the

protein level for each frame and Shannon entropy

values for alignments of HIV-1 patient sequences

are shown. Median, range, and interquartile range

(IQR) are shown in the box and whiskers plot. A

score of 0 indicates absolute conservation and a

score of 3 indicates near-absolute degeneracy.

(C) Categorization of sites by normalized mean

entropy (NME) in the tat/rev overlap. Residues

are grouped into pairs that share two nucleotides,

and their NME plotted accordingly (Tat NME, Rev

NME). Quadrants are labeled to indicate which

genes are conserved in that region.

See also Figure S1.

RESULTS

Overlapped Regions in HIV-1 Are
Not More Conserved Than Single-
Frame Regions
In order to explore the constraints
imposed in the tat/rev overlap, we first
examined the conservation of each pro-
tein residue in the HIV-1 proteome using
patient data from the Los Alamos Data-
base (https://www.hiv.lanl.gov/content/
index). These datasets comprise !2,000
HIV-1 sequences in high-quality align-
ments. We then calculated the Shannon

entropy for each residue of each HIV-1 protein. We used this
relatively simple metric—in which a low value indicates high
amino acid conservation—as it requires no assumptions about
selection or substitution rates, which are challenging to approx-
imate in overlapped regions. Furthermore, this metric has previ-
ously been used to quantify diversity of viral sequences, to iden-
tify interaction surfaces on proteins, and analyze overlapping
reading frames (Pan and Deem, 2011; Zaaijer et al., 2007). We
examined each residue in every HIV-1 gene and compared the
single, double, and triple reading frame regions to one another
(Figure S2C) and discovered that overlapped regions were, sur-
prisingly, not more conserved than single-frame regions. This
behavior held for almost every HIV-1 gene (Figure 1B), although
this may reflect inherent biases in the structural features of these
proteins as opposed to the presence of dual coding. Regardless,
these results demonstrate that regions of overlap do not experi-
ence high conservation, providing evidence against a shared or-
ganization (with the caveat that positive selection and variations
in mutational tolerance can confound this analysis). Genome-
wide selection analyses using sophisticated evolutionary rate
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ganization (with the caveat that positive selection and variations
in mutational tolerance can confound this analysis). Genome-
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Fernandez, et al., Cell (2016)

• HIV genes Tat and Rev overlap.

• At protein level, many 
overlapping sites are 
conserved in both, but some 
sites only conserved in Rev.

• Is joint conservation due to 
dual function or genetic code?
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SUMMARY

Overlapping genes pose an evolutionary dilemma as
one DNA sequence evolves under the selection pres-
sures of multiple proteins. Here, we perform system-
atic statistical andmutational analyses of the overlap-
ping HIV-1 genes tat and rev and engineer exhaustive
libraries of non-overlapped viruses to perform deep
mutational scanning of each gene independently.
We find a ‘‘segregated’’ organization in which over-
lapped sites encode functional residues of one gene
or the other, but never both. Furthermore, this organi-
zation eliminates unfit genotypes, providing a fitness
advantage to the population. Our comprehensive
analysis reveals the extraordinary manner in which
HIV minimizes the constraint of overlapping genes
and repurposes that constraint to its own advantage.
Thus, overlaps are not just consequences of evolu-
tionary constraints, but rather can provide population
fitness advantages.

INTRODUCTION

The sequencing of the first complete DNA genome, FX174, re-
vealed the startling discovery that genes can overlap with one
another (Barrell et al., 1976; Sanger et al., 1977). Since this
initial observation, overlapping reading frames have been
observed in most viruses and across all domains of life (Bel-
shaw et al., 2007; Makalowska et al., 2005; Rogozin et al.,
2002). In viruses, these regions are traditionally thought to
arise as consequences of error-prone polymerases and con-
straints on the size of viral capsid proteins (Belshaw et al.,
2007; Chirico et al., 2010). For instance, high polymerase error
rates favor short genomes thereby decreasing the probability
of catastrophic mutations, while the viral capsid imposes a
biophysical limit on genome size. Other models suggest that
overlap formation is driven by selection pressures favoring
evolutionary innovation (Brandes and Linial, 2016; Keese and
Gibbs, 1992; Rancurel et al., 2009; Sabath et al., 2012), as
overlaps are also found in large genomes. Regardless, once

present in a genome, overlapping genes must balance nucle-
otide usage so that the functions of each reading frame are
satisfied. Several studies have used computational methods
to estimate gene-wide selective forces (Hein and Støvlbaek,
1995; Sabath et al., 2008; Wei and Zhang, 2014) but only a
few have generated experimental data (Kawano et al., 2013).
Computational analyses of protein structure have demon-
strated that overlapped proteins in all viruses tend toward
intrinsic disorder (Rancurel et al., 2009), but how structured
and/or functional regions are divided at the amino acid level
remains unknown. It is possible to envisage two extreme
models for this simultaneous evolution: (1) a ‘‘segregated’’
model in which the amino acid/nucleotide preferences for
one gene dominate and the other gene accommodates with
no observable benefit to itself, or (2) a ‘‘shared’’ model in
which both genes exert selective forces at the same site, en-
forcing strong conservation in both frames (Figure S1). It is un-
likely that segregated or shared decisions are uniform over an
entire overlap, so defining the selective forces on a per residue
basis becomes critical to understanding how the functions of a
pair of proteins can be properly balanced.
HIV-1 provides a compelling model as it contains eight

distinct areas of coding overlap (Figure S2A) constituting
!8% of its entire genome, and extensive sequence informa-
tion from many virus isolates is available (Foley et al., 2013)
(https://www.hiv.lanl.gov/content/index). The tat and rev regu-
latory genes (Figure 1A) are a particularly interesting case as
both are essential for virus replication and thus experience
strong simultaneous selective pressure, both have well-estab-
lished functions and assays, and both have partial structures
available to help interpret the functional consequences of
sequence variants (Figure S2B) (Daugherty et al., 2010; DiMat-
tia et al., 2010; Tahirov et al., 2010). Tat activates transcrip-
tional elongation at the HIV-1 promoter via its interactions
with host transcription factors (most notably P-TEFb) and an
RNA element at the 50 end of viral transcripts known as
trans-activation response element (TAR) (Ott et al., 2011).
Rev facilitates the nuclear export of partially spliced and un-
spliced viral RNAs that encode essential late-stage viral pro-
teins and genomic RNA for packaging (Pollard and Malim,
1998). Rev binds as an oligomer to an RNA element present
in viral introns known as the Rev response element (RRE)
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regions do not express strong signals of positive selection even
absent the constraint of the overlap, suggesting that the pres-
ence of an overlapped gene does not prevent the formation
of additional, extended interaction surfaces. Interestingly, the
neutral selection values for stop codon alleles at residue 67 of
Tat and residue 86 of Rev indicate that the C termini of both pro-
teins are dispensable for replication in this context. In some
cases, we observed shifts from the NL4-3 reference sequence
to the patient consensus (e.g., Rev P28Y), suggesting that
NL4-3 sequences are not fully optimized for individual protein
function. We also identified important alanine residues not
captured by alanine mutagenesis, such as Tat A42, which
showed strong conservation of small side chains (A/G) in both
patient and selection datasets. Positions such as this, as well
as the fact that experimental fitness of alanine variants does
not always match the median experimental fitness, suggests
that alanine scanning, while grounded in biophysical reasoning,
may not always provide the best measure of functional impor-
tance of any particular site.
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Figure 3. Mutational Profiling of HIV-1 Tat
Left: experimental fitness of every residue (all

synonymous codons grouped) of Tat in non-

overlapped tat-in-nef viruses after approximately

six generations of selection in SupT1 cells. Red

boxes and row headers denote the NL4-3

sequence. Dark blue indicates negative selec-

tion, white indicates neutral, and gold indicates

positive selection. Center: motif and overlap or-

ganization of Tat. Labels of other indicate stop

(vpr) and start codons (rev, gp41). Right: over-

lapped/Patient conservation of Tat residues. The

neutral expectation (white) is approximated as

a residue being equally represented by all

amino acids (1/20). Red boxes denote the

NL4-3 sequence while row headers denote the

consensus sequence.

See also Figures S4 and S5.

All Three Datasets Exhibit
Signatures of Segregated Evolution
To assess the agreement between data-
sets, and compare them to our models
of segregated and shared evolution,
we grouped alleles into two categories:
those present in the patient dataset (fre-
quency >1%) and those absent (fre-
quency = 0%). In a segregated model
of evolution, a dominant gene (Figure 6A:
gray gene), should act similarly regard-
less of whether it is overlapped or not,
as its own requirements for protein
function drive selection at these nucleo-
tides. In a single-frame context, the
dominant gene should continue to
match the overlapped dataset with ab-
sent alleles remaining unfit and present
alleles remaining fit. In contrast, the ac-
commodating gene (black) should have

many alleles that are absent in the patient population (due to
functional requirements of the gray gene) but are actually fit
in a single-frame context. In a shared model, the selective
pressures for the functions of both proteins constrain the
nucleotide sequence and thus removing the overlap provides
only a minimal relaxation. At best, only a small number of
chemically conservative amino acids, absent in the overlap-
ped dataset due to the alternative frame, will be fit (Figure 6A:
0% long tail).
The single-frame region of Tat provides a good test for this

behavior as Tat, the only gene present, should act in a segre-
gated manner in both patients and our randomized selection
dataset. As expected, there is a strong correlation between
patient allele frequency and selection (Figure 6B) with absent
alleles unfit and present alleles fit. The correlation is much
weaker in the multiple frame regions largely due to a subset
of alleles that produce fit viruses but are absent in patients,
presumably due to the constraint of the overlap (Figure 6A).
These results are consistent with our segregated model,
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• In patient data, Tat sites 
that overlap with Rev are 
highly conserved.

• HIV can be engineered so 
that Tat and Rev do not 
overlap

• Deep mutational scanning 
in non-overlap context 
(all possible codons at 
each position) shows that 
many sites lack 
conservation in cell lines.

• Is this due to drift 
(neutral) or selection?

regions do not express strong signals of positive selection even
absent the constraint of the overlap, suggesting that the pres-
ence of an overlapped gene does not prevent the formation
of additional, extended interaction surfaces. Interestingly, the
neutral selection values for stop codon alleles at residue 67 of
Tat and residue 86 of Rev indicate that the C termini of both pro-
teins are dispensable for replication in this context. In some
cases, we observed shifts from the NL4-3 reference sequence
to the patient consensus (e.g., Rev P28Y), suggesting that
NL4-3 sequences are not fully optimized for individual protein
function. We also identified important alanine residues not
captured by alanine mutagenesis, such as Tat A42, which
showed strong conservation of small side chains (A/G) in both
patient and selection datasets. Positions such as this, as well
as the fact that experimental fitness of alanine variants does
not always match the median experimental fitness, suggests
that alanine scanning, while grounded in biophysical reasoning,
may not always provide the best measure of functional impor-
tance of any particular site.
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Left: experimental fitness of every residue (all

synonymous codons grouped) of Tat in non-

overlapped tat-in-nef viruses after approximately

six generations of selection in SupT1 cells. Red

boxes and row headers denote the NL4-3

sequence. Dark blue indicates negative selec-

tion, white indicates neutral, and gold indicates

positive selection. Center: motif and overlap or-

ganization of Tat. Labels of other indicate stop

(vpr) and start codons (rev, gp41). Right: over-

lapped/Patient conservation of Tat residues. The

neutral expectation (white) is approximated as

a residue being equally represented by all

amino acids (1/20). Red boxes denote the

NL4-3 sequence while row headers denote the

consensus sequence.

See also Figures S4 and S5.

All Three Datasets Exhibit
Signatures of Segregated Evolution
To assess the agreement between data-
sets, and compare them to our models
of segregated and shared evolution,
we grouped alleles into two categories:
those present in the patient dataset (fre-
quency >1%) and those absent (fre-
quency = 0%). In a segregated model
of evolution, a dominant gene (Figure 6A:
gray gene), should act similarly regard-
less of whether it is overlapped or not,
as its own requirements for protein
function drive selection at these nucleo-
tides. In a single-frame context, the
dominant gene should continue to
match the overlapped dataset with ab-
sent alleles remaining unfit and present
alleles remaining fit. In contrast, the ac-
commodating gene (black) should have

many alleles that are absent in the patient population (due to
functional requirements of the gray gene) but are actually fit
in a single-frame context. In a shared model, the selective
pressures for the functions of both proteins constrain the
nucleotide sequence and thus removing the overlap provides
only a minimal relaxation. At best, only a small number of
chemically conservative amino acids, absent in the overlap-
ped dataset due to the alternative frame, will be fit (Figure 6A:
0% long tail).
The single-frame region of Tat provides a good test for this

behavior as Tat, the only gene present, should act in a segre-
gated manner in both patients and our randomized selection
dataset. As expected, there is a strong correlation between
patient allele frequency and selection (Figure 6B) with absent
alleles unfit and present alleles fit. The correlation is much
weaker in the multiple frame regions largely due to a subset
of alleles that produce fit viruses but are absent in patients,
presumably due to the constraint of the overlap (Figure 6A).
These results are consistent with our segregated model,
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• Deep mutational scanning: 

• Create exhaustive libraries with all possible codons at all 
overlapping positions

• Allow population mixture to evolve for G generations, then 
sequence to measure final frequencies of all amino acids

• Simulate to evaluate significance of allele frequency change

• Factors you might want to include in your 
simulation:

• the overall population growth function

• the number of generations

• the starting allele frequency

• the read depth for the experiment
31

Article

Functional Segregation of Overlapping Genes in HIV
Jason D. Fernandes,1,2 Tyler B. Faust,1,3 Nicolas B. Strauli,4,5 Cynthia Smith,1 David C. Crosby,1 Robert L. Nakamura,1

Ryan D. Hernandez,4 and Alan D. Frankel1,6,*
1Department of Biochemistry and Biophysics
2Program in Pharmaceutical Sciences and Pharmacogenomics
3Tetrad Program, Department of Biochemistry and Biophysics
4Department of Bioengineering and Therapeutic Sciences
5Biomedical Sciences Graduate Program
University of California San Francisco, San Francisco, CA 94158, USA
6Lead Contact
*Correspondence: frankel@cgl.ucsf.edu
http://dx.doi.org/10.1016/j.cell.2016.11.031

SUMMARY

Overlapping genes pose an evolutionary dilemma as
one DNA sequence evolves under the selection pres-
sures of multiple proteins. Here, we perform system-
atic statistical andmutational analyses of the overlap-
ping HIV-1 genes tat and rev and engineer exhaustive
libraries of non-overlapped viruses to perform deep
mutational scanning of each gene independently.
We find a ‘‘segregated’’ organization in which over-
lapped sites encode functional residues of one gene
or the other, but never both. Furthermore, this organi-
zation eliminates unfit genotypes, providing a fitness
advantage to the population. Our comprehensive
analysis reveals the extraordinary manner in which
HIV minimizes the constraint of overlapping genes
and repurposes that constraint to its own advantage.
Thus, overlaps are not just consequences of evolu-
tionary constraints, but rather can provide population
fitness advantages.

INTRODUCTION

The sequencing of the first complete DNA genome, FX174, re-
vealed the startling discovery that genes can overlap with one
another (Barrell et al., 1976; Sanger et al., 1977). Since this
initial observation, overlapping reading frames have been
observed in most viruses and across all domains of life (Bel-
shaw et al., 2007; Makalowska et al., 2005; Rogozin et al.,
2002). In viruses, these regions are traditionally thought to
arise as consequences of error-prone polymerases and con-
straints on the size of viral capsid proteins (Belshaw et al.,
2007; Chirico et al., 2010). For instance, high polymerase error
rates favor short genomes thereby decreasing the probability
of catastrophic mutations, while the viral capsid imposes a
biophysical limit on genome size. Other models suggest that
overlap formation is driven by selection pressures favoring
evolutionary innovation (Brandes and Linial, 2016; Keese and
Gibbs, 1992; Rancurel et al., 2009; Sabath et al., 2012), as
overlaps are also found in large genomes. Regardless, once

present in a genome, overlapping genes must balance nucle-
otide usage so that the functions of each reading frame are
satisfied. Several studies have used computational methods
to estimate gene-wide selective forces (Hein and Støvlbaek,
1995; Sabath et al., 2008; Wei and Zhang, 2014) but only a
few have generated experimental data (Kawano et al., 2013).
Computational analyses of protein structure have demon-
strated that overlapped proteins in all viruses tend toward
intrinsic disorder (Rancurel et al., 2009), but how structured
and/or functional regions are divided at the amino acid level
remains unknown. It is possible to envisage two extreme
models for this simultaneous evolution: (1) a ‘‘segregated’’
model in which the amino acid/nucleotide preferences for
one gene dominate and the other gene accommodates with
no observable benefit to itself, or (2) a ‘‘shared’’ model in
which both genes exert selective forces at the same site, en-
forcing strong conservation in both frames (Figure S1). It is un-
likely that segregated or shared decisions are uniform over an
entire overlap, so defining the selective forces on a per residue
basis becomes critical to understanding how the functions of a
pair of proteins can be properly balanced.
HIV-1 provides a compelling model as it contains eight

distinct areas of coding overlap (Figure S2A) constituting
!8% of its entire genome, and extensive sequence informa-
tion from many virus isolates is available (Foley et al., 2013)
(https://www.hiv.lanl.gov/content/index). The tat and rev regu-
latory genes (Figure 1A) are a particularly interesting case as
both are essential for virus replication and thus experience
strong simultaneous selective pressure, both have well-estab-
lished functions and assays, and both have partial structures
available to help interpret the functional consequences of
sequence variants (Figure S2B) (Daugherty et al., 2010; DiMat-
tia et al., 2010; Tahirov et al., 2010). Tat activates transcrip-
tional elongation at the HIV-1 promoter via its interactions
with host transcription factors (most notably P-TEFb) and an
RNA element at the 50 end of viral transcripts known as
trans-activation response element (TAR) (Ott et al., 2011).
Rev facilitates the nuclear export of partially spliced and un-
spliced viral RNAs that encode essential late-stage viral pro-
teins and genomic RNA for packaging (Pollard and Malim,
1998). Rev binds as an oligomer to an RNA element present
in viral introns known as the Rev response element (RRE)
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Figure S5. Related to Figures 3 and 4
(A) An illustration of the neutral simulations for a hypothetical allele with a starting frequency of 0.02, an ending read depth of 500 reads, and an amino acid identity

of Arginine. The gray area depicts the range of trajectories that this allele could take if it were neutral. If an ending allele frequency were observed to be above or

below this neutral expectation, it is deemed positively or negatively selected, respectively. The black dots indicate the upper and lower bounds for the ending

allele frequency that would still be considered neutral. These upper and lower bounds correspond to relative fitness values of 0.380 and !0.699, respectively,

which means neutrality cannot be rejected for any observed fitness value that resides between this interval.

(B) The observed distribution of fitness values for alleles found to be under negative (blue), neutral (gray), or positive (gold) selection. Neutral alleles were

sometimes found to have relatively extreme fitness estimates (left and right tails of gray distribution). Likewise, alleles under significant positive or negative

selection were sometimes found to have fitness estimates close to zero (right tail of blue distribution, and left tail of gold distribution).

(C) Correlation between the estimated fitness and the true fitness under our simulation framework. Each point corresponds to one simulation.

(D) Correlation plot of alleles between biological replicates. Alleles that have strong experimental evidence of selection show high repeatability. Correlation

coefficients are shown for the whole data-set and those passing our QC criteria (note that these criteria have inherent biases, such as requiring the sign of the

selection coefficient to be consistent, toward increasing the correlation coefficient). The experimental error rate (amino acids that appear to mutate outside the

randomization site) is "2%. Note that this error rate is calculated on the amino acid level and does not consider synonymous mutations, or multiple mutations

within the same codon.
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Natural Selection
Time-course data from artificial selection/ancient DNA

• Let’s estimate some selection coefficients!

• Given 2 alleles at a locus with frequencies  and , and fitnesses  
and  (with  the population-wide fitness).

• Expected freq. in next generation is:  .

• We can then write:

•
• Using induction, you could prove for any generation t:

•

p0 q0 w1
w2 w

p1 = p′ = p0w1/w

p1

q1
=

p0w1/w
q0w2/w

= ( p0

q0 ) ( w1

w2 )

pt

qt
= ( p0

q0 ) ( w1

w2 )
t

33



• Taking the natural log of this equation:

•
• Which is now a linear function of t, the number of 

generations.

• We can now estimate the ratio of fitnesses by 
regression!

log ( pt

qt ) = log ( w1

w2 ) t + log ( p0

q0 )

Natural Selection

34



• Experiment:  Set up a population of bacteria in a 
chemostat, and let them reproduce.

• Sample roughly every 5 generations.

• A slope of 0.139 implies: 

• Assume w2=1. 

• Thus, allele p has a  
15% fitness advantage 
over allele q!

• (simulated with 20% advantage)

w1/w2 = e0.139 = 1.15

Natural Selection
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Figure S5. Related to Figures 3 and 4
(A) An illustration of the neutral simulations for a hypothetical allele with a starting frequency of 0.02, an ending read depth of 500 reads, and an amino acid identity

of Arginine. The gray area depicts the range of trajectories that this allele could take if it were neutral. If an ending allele frequency were observed to be above or

below this neutral expectation, it is deemed positively or negatively selected, respectively. The black dots indicate the upper and lower bounds for the ending

allele frequency that would still be considered neutral. These upper and lower bounds correspond to relative fitness values of 0.380 and !0.699, respectively,

which means neutrality cannot be rejected for any observed fitness value that resides between this interval.

(B) The observed distribution of fitness values for alleles found to be under negative (blue), neutral (gray), or positive (gold) selection. Neutral alleles were

sometimes found to have relatively extreme fitness estimates (left and right tails of gray distribution). Likewise, alleles under significant positive or negative

selection were sometimes found to have fitness estimates close to zero (right tail of blue distribution, and left tail of gold distribution).

(C) Correlation between the estimated fitness and the true fitness under our simulation framework. Each point corresponds to one simulation.

(D) Correlation plot of alleles between biological replicates. Alleles that have strong experimental evidence of selection show high repeatability. Correlation

coefficients are shown for the whole data-set and those passing our QC criteria (note that these criteria have inherent biases, such as requiring the sign of the

selection coefficient to be consistent, toward increasing the correlation coefficient). The experimental error rate (amino acids that appear to mutate outside the

randomization site) is "2%. Note that this error rate is calculated on the amino acid level and does not consider synonymous mutations, or multiple mutations

within the same codon.

Figure S5. Related to Figures 3 and 4
(A) An illustration of the neutral simulations for a hypothetical allele with a starting frequency of 0.02, an ending read depth of 500 reads, and an amino acid identity

of Arginine. The gray area depicts the range of trajectories that this allele could take if it were neutral. If an ending allele frequency were observed to be above or

below this neutral expectation, it is deemed positively or negatively selected, respectively. The black dots indicate the upper and lower bounds for the ending

allele frequency that would still be considered neutral. These upper and lower bounds correspond to relative fitness values of 0.380 and !0.699, respectively,

which means neutrality cannot be rejected for any observed fitness value that resides between this interval.

(B) The observed distribution of fitness values for alleles found to be under negative (blue), neutral (gray), or positive (gold) selection. Neutral alleles were

sometimes found to have relatively extreme fitness estimates (left and right tails of gray distribution). Likewise, alleles under significant positive or negative

selection were sometimes found to have fitness estimates close to zero (right tail of blue distribution, and left tail of gold distribution).

(C) Correlation between the estimated fitness and the true fitness under our simulation framework. Each point corresponds to one simulation.

(D) Correlation plot of alleles between biological replicates. Alleles that have strong experimental evidence of selection show high repeatability. Correlation

coefficients are shown for the whole data-set and those passing our QC criteria (note that these criteria have inherent biases, such as requiring the sign of the

selection coefficient to be consistent, toward increasing the correlation coefficient). The experimental error rate (amino acids that appear to mutate outside the

randomization site) is "2%. Note that this error rate is calculated on the amino acid level and does not consider synonymous mutations, or multiple mutations

within the same codon.

Hidden: Neutral sites 
with large allele 

frequency changes

Hidden: Adaptive 
sites with tiny allele 
frequency changes

Fernandez, et al., Cell (2016)



• SFS_CODE:  Hernandez (2008)

• Command-line flexibility… shameless plug!

• FWDPP:  Thornton (2014)

• C++ library of routines intended to facilitate the 
development of forward-time simulations under 
arbitrary mutation and fitness models

• SLiM 3:  Haller & Messer (2019)

• Command-line, GUI, and R-like scripting 
environment that provides control over most 
aspects of the simulated evolutionary scenarios

Existing forward simulators
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