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Goals

• Learn about the population genetics of natural 
selection

• How to write a simple simulation with natural 
selection
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“Promoter” 

Basic Biology
Functional non-coding mutations

gene

5’ 3’

Un-Translated Regions (UTRs)
cis-regulatory region  
     (promoters: transcription factor binding sites)

trans-regulatory region  
     (enhancers)

micro-RNA

noncoding RNA:
snoRNAs, siRNAs, 
piRNAs, long 
ncRNAs

genome

• Overall, ~2% of the human 
genome is protein coding

• ~5% of genome is obviously 
functional

• ~80% of genome has “functional 
activity”
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Life Cycle
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Parents

Gametes
(sperm & eggs)

Zygotes

Adults

Gametic
selection

Compatibility
selection

Viability  
selection

Sexual  
selection



Modern Human Genomics: 
A case for rare variants?

1.1×10-8  × 6×109 = 66 [muts / person]

   66  [muts/p] 

× 130M [p/y] 

÷   3B [bp] 

2.86 muts/bp/yr
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Chromosome SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6

1 A C A G C C
2 A T G A C T
3 G T G A T T
4 A C G A C T

Sequencing Data

! = average pairwise diversity

# Pairwise 
differences 3 4 3 3 3 3
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Chromosome SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6

1 A C A G C C
2 A T G A C T
3 G T G A T T
4 A C G A C T

Sequencing Data

! = average pairwise diversity

# Pairwise 
differences 3 4 3 3 3 3
# Compared 6 6 6 6 6 6
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Number of variants:  6 SNPs

Diversity (π):  3.1667/L

Chromosome SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6

1 A C A G C C
2 A T G A C T
3 G T G A T T
4 A C G A C T

Sequencing Data

# Pairwise 
differences 3 4 3 3 3 3
# Compared 6 6 6 6 6 6

Avg. 
Pairwise Diff 0.5 0.67 0.5 0.5 0.5 0.5
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Chromosome SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6

1 A C A G C C
2 A T G A C T
3 G T G A T T
4 A C G A C T

Sequencing Data

Minor 
Allele A C A G C T

MAF 0.25 0.5 0.25 0.25 0.25 0.25
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Chromosome SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6

1 A C A G C C
2 A T G A C T
3 G T G A T T
4 A C G A C T

Sequencing Data

Minor 
Allele A C A G C T

MAF 0.25 0.5 0.25 0.25 0.25 0.25

MAF 5 1 Fr
ac

tio
n 

of
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N
Ps

0

0.45

0.9

Minor Allele Frequency

1/4 2/5
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Sequencing Data

Chimp A C A G C T

Chromosome SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6

1 A C A G C C
2 A T G A C T
3 G T G A T T
4 A C G A C T
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Chromosome SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6

1 A C A G C C
2 A T G A C T
3 G T G A T T
4 A C G A C T

Sequencing Data

Chimp A C A G C T
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Chromosome SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6

1 A C A G C C
2 A T G A C T
3 G T G A T T
4 A C G A C T

Sequencing Data

Chimp A C A G C T
Derived 

count 1 2 3 3 1 1

0
0.167
0.333

0.5

1 2 3
Derived frequency in sample

Pr
op

or
tio

n 
of

 S
N

Ps

Site-Frequency 
Spectrum (SFS)
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1 C A T T C G A A G C G A T C A G G C T A T A

2 C A T T T G A G A C G A T C A G G C T A T A

3 C G T T T G A G A C G A T T A G G C C A T A

4 C A T T C G A G A C G A T C A G G C T A T A

outgroup T A C C C A G G A G A T A C G C A T T T A T

= non-coding
= synonymous
= nonsynonymous

Site-Frequency Spectrum

* * * * * * * * * * * * * * **

* - Substitution between 
species
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Site-Frequency Spectrum
The proportion of SNPs at each frequency in 
a sample of chromosomes.
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Site-Frequency Spectrum
SNM
AfAm (Human)
Ch (RheMac)
In (RheMac)

Rufi (rice)
Indica (rice)
Japonica (rice)
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Population Genetics

• Imagine a population of diploid individuals

P Q R
• Principles of random mating:

• Any two individuals are equally likely to mate and 
reproduce to populate the next generation.

• Either chromosome is equally likely to be passed on.
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Hardy-Weinberg 
Principle

Godfrey H. Hardy:
1877-1947

Wilhelm Weinberg:
1862-1937• Assumptions: 

• Diploid organism

• Sexual reproduction

• Non-overlapping generations

• Only two alleles

• Random mating

• Identical frequencies in 
males/females

• Infinite population size

• No migration

• No mutation

• No natural selection

• Conclusion 1:
Both allele AND genotype frequencies will 
remain constant at HWE generation after 
generation...  forever!

P=p2 

Q=2p(1-p) 
R=(1-p)2
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Hardy-Weinberg Principle

• Imagine a population of diploid individuals

P = 0.81

Q = 0.18

R = 0.01

2 4 6 8 10
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fre
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A A A a a a
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Hardy-Weinberg Principle

• Imagine a population of diploid individuals

P = 0.5

R = 0.4

Q = 0.1

2 4 6 8 10

0.
0

0.
2

0.
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0.
6

0.
8

1.
0

Generation

fre
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AA
Aa
aa

• Conclusion 2: A single round of random mating will return the 
population to HWE frequencies!

p = P +Q/2 = 0.55

2p(1� p) = 0.495
p2 = 0.3025

(1� p)2 = 0.2025

A A A a a a
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Hardy-Weinberg 
Principle

Godfrey H. Hardy:
1877-1947

Wilhelm Weinberg:
1862-1937• Assumptions: 

• Diploid organism

• Sexual reproduction

• Non-overlapping generations

• Only two alleles

• Random mating

• Identical frequencies in 
males/females

• Infinite population size

• No migration

• No mutation

• No natural selection
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Hardy-Weinberg Equilibrium
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Hardy-Weinberg Equilibrium

23 Graham Coop



• In finite populations, allele frequencies can and do change 
over time.

• In fact, EVERY genetic variant will either be lost from the 
population (p=0) or fixed in the population (p=1) some time 
in the future.

• The most common model for finite populations is the 
Wright-Fisher model. 

• This model makes explicit use of the binomial distribution.

Genetic Drift
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Bernoulli Distribution

• One of the simplest probability distributions

• A discrete probability distribution

• Classic example: tossing a coin

• If a coin toss comes up heads with probability p, it 
results in tails with probability 1-p.

• If X is a Bernoulli Random Variable, x is an observation we write:

25

Jacob Bernoulli
1655-1705

f(x|p) =
(
p if x = 1

1� p if x = 0

• The Expected Value is E[X] = p, and the Variance is V[X] = p(1-p).



Binomial Distribution
• We introduced the Bernoulli Distribution, where we 

imagine a coin flip resulting in heads with probability p.

• But if we flipped the coin N times, how many heads 
would we expect?

• What is the probability that we get heads all N times?

• The number of “successes” in a fixed number of trials is 
described by the Binomial Distribution.  

• Written out, if the probability of each success is p, then 
the probability we observe j successes in N trials is:  
 
 

26

P (j|N, p) =

✓
N

j

◆
pj(1� p)N�j ;

✓
N

j

◆
=

N !

j!(N � j)!



Binomial Mean and Variance

• The mean of a Binomial Random Variable is:

• E[J] = Np

• With variance:

• V[J] = p(1-p)/N
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• Suppose a population of N individuals.

• Let X(t) be the #chromosomes carrying an allele A in generation t:

Wright-Fisher Model

Sewall Wright:
1889-1988

Sir Ronald Fisher
1890-1962

P (X(t+ 1) = j|X(t) = i)

= Bin(j|N, i/N) =

✓
N

j

◆✓
i

N

◆j ✓N � i

N

◆N�j
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• A simple R function to simulation genetic drift:  
 
 
 
 
 
 
 

• Run it in R using:   
 
f=WF(100, 0.5, 200)  
plot(f)

WF=function(N, p, G){  
  t=array(,dim=G);  
  t[1] = p;  
  for(i in 2:G){  
    t[i] = rbinom(1,N,t[i-1])/N;  
  }  
  return(t);  
}

Wright-Fisher Model
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Wright-Fisher Model
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Demographic Effects

• What do you think will happen if a 
population grows?  Or shrinks?
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• Suppose a population of N individuals.

• Let X(t) be the #chromosomes carrying an allele A in generation t:

Wright-Fisher Model

Sewall Wright:
1889-1988

Sir Ronald Fisher
1890-1962

P (X(t+ 1) = j|X(t) = i)

= Bin(j|N, i/N) =

✓
N

j

◆✓
i

N

◆j ✓N � i

N

◆N�j
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• A simple R function to simulation genetic drift:

WFdemog = function(N, p, G, Gd, v){
    t=array(,dim=G);
    t[1] = p;
    for(i in 2:G){
        if(i == Gd){
            N = N*v;
       }
        t[i] = rbinom(1,N,t[i-1])/N;
    }
    return(t);
}

Wright-Fisher Model
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Wright-Fisher Model with Expansion
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• Run it using:  WFdemog(100, 0.5, 200, 50, 100)



Wright-Fisher Model with Contraction
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• Run it using:  WFdemog(100, 0.5, 200, 50, 0.1)



Hardy-Weinberg Principle

• What happens when we allow natural selection to occur?

• Alleles change frequency!

36

• Assumptions: 

• Diploid organism

• Sexual reproduction

• Non-overlapping generations

• Only two alleles

• Random mating

• Identical frequencies in 
males/females

• Infinite population size

• No migration

• No mutation

• No natural selection



• Usually parameterized in terms of a dominance 
coefficient (h), and a selection coefficient (s), with 
wildtype fitness set to 1:
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Natural Selection

Genotype AA Aa aa

Frequency p2 2pq q2

Fitness 1 1+hs 1+s

• h=1 is completely dominant

• h=0 is completely recessive

• h=0.5 is “genic” selection, or “codominance”, or 
“additive” fitness



• How do we model the change in allele frequencies?

• What is fitness?!

• Refers to the average number of offspring 
individuals with a particular genotype will have.

• Wild-type individuals have on average 1 offspring, 
while homozygous derived individuals have on 
average 1+s offspring.
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Natural Selection
Genotype AA Aa aa

Frequency p2 2pq q2

Fitness 1 1+hs 1+s



• In this case, s is the absolute fitness.

• If the population size is fixed, then we need to 
consider relative fitness.

• That is, how fit is an individual genotype relative to 
the population.

• For this, we need to know average population fitness!
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Natural Selection
Genotype AA Aa aa

Frequency p2 2pq q2

Fitness 1 1+hs 1+s

w̄ = p2(1) + 2pq(1 + hs) + q2(1 + s) = 1 + sq(2hp+ q)



• The expected frequency in the next generation (q’) is 
then the density of offspring produced by carriers of 
the derived allele divided by the population fitness:
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Natural Selection
Genotype AA Aa aa

Frequency p2 2pq q2

Fitness 1 1+hs 1+s

q0 =
q2(1 + s) + pq(1 + hs)

1 + sq(2hp+ q)



Natural Selection
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• Trajectory of selected allele with various selection 
coefficients under genic selection (h=0.5) in an 
“infinite” population
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• Assumptions: 

• Diploid organism

• Sexual reproduction

• Non-overlapping generations

• Only two alleles

• Random mating

• Identical frequencies in 
males/females

• Infinite population size

• No migration

• No mutation

• No natural selection

Hardy-Weinberg Principle

• What happens with natural selection in a finite population?

• Directional selection AND drift!
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Simulating Natural Selection

• First write an R function for the change in allele 
frequencies:
fitfreq = function(q, h, s){  
  p=1-q;  
  return((q^2*(1+s) + p*q*(1+h*s))/( 1 + s*q*(2*h*p+q)));  
}

• Now use this in an updated WF simulator:
WF.sel=function(N, q, h, s, G){  
  t=array(,dim=G);  
  t[1] = N*q;  
  for(i in 2:G){  
    t[i] = rbinom(1,N,fitfreq(t[i-1]/N, h, s));  
  }  
  return(t);  
}

43



Natural Selection
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N=100; s=0.1; h=0.5

44



Natural Selection

• Estimating the probability of fixation of a new mutation 
(p0=1/N)

• 5000 simulations:  N=100; h=0.5

• Pr(Fixation | s=0, p0) = p0!!
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(1−exp(−s))(1−exp(−Ns)
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Natural Selection
Time-course data from artificial selection/ancient DNA

• Let’s estimate some selection coefficients!

• Given 2 alleles at a locus with frequencies p0 and q0, and 
fitnesses w1 and w2 (with w the population-wide fitness).

• Expected freq. in next generation is:  p1=p’=p0w1/w.

• We can then write:

• Using induction, you could prove for any generation t:

p1
q1

=
p0w1/w

q0w2/w
=

✓
p0
q0

◆✓
w1

w2

◆

pt
qt

=
p0w1/w

q0w2/w
=

✓
p0
q0

◆✓
w1

w2

◆t
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• Taking the natural log of this equation:

• Which is now a linear function of t, the number of 
generations.

• Therefore, the ratio of the fitnesses w1/w2 = eslope

Natural Selection

log

✓
pt
qt

◆
= log

✓
w1
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◆
t+ log

✓
p0
q0

◆

47



• Experiment:  Set up a population of bacteria in a 
chemostat, and let them reproduce.

• Sample roughly every 5 generations.

• A slope of 0.139 implies:  
w1=e0.139 = 1.15

• Assume w2=1. 

• Thus, allele p has a  
15% fitness advantage 
over allele q!

• (simulated with 20% advantage)

Natural Selection

●

●

● ●

●

●

●

0 5 10 15 20 25 30 35

0
1

2
3

4
5

slope =  0.139

Generation

ln
(p
/q
)

48



• Hardy-Weinberg Equilibrium requires many 
assumptions, all of which are routinely violated in 
natural populations.

• Nevertheless, the vast majority of variants are in HWE.

• Deviations almost always due to technical artifacts!

• Simulating Wright-Fisher models is easy!

• Natural selection changes the expected allele frequency 
in the next generation.

• But drift still acts in finite populations!

Summary
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