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Goals

® | earn about the population genetics of natural
selection

® How to write a simple simulation with natural
selection



Basic Biology

Functional non-coding mutations
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® Overall, ~2% of the human
genome is protein coding

® ~5% of genome is obviously
functional

® ~80% of genome has “functional
activity”
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MODERN HUMAN GENOMICS:
A CASE FOR RARE VARIANTS?

1.1x10-8 x 6%x10%2 = 66 [muts / person]

66 [muts/p]

x 130M [p/V]
+ 3B [bp]

2.86 muts/bp/yr



SEQUENCING DATA

Chromosome | SNP1 | SNP2 | SNP3 | SNP4 | SNP5 | SNP6
1 A C A G C C
2 A T G A C T
3 G T G A T T
4 A C G A C T
Pairwise 3 4 3 3 3 3

differences

Tl = average pairwise diversity
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SEQUENCING DATA

Chromosome | SNP1 | SNP2 | SNP3 | SNP4 | SNP5 | SNP6

1 A C A G C C

2 A T G A C T

3 G T G A T T

4 A C G A C T
Pairwise

differences 3 4 3 3 3 3

# Compared| 6 6 6 6 6 6

Tl = average pairwise diversity

v




SEQUENCING DATA

Chromosome | SNP1 | SNP2 | SNP3 | SNP4 | SNP5 | SNP6
1 A C A G C C
2 A T G A C T
3 G T G A T T
4 A C G A C T
Pairwise
differences 3 4 3 3 3 3
# Compared| 6 6 6 6 6 6
Avaq.
oairwics oiee| 0-5 [0.67| 0.5 | 0.5 | 0.5 | 0.5
Number of variants: 6 SNPs

Diversity (m): 3.1667/L




SEQUENCING DATA

Chromosome

Minor
Allele

MAF 025 | 0.5 | 025 | 025 | 025 | 0.25

MAF| 5| 1

1/4 2/5

¢ Minor Allele Frequency



SEQUENCING DATA

Chromosome

Minor
Allele

MAF 025 | 0.5 | 025 | 025 | 025 | 0.25

Fraction
of SNPs

MAF| 5| 1

1/4 2/5

10 Minor Allele Frequency



SEQUENCING DATA

Chromosome | SNP1 [ SNP2 | SNP3 | SNP4 | SNP5 | SNP6
1 A C A G C C
2 A T G A C T
3 G T G A T T
4 A C G A C T
Chimp A C A G C T
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SEQUENCING DATA

Chromosome
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SEQUENCING DATA

Chromosome

Chimp A C A G C T
Derived ] ) 3 3 . ;
count
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Site-Frequency Spectrum
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Site-Frequency Spectrum

The proportion of SNPs at each frequency in
a sample of chromosomes.
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proportion of SNPs

Site-Frequency Spectrum
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Population Genetics

® |magine a population of diploid individuals
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® Principles of random mating:

® Any two individuals are equally likely to mate and
reproduce to populate the next generation.

® FEither chromosome is equally likely to be passed on.
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® Assumptions: . .
P ® |dentical frequencies in

® Diploid organism males/females
® Sexual reproduction ® [nfinite population size
® Non-overlapping generations ® No migration

® Only two alleles ® No mutation

® Random mating ® No natural selection

® Conclusion I: P=p2
Both allele AND genotype frequencies will P

remain constant at HWE generation after O=2p(1-p)
generation... forever! 8 R=(1-p)



Hardy-VVeinberg Principle

® |magine a population of diploid individuals
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Hardy-VVeinberg Principle

® |magine a population of diploid individuals

@ @ @@ p® = 0.3025
%0 2D 2p(1 — p) = 0.495
(1 —p)* =0.2025

D= P+Q/2—055

A

! ! ! ! |
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frequency
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Generation

® Conclusion 2: A single round of random mating will return the
population to HWE frequencies!
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Hardy-VVeinberg

Principle =2\ B .
=\ VA
Godfrey H. Hardy:  Wilhelm Weinberg:
1877-1947 1862-1937

® Assumptions: , o
® |dentical frequencies in

® Diploid organism males/females

® Sexual reproduction ® |[nfinite population size

® Non-overlapping generations ® No migration

® Only two alleles ® No mutation

® Random mating ® No natural selection
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Hardy-VVeinberg Equilibrium
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Hardy-VVeinberg Equilibrium

genotype frequency
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Genetic Drift

In finite populations, allele frequencies can and do change
over time.

In fact, EVERY genetic variant will either be lost from the
population (p=0) or fixed in the population (p=1) some time
in the future.

The most common model for finite populations is the
Wright-Fisher model.

This model makes explicit use of the binomial distribution.
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Bernoulli Distribution

® One of the simplest probability distributions
® A discrete probability distribution

® (Classic example: tossing a coin

Jacob Bernoulli

|655-1705 ® |f a coin toss comes up heads with probability p, it
results in tails with probability /-p.

® |f X is a Bernoulli Random Variable, x is an observation we write:

) ifxr=1
f(:vp){lp g

® The ExpectedValue is E[X] = p,and the Variance is V[X] = p(1-p).
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Binomial Distribution

We introduced the Bernoulli Distribution, where we
imagine a coin flip resulting in heads with probability p.

But if we flipped the coin N times, how many heads
would we expect!?

What is the probability that we get heads all N times!?

The number of “successes’ in a fixed number of trials is
described by the Binomial Distribution.

Written out, if the probability of each success is p, then
the probability we observe j successes in N trials is:

P(j|N,p) = (?)pj(l -p)" s (7) = j!(NNi !
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Binomial Mean and Variance

® [he mean of a Binomial Random Variable is:
® ElJ]=Np
® With variance:

® V|J|=p(l-p)/N

27



Wright-Fisher Model
r '

Sewall Wright: Sir Ronald Fisher
1889-1988 1890-1962

® Suppose a population of N individuals.

® Let X(t) be the #chromosomes carrying an allele A in generation t:

PIX(t+ D) =jiX(0 =) = (1 )ra-pY

— Bin(j|N,i/N) = (.7]\7> <%>9 (N]\;i>Nj
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Wright-Fisher Model

® A simple R function to simulation genetic drift:

WF=function(N, p, G){
t=array(,dim=G);
t[1l] = p;
for(i in 2:G){
t[i] = rbinom(1l,N,t[i-1])/N;

}

return(t);

}
® Runitin R using:

f=WF (100, 0.5, 200)
plot(f)

29
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Demographic Effects

® What do you think will happen if a
population grows? Or shrinks?
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Wright-Fisher Model
r '

Sewall Wright: Sir Ronald Fisher
1889-1988 1890-1962

® Suppose a population of N individuals.

® Let X(t) be the #chromosomes carrying an allele A in generation t:

PIX(t+ D) =jiX(0 =) = (1 )ra-pY

— Bin(j|N,i/N) = (.7]\7> <%>9 (N]\;i>Nj
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Wright-Fisher Model

® A simple R function to simulation genetic drift:

WFdemog = function(N, p, G, Gd, v){
t=array(,dim=G);
t[1l] = p;
for(i in 2:G){
1f(1 == Gd){
N = N*v;
}
t[i] = rbinom(1l,N,t[i-1])/N;
}

return(t);
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Wright-Fisher Model with Expansion

Allele frequency Allele frequency

Allele frequency

00 02 04 0.6 08 1.0 00 02 04 06 08 1.0

00 02 04 06 08 1.0

(0] 50 100 150 200
Generation
B T T T T T
(0) 50 100 150 200
Generation
a T T T T T
(0] 50 100 150 200

Generation

Run it using: WFdemog (100,
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Wright-Fisher Model with Contraction
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Hardy-VVeinberg Principle
® I .
Assumptions ® |dentical frequencies in
® Diploid organism males/females
® Sexual reproduction ® |[nfinite population size

® Non-overlapping generations ® No migration

® Only two alleles ® No mutation

® Random mating ® No natural selection

® What happens when we allow natural selection to occur?

® Alleles change frequency!
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Natural Selection

® Usually parameterized in terms of a dominance
coefficient (h), and a selection coefficient (s), with
wildtype fitness set to |:

Genotype AA Aa aa
Frequency P’ 2pq q°
Fitness 1 1+hs 1+s

® h=| is completely dominant
® h=0 is completely recessive

® h=0.5 is “genic” selection, or “codominance”, or
“additive” fitness
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Natural Selection

Genotype AA Aa aa
Frequency P’ 2pq q°
Fitness 1 1+hs 1+s

® How do we model the change in allele frequencies!?
® What is fitness!?!

® Refers to the average number of offspring
individuals with a particular genotype will have.

® Wild-type individuals have on average 1 offspring,
while homozygous derived individuals have on

average 1+s offspring.



Natural Selection

Genotype AA Aa aa
Frequency P’ 2pq q°
Fitness 1 1+hs 1+s

® |n this case, s is the absolute fitness.

® |f the population size is fixed, then we need to
consider relative fitness.

® That is, how fit is an individual genotype relative to
the population.

® For this, we need to know average population fitness!

w = p*(1) + 2pq(1 + hs) + ¢*(1 + s) = 1 + sq(2hp + q)



Natural Selection

Genotype AA Aa aa
Frequency P’ 2pq q°
Fitness 1 1+hs 1+s

® The expected frequency in the next generation (q’) is
then the density of offspring produced by carriers of
the derived allele divided by the population fitness:

- q2(1 +s) + pq(1 + hs)
d 1 4+ sq(2hp + q)
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Natural Selection

® Trajectory of selected allele with various selection
coefficients under genic selection (h=0.5) in an
“infinite” population
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Hardy-VVeinberg Principle
® I .
Assumptions ® |dentical frequencies in
® Diploid organism males/females
® Sexual reproduction ® [nfinite population size

® Non-overlapping generations ® No migration

® Only two alleles ® No mutation

® Random mating ® No natural selection

® What happens with natural selection in a finite population!?

® Directional selection AND drift!
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Simulating Natural Selection

® First write an R function for the change in allele
frequencies:

fitfreqg = function(gq, h, s){

p=1-q;

return((q”2*(1l+s) + p*g*(1l+h*s))/( 1 + s*g*(2*h*p+q)));
}

® Now use this in an updated WF simulator:

WF.sel=function(N, g, h, s, G){
t=array(,dim=G);
t[1l] = N*q;
for(i in 2:G){
t[i] = rbinom(1l,N,fitfreq(t[i-1]/N, h, s));
}

return(t);

}
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Natural Selection
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® Estimating the probability of fixation of a new mutation
(Po=1/N)

® 5000 simulations: N=100; h=0.5
+® Pr(Fixation | s=0, po) = po!!



Natural Selection

Time-course data from artificial selection/ancient DNA
® | et’s estimate some selection coefficients!

® Given 2 alleles at a locus with frequencies po and g, and
fitnesses w1 and w» (with w the population-wide fitness).

® Expected freq.in next generation is: p1=p’=powi/w.
® We can then write:
o s~ () ()
q1 qowsz /w qo w2
® Using induction, you could prove for any generation f:

Pt _ Powi/w




Natural Selection

® Taking the natural log of this equation:
log (Zﬁ) — log (w ) t + log <po>
qdt w2 40

® Which is now a linear function of ¢, the number of
generations.

® Therefore, the ratio of the fitnesses wi/w, = eslopre
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Natural Selection

® Experiment: Set up a population of bacteria in a
chemostat, and let them reproduce.

® Sample roughly every 5 generations.

® A slope of 0.139 implies:
wi=e 139 =115 o -

slope = 0.139

® Assume wr=1.

n(p/q)

® Thus,allele p has a -
| 5% fitness advantage T
over allele q! °

o (simulated with 20% advantage) Generation
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Summary

Hardy-Weinberg Equilibrium requires many
assumptions, all of which are routinely violated in
natural populations.

Nevertheless, the vast majority of variants are in HVVE.
® Deviations almost always due to technical artifacts!
Simulating Wright-Fisher models is easy!

Natural selection changes the expected allele frequency
in the next generation.

® But drift still acts in finite populations!



