Population Structure Analysis

Learning objectives

- Methods to identify global estimates of population structure
- Principal Component Analysis (PCA)
- Admixture
- Local ancestry can identify segments of the genome corresponding to different ancestries.
- Local ancestry can be applied in a number of different ways
- Demographic modeling
- Selection
- Refining PCA signals
- Association analyses

Principal Component Analysis (PCA)

PCA

- Uses
- Highly sensitive summary of all the data
- Summarize population structure
- Identify groups within data
- Sanity check for study design
- E.g. Diseased individuals cluster vs controls
- Sanity check when combining data
- Pitfalls
- Only look at the first few PCs
- All axes are biological (once first few are)
- Identifying significance of an axis is non-trivial
- Assumptions
- Linear relationship between data
- Variants are independent (LD)

PCA Example: Strandedness

PCA Example: Insiginficance

PCA Example: Relatedness

PCA Example: Technical Issues

"Genes mirror geography within Europe"

Novembre et al. (2008) Nature

ADMIXTURE (Alexander et al. 2009)

$$
G=\left[\begin{array}{cccc}
g_{11} & g_{12} & \cdots & g_{1 N} \\
g_{21} & g_{22} & \cdots & g_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
g_{M 1} & g_{M 2} & \cdots & g_{M N}
\end{array}\right]
$$

$$
Q=\left[\begin{array}{cccc}
q_{11} & q_{12} & \cdots & q_{1 N} \\
q_{21} & q_{22} & \cdots & q_{2 N} \\
\vdots & \vdots & \ddots & \vdots \\
q_{K 1} & q_{K 2} & \cdots & q_{K N}
\end{array}\right]
$$

$$
P=\left[\begin{array}{cccc}
p_{11} & p_{12} & \cdots & p_{1 K} \\
p_{21} & p_{22} & \cdots & p_{2 K} \\
\vdots & \vdots & \ddots & \vdots \\
p_{M 1} & p_{M 2} & \cdots & p_{M K}
\end{array}\right]
$$

$<$ Clusters
Ancestral Allele Frequencies

Admixture analyses

Prado-Martinez et al. (2013) Nature

Admixture analyses: when is the K

 correct?
"In practice, people often try different K , and choose the K that makes most biological sense." -Frappe Manual

Prado-Martinez et al. (2013) Nature

The K Problem

How many different means are there?

ADMIXTURE: using cross validation

to identify the best K

$$
\hat{g}_{l i}=2 \sum_{k=1}^{K} p_{l k} \times q_{k i}
$$

Alexander and Lange
(2011) BMC Bioinformatics

How well X-validation performs

Alexander and Lange
(2011) BMC Bioinformatics

Test it with ESP inspired simulations

Fu et al. (2012) Nature

X-validation's performance as a

function of split time

Tricks to effectively use ADMIXTURE

- This is a Maximum Likelihood framework with many parameters
- Run multiple times (l usually use >10) for each K taking the best log-likelihood (an output parameter).
- This deals with local minimum problems.
- Sometimes the lowest K that has X-validation identifies is less than what we thought. Though this is possible (see previous power figure), it doesn't mean we have objective evidence other than the K it found.
- Sometimes we get greater K than we expect or can explain. In such situations it might be better to move to a supervised learning version (also available in ADMIXTURE).

Local vs Global Ancestry

Gravel et al. (2013) Genetics
Mathias et al. (2016) Nat. Comm.

Local ancestry calling: RFMix as an example

Maples et al. (2013) AJHG

Demographic modeling with local ancestry

Gravel et al. (2013) Genetics

Demographic modeling with local ancestry

(a)

CLM

Magnitude and origin of migrations

(b)

Gravel et al. (2013) PLoS Genet.

Recent selection by looking for local ancestry biases

Tang et al. (2007) AJHG
Though see Bhatia et al. (2014) AJHG

Combining Local Ancestry and PCA to give Ancestry Specific PCA (or ASPCA)

Moreno-Estrada et al. (2013) PLOS Genet.

Peruvian population structure with PCA

Ancestry specific PCA: Europe and Africa

Harris et al.
(2018) PNAS

Peruvian population structure using Ancestry Specific PCA

Admixture is not just a nuisance for association

- Differences in genetic architecture are not just nuisance values that need to be 'adjusted' for in association models.
- Extension Studies
- Admixture Mapping

Extension Studies

- Extension of findings to other ancestries is important to:
- Determine association's potential public health impact
- Provide additional evidence supporting association
- Useful in fine-mapping an association signal
- Finding risk variation in non-homogenous populations (like African Americans)

Admixture mapping - Concept

Example of an Admixture scan

Chromosome position (Centimorgans)
Patterson et al. (2004) AJHG

Concluding Summary

- PCA and Admixture analyses can summarize the ancestry found across the entire genome
- Local ancestry refines this inference to genomic segments with broad applications including demographic modeling and association analyses.

