More Introduction to Positive Selection

Ryan Hernandez
Tim O'Connor

Genome-wide scans

- The EHH approach does not lend itself to a genomewide scan.
- Voight, et al. (2006) create a genome-wide scan statistic based on EHH called integrated Haplotype Score (iHS).

iHS

- If neutral, ancestral and derived EHH curves should have equal area.
- If a haplotype is positively selected, this curve should have larger area.

iHS

- Let the area under the ancestral haplotype EHH curve be $i H H_{A}$ and the area under the derived haplotype EHH curve be $i H H_{D}$
- Then we define (unstandardized) iHS to be $\ln \left(\frac{i H H_{A}}{i H H_{D}}\right)$
iHS

$$
\ln \left(\frac{i H H_{A}}{i H H_{D}}\right)<0
$$

iHS

$$
\ln \left(\frac{i H H_{A}}{i H H_{D}}\right)<0
$$

Derived haplotype unusually long

iHS

$$
\ln \left(\frac{i H H_{A}}{i H H_{D}}\right)<0
$$

Derived haplotype unusually long

$$
\ln \left(\frac{i H H_{A}}{i H H_{D}}\right)>0
$$

Ancestral haplotype unusually long

iHS

- Unstandardized iHS is correlated with allele frequency.
- Low frequency variants tend to be younger and therefore reside on longer haplotypes.

iHS

- Unstandardized iHS is correlated with allele frequency.
- Low frequency variants tend to be younger and therefore reside on longer haplotypes.

$$
i H S=\frac{\ln \left(\frac{i H H_{A}}{i H H_{D}}\right)-E_{p}\left[\ln \left(\frac{i H H_{A}}{i H H_{D}}\right)\right]}{S D_{p}\left[\ln \left(\frac{i H H_{A}}{i H H_{D}}\right)\right]}
$$

iHS

- In theory, we would want to search for strong negative iHS scores.
- In practice, ancestral alleles may be linked to the true beneficial allele, and therefore we often consider |iHS|.

iHS

- Although large |iHS| values are possible even under neutrality, Voight, et al. found that these tend to occur uniformly across the genome.
- Under positive selection, large |iHS| values tended to cluster near the beneficial locus.
- Consider the fraction of SNPs with |iHS| > 2 in 51 SNP windows
- Take the top 1% of windows
- Alternatively, consider fixed 100 kb windows across the genome
- Because of correlation, we split windows into bins based on \# SNPs
- Take top 1% from within each bin

- Because of correlation, we split windows into bins based on \# SNPs
- Take top 1% from within each bin

iHS

- In order to identify putative regions under positive selection, take the top 1% of windows.

iHS

- In order to identify putative regions under positive selection, take the top 1% of windows.

iHS

- Voight, et al. scan ~800k markers in three populations (ASN, CEU, YRI).

iHS

- Voight, et al. scan ~800k markers in three populations (ASN, CEU, YRI).

CEU TGP Phase 3

CEU TGP Phase 3

CEU TGP Phase 3

CEU TGP Phase 3

CEU TGP Phase 3

CEU TGP Phase 3, lactase (LCT) region

XP-EHH

- Sabetti, et al. (2007) develop XP-EHH as a modification to iHS .
- XP-EHH compares EHH decay between populations.
- It seeks to discover variants near/at fixation on long haplotypes in one population but remains polymorphic in others.

XP-EHH

- iHS compares ancestral vs. derived EHH decay in the same population.
- XP-EHH compares EHH decay at the same locus between two populations.
- Note that EHH in a population does not necessarily start at 1.
- Only if the starting site is fixed in the sample of that population

XP-EHH

$i H H_{A}$

XP-EHH

$i H H_{A}$

Integrated EHH in population A

XP-EHH

$i H H_{A}$

$i H H_{B}$

Integrated EHH in population A
Integrated EHH in population B

XP-EHH

$$
\begin{gathered}
i H H_{A} \\
i H H_{B} \\
\ln \left(\frac{i H H_{A}}{i H H_{B}}\right)<0
\end{gathered}
$$

Integrated EHH in population A

Integrated EHH in population B

Unusually long haplotypes in population B

XP-EHH

\[

\]

XP-EHH

Power to detect selective sweep of alleles to different frequencies

XP-EHH

Sabetti, et al. (2007) Nature

EDAR

- They follow up in a mouse model, knock-in EDAR V370A
- Increased hair thickness
- Higher number of active eccrine glands
- Temperature and humidity as selective forces?

Computational Tips

- Associative arrays for haplotype comparison and counting
- O(log N$)$
- Instead of computing EHH until the end of the data stop after a certain distance away from the core
- Either $\mathrm{EHH}<0.05$ or distance from core $>1 \mathrm{Mb}$
- Multithreading
- Adjacent SNPs don't rely on each other to complete calculation
- Compute adjacent scores on separate threads

Computational Tips

Table 1. Runtime Performance (in seconds) of ihs, rehh, and sel scan for Calculating Unstandardized iHS for Various Data Sets.

Data Set	ihs	rehh 2	selscan					
			Threads $=1$	2	4	8	16	
IHS250	19,275	563	618	306	162	84	58	
IHS500	45,547	1,652	1,554	782	399	220	150	
IHS1000	$>100,000$	4,834	4,018	2,019	1,040	566	380	
IHS2000	$>100,000$	12,652	7,054	3,633	1,869	1,046	752	
CEU22	19,434	588	353	182	93	50	33	

Note-Calculations running over $100,000 \mathrm{~s}$ were aborted.
${ }^{2}$ rehh integrates over a physical map instead of a genetic map. Using a physical map does not affect selscan's runtime (data not shown).

Table 2. Runtime Performance (in seconds) of xpehh and selscan for Calculating Unstandardized XPEHH for Various Data Sets.

Data Set	xpehh	selscan				
		Threads $=1$	2	4	8	$\mathbf{1 6}$
XP250	11,113	287	141	71	38	25
XP500	57,006	766	403	194	104	67
XP1000	$>100,000$	2,037	1,018	515	274	180
XP2000	$>100,000$	5,683	2,798	1,471	763	493
CEUYRI22	37,271	578	291	150	78	52

Note-Calculations running over 100,000 s were aborted.

Szpiech and Hernandez (2014) Molecular Biology and Evolution

Caveats

- Power may be overstated.
- If a large proportion of the genome is non-neutral, we lose power to detect the weakest selected variants because of genome-wide normalization.
- iHS no formal test to decide significance.
- Take top 1% of signals
- XP-EHH more sensitive to demographics
- i.e. comparing populations with serial bottlenecks separating them
- Important to combine multiple lines of evidence!

Running selscan: iHS

- Open up your command prompt (i.e., rev your engines)
- Let's give iHS a go!
- Let's consider the LCT gene.
- First transfer data to your computer...
- You will need selscan.zip
- Easy if you put it on your Desktop and unzip it:
- ~/Desktop/selscan/
- selscan also available: https://github.com/szpiech/selscan.

selscan

- Open your terminal!
- Change to the new selscan directory
- For example:
- cd ~/Desktop/selscan/
- There should 4 subdirectories:
- rhernandez\$ ls data linux osx win
- Change Directory to where the data are:
- cd data

selscan

- All the commands we are running can be found in the selscan_CMD.txt file.
- Copy the appropriate executable to the data directory:
- osx:
- cp ../osx/selscan .
- linux:
- cp ../linux/selscan .
- Windows:
- cp .. \win\selscan.exe .

selscan

- Test that it works:
- osx/linux: ./selscan
(Win: selscan.exe) selscan v1.1.0b
ERROR: Must specify one and only one of EHH (一ehh)
iHS (--ihs)
XP-EHH (--xpehh)
PI (--pi)
nSL (--nsl)

selscan

- iHS requires 2 files, a map file and a hap file.
- --map <string>: A mapfile with one row per variant site.
- Formatted with 4 columns:
- <chr\#> <locusID> <genetic pos> <physical pos>
- --hap <string>: A hapfile with one row per haplotype, and one column per variant. Variants should be coded 0/1.

selscan

- Now run it!
- All in one line type:
-. /selscan (Win: selscan.exe)
--ihs
--map CEU.chr2.map
--hap CEU.chr2.hap
--out CEU.chr2
selscan v1.1.0b
Opening ../data/CEU.chr2.hap...
Loading 224 haplotypes and 1971 loci...
Opening ../data/CEU.chr2.map...
Loading map data for 1971 loci
--skip-low-freq set. Removing all variants < 0.05.
Removed 359 low frequency variants.
Starting iHS calculations with alt flag not set.

Normalize

- All in one line type:
- ./norm

> --ihs
> --files CEU.chr2.ihs.out bg.ihs.out
norm v1.1.0aYou have provided 2 output files for joint normalization.
Opened ../data/CEU.chr2.ihs.out
Opened ../data/bg.ihs.out
Total loci: 666285
Reading all frequency and iHS data.
Calculating mean and variance per frequency bin:

iHS

- Now let's plot it!
- Open R.
- Read in data for CEU:
setwd("cd ~/Desktop/selscan/data")
CEU=read.table("CEU.chr2.ihs.out. 100bins.norm")
plot(CEU[,2], CEU[,7])

iHS

- Often analyze absolute value, and smooth it out.
- My preferred method for smoothing is using loess

```
SP=0.2 #this is the span, a parameter you can change (higher = more
smoothing)
CEU.x=CEU[,2]; #the x-coordinates in Mb
y=abs(CEU[,7]) #iHS is actually the absolute value
CEU.loess=loess(y~CEU.x,span=SP,data.frame(x=CEU.x,y=y)); #step 1
CEU.predict=predict(CEU.loess,data.frame(x=CEU.x)); #step 2
plot(CEU[,2], abs(CEU[,7]))
lines(CEU.x, CEU.predict, lwd=2, col='blue')
```


iHS

Other populations??

- Now run selscan on the YRI population
- YRI is a sample of individuals from Yoruba, Nigeria, where they do not have a long tradition of domesticating cows.
- Update the selscan commands by replacing "CEU" with "YRI"

What about admixture?

- African American genomes contain admixture with African ancestry ($\sim 80 \%$) and European ancestry ($\sim 20 \%$).
- ASW is one sample of African Americans (from the Southwest)
- One guess might be that it should be intermediate

Other populations??

- Now run selscan on the ASW population
- Update the selscan command by replacing "CEU" with "ASW"
- In these data, ASW is much more similar to YRI than "expected".

Summary

- iHS is one example of a statistic geared toward detecting a "classic sweep".
- It is based on the idea that a new mutation has been selected, and quickly spread through the population.
- selscan is one piece of software that can run many different selection statistics in an efficient manner.

