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ABSTRACT
We describe a model-based clustering method for using multilocus genotype data to infer population

structure and assign individuals to populations. We assume a model in which there are K populations
(where K may be unknown) , each of which is characterized by a set of allele frequencies at each locus.
Individuals in the sample are assigned (probabilistically) to populations, or jointly to two or more popula-
tions if their genotypes indicate that they are admixed. Our model does not assume a particular mutation
process, and it can be applied to most of the commonly used genetic markers, provided that they are not
closely linked. Applications of our method include demonstrating the presence of population structure,
assigning individuals to populations, studying hybrid zones, and identifying migrants and admixed individu-
als. We showthat the method can produce highlyaccurate assignments using modest numbers of loci—e.g.,
seven microsatellite loci in an example using genotype data from an endangered bird species. The software
used for this article is available from http:// www.stats.ox.ac.uk/ zpritch/ home.html.

IN applications of population genetics, it is often use- populations based on these subjective criteria represents
a natural assignment in genetic terms, and it would beful to classify individuals in a sample into popula-

tions. In one scenario, the investigator begins with a useful to be able to confirm that subjective classifications
are consistent with genetic information and hence ap-sample of individuals and wants to say something about

the properties of populations. For example, in studies propriate for studying the questions of interest. Further,
there are situations where one is interested in “cryptic”of human evolution, the population is often considered

to be the unit of interest, and a great deal of work has population structure—i.e., population structure that is
difficult to detect using visible characters, but may befocused on learning about the evolutionary relation-

ships of modern populations (e.g., Caval l i et al. 1994) . significant in genetic terms. For example, when associa-
tion mapping is used to find disease genes, the presenceIn a second scenario, the investigator begins with a set

of predefined populations and wishes to classify individ- of undetected population structure can lead to spurious
associations and thus invalidate standard tests (Ewensuals of unknown origin. This type of problem arises

in many contexts ( reviewed by Davies et al. 1999) . A and Spiel man 1995) . The problem of cryptic population
structure also arises in the context of DNA fingerprint-standard approach involves sampling DNA from mem-

bers of a number of potential source populations and ing for forensics, where it is important to assess the
degree of population structure to estimate the probabil-using these samples to estimate allele frequencies in
ity of false matches (Bal d ing and Nich ol s 1994, 1995;each population at a series of unlinked loci. Using the
For eman et al. 1997; Roeder et al. 1998) .estimated allele frequencies, it is then possible to com-
Pr it ch ar d and Rosenber g (1999) considered howpute the likelihood that a given genotype originated in

genetic information might be used to detect the pres-each population. Individuals of unknown origin can be
ence of cryptic population structure in the associationassigned to populations according to these likelihoods
mapping context. More generally, one would like to bePaet kau et al. 1995; Rannal a and Mount a in 1997) .
able to identify the actual subpopulations and assignIn both situations described above, a crucial first step
individuals (probabilistically) to these populations. Inis to define a set of populations. The definition of popu-
this article we use a Bayesian clustering approach tolations is typically subjective, based, for example, on
tackle this problem. We assume a model in which therelinguistic, cultural, or physical characters, as well as the
are K populations (where K may be unknown) , each ofgeographic location of sampled individuals. This subjec-
which is characterized by a set of allele frequencies attive approach is usually a sensible way of incorporating
each locus. Our method attempts to assign individualsdiverse types of information. However, it maybe difficult
to populations on the basis of their genotypes, whileto know whether a given assignment of individuals to
simultaneously estimating population allele frequen-
cies. The method can be applied to various types of
markers [e.g., microsatellites, restriction fragment
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Goals

• How does the algorithm work?
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Comparing populations
There are in general two ways to compare 
populations:!

•Distance-based methods!

•Fst!

•Neighbor-joining!

•Principal Component Analysis (PCA)!

•Model-based methods!

•STRUCTURE
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Genomic Structure of Admixture

27 Auton et al.  Gen. Res. (2009)

within South Asia, a gradient of haplotype diversity within
Europe, and extended runs of homozygosity in almost all indi-
viduals examined. Together these analyses suggest the growing
utility of large diverse samples of worldwide human populations.

Results

Population structure

Consistent with all previous studies of human genetic variation,
we find that the vast majority of common genetic variation is
shared across major continental populations. Specifically, we ob-
served a low degree of population differentiation, as measured by
Wright’s fixation index, of FST = 5.2% across autosomal SNPs for
the four main continental groupings of East Asia, South Asia,
Europe, and Mexico. Interestingly, we observed a significantly
higher degree of divergence in allele frequency across X chromo-
some SNPs, where we estimate FST to be 9.7%. This value is about
40% higher than the expected value of 6.8% derived from a many-
deme island model and accounting for the 4:3 ratio of autosomes
to sex chromosome (see Supplemental material). The higher de-
gree of population divergence at X chromosome SNPs suggests
a smaller effective population size of the X than that predicted
from Mendelian genetics. Alternatively, deviations from the sim-
ple Wright-Fisher model, such as a shorter mean generation time
for females relative to males, smaller female population size, or
male-biased dispersal, could also contribute to the observed dif-
ference (Schaffner 2004).

In order to quantify patterns of population structure and
admixture, we utilized structure (Pritchard et al. 2000), a com-
monly used Bayesian clustering method. Due to computational

limitations of the algorithm, we applied structure to a subset of the
data (see Methods). For comparison and further validation of the
POPRES data, we also included the four HapMap (release 23)
populations in this analysis using the same SNP subset. Setting the
number of clusters (K) to five revealed structures largely corre-
sponding to continental regions (Fig. 1A). Interestingly, all Mexi-
can and many South Asian individuals showed a proportion of the
genome clustering with European individuals. In the case of
individuals from Mexico, the European component, most likely
reflects recent admixture, whereas the smaller European compo-
nent in South Asia perhaps represents the recent common an-
cestry of the two populations (Patterson et al. 2006). When
combined with the POPRES European samples alone, a principal
component analysis (PCA) reveals that the Mexican individuals
form a slightly elongated cluster extending from South/South
West Europe (Fig. 2A). Conversely, in a similar analysis, South
Asians form a tighter cluster that exhibits no preference for any
one region of Europe (Fig. 2B). However, weak structuring by
spoken language group is visible within the South Asian cluster,
which is consistent with geographic structure (see below and
Supplemental material).

To investigate the level of admixture in the Mexican pop-
ulation, we combined the Mexican samples with a sample of Euro-
pean and East Asian populations. Using structure with K = 3
we estimated an average of 32.5% European ancestry in Mexican
individuals (95% 6 3.3% confidence interval [C.I.]; see Fig. 1B),
which is lower than some previous estimates based on microsatel-
lite or ‘‘ancestry informative’’ markers (Salari et al. 2005; Price et al.
2007; Tian et al. 2007; Wang et al. 2008). However, it should be
noted that the variability between individuals is high, and that the
Mexican samples in our study originate from a single location
(Guadalajara).

Figure 1. Global and regional patterns of population structure. (A) structure analysis with K = 5 for the POPRES populations combined with the
HapMap populations. (B–D) For each region, the first two principal components are shown, with the proportion of variance explained by each com-
ponent shown in parentheses. Results from structure are shown below the PCA results, with K = 2 for East Asia, and K = 3 for South Asia and Mexico.
HapMap samples have been included in the East Asia analysis for comparison. In South Asia, individuals have been colored by spoken language group,
with each individual’s spoken language shown in Supplemental Figure S5.
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Structure

• In this paper, multiple algorithms are proposed for 
inferring admixture parameters.!

• The ultimate goal is to learn how population 
structure has impacted genetic variation.!

• This is done using MCMC, a common approach to 
solving Bayesian Inference problems.!

• This was one of the first applications of MCMC in 
genetics.
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Parameters

• X:  Our data, the genotypes.!

• Z:  What we want, the populations of origin!

• P:  What we need, the allele freq’s in all populations.  
 

• Ultimately, we want to calculate: Pr(Z, P | X) 

• This is the posterior probability of the population 
of origin (and their frequencies) for all samples.
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Assumptions

• Hardy-Weinberg Equilibrium (HWE).!

• SNPs are independent (linkage equilibrium)!

• We know how many populations contribute to our 
sample: K (though some statistics can be helpful).!

• We know nothing about the population of origin!

• P(Z) = 1/K
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Overview of the model

• Suppose we knew P and Z!

• i.e., we know the allele frequencies in each 
population, and which population each individual 
came from.!

• It would then be easy to calculate Pr(X | Z, P)!

• The probability of an observed allele is just its 
frequency in the population of origin, and we 
multiply across sites.
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Overview of the model
• Suppose we knew Z, but not P!

• i.e., which population each individual came from, but not 
the allele frequencies in those populations.!

• It would then be easy to estimate P from X, Z!

• The maximum likelihood estimate for the allele frequency 
for a population is just given by the frequency of the allele 
in the sampled individuals from that population.!

• We can add a probability distribution on this using the so-
called Dirichlet distribution (a continuous distribution 
between 0 and 1 in n dimensions) with mean given by the 
MLE.
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Overview of the model

• Suppose we knew P, but not Z!

• i.e., we know the allele frequencies in each 
population, but not which population the 
individuals come from.!

• It would then be easy to calculate Pr(Z | X, P)!

• This is just the relative probability of each 
population.  !

• i.e., Pr(Z=1 | X,P) = P(X | Z=1,P)/ ∑i P(X | Z=i, P)
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Key to the algorithm
• Assume you know everything by guessing, then update your guess!!

• Step 0:  Make random guess for population of origin!

• Step 1:  Given population of origin, calculate allele frequencies.!

• Let N[k,] be the number of chromosomes in population k with a particular 
allele (at each SNP).!

• The probability distribution for SNP i is Beta(1+N[k,i], 1+n-N[k,i]). 

• n is the total number of chromosomes in population k.!

•P[k,] = rbeta(nsnps, 1+P[k,], 1+2*n-P[k,])!

• Step 2:  Given population allele frequencies, update population of origin!

• For each individual, calculate log-likelihood of data for each population.!

• Choose a population randomly according to relative probabilities (R)!

•Z[i] = sample(1:K, size=1, prob=R)!

• Step 3:  Repeat steps 1 & 2, keeping the results every c iterations, until m samples 
are drawn. 39
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