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Introduction to Efficacy Monitoring

» The ACTG 076 trial in France and the U.S. (Connor et al. (1994))
compared AZT to placebo to prevent mother to infant
transmission of HIV.

» Primary endpoint: HIV in infant. Planned 636 mother/infant pairs.

» After 363 live births with known HIV status:

1. 13 AZT infants infected.
2. 40 placebo infants infected.

» Z =4.03. Enough evidence, or could this be the play of chance?
» Who decides and how?

» Must consider welfare of trial participants and whether results will
change clinical practice.
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Introduction to Efficacy Monitoring

» Clinical trials are monitored by a Data and Safety Monitoring
Board (DSMB) (also called a DSMC or DMC).

» Committee of 3-9 EXTERNAL experts (MDs, 1-2 statisticians, an
ethicist). Keeps study team blinded to results.

> Typically meet 1-2 times a year.

> Review general trial conduct (accrual, data quality, missing data,
etc.), safety (serious adverse events, unexpected events, etc.),
futility, and efficacy.

» Make recommendations to trial sponsor, sponsor makes final
decision (but almost always accepts recommendations).
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Introduction to Efficacy Monitoring

» Futility: Are data so unpromising or is trial conduct so poor that a
null result is almost assured?

» Efficacy: If one arm is clearly superior, may stop trial or
recommend change (e.g., announce result, make the superior
treatment the new control, etc.).

> Problem: If we reject Hy whenever nominal p-value (not
adjusted for monitoring) is < «, type 1 error rate (probability of
rejecting Hp at some point) is inflated.

» Even with only 1 interim and 1 final analysis,
P(rejecting Hy | Hp) = 0.083 for 2-sided test at oo = 0.05 if looks
are equally-spaced.

> Armitage et al. (1969) showed inflation of type 1 error rate.
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Introduction to Efficacy Monitoring

» Situation can be worse if looks are not equally-spaced.

» Example: Suppose looks are after 10 and 10,000 observations.

> The 2 p-values are nearly independent because the overlap is only
10 out of 10,000 people.

> Independence is the worst case; the type 1 error rate is

P(Reject Ho | Ho) P(P; < 0.05U P, < 0.05)

1—P(P; >0.050 P, > 0.05)
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Introduction to Efficacy Monitoring

» Situation can be worse if looks are not equally-spaced.

» Example: Suppose looks are after 10 and 10,000 observations.
> The 2 p-values are nearly independent because the overlap is only

10 out of 10,000 people.

> Independence is the worst case; the type 1 error rate is

P(Reject HO ‘ H())

Q

P(P; <0.05U P, < 0.05)

1—P(P; > 0.05N P, > 0.05)

1— P(P; > 0.05)P(P5 > 0.05)
1—(1-0.05)% = 0.0975. (1)
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Introduction to Efficacy Monitoring

Table: Type 1 error rate for unadjusted monitoring for 2-sided test at o = 0.01 or
o = 0.05. Note: 2p < 0.05 means 2-sided p-value < 0.05.

Reject Hy if 2p < 0.01 Reject Hy if 2p < 0.05
# Looks (k) | Equally Spaced | Worst Case | Equally Spaced | Worst Case

2 0.018 0.020 0.083 0.098
3 0.024 0.030 0.107 0.143
4 0.029 0.039 0.126 0.185
5 0.033 0.049 0.142 0.226
10 0.047 0.096 0.193 0.401
20 0.064 0.182 0.248 0.642
oo 1 1 1 1

> This table applies to many different tests: t-test, test of
proportions, logrank test, Cox model, etc.
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Introduction to Efficacy Monitoring

» Note that preceding table applies to 2-sided tests at o = 0.01
and o = 0.05, but also applies to 1-sided tests at o« = 0.005 and
o =0.025.

» Because efficacy (upper) boundary could differ from “harm”
(lower) boundary, we focus for the rest of this lecture on
1-sided efficacy (upper) boundaries.

» For symmetric, 2-sided z-score boundaries at level a, use +c;,
where c; is 1-sided boundary at level a/2.

» This is slightly conservative. Actual 2-sided error rate is
infinitesimally less than a.
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Historical Efficacy Boundaries: Haybittle-Peto
» The earliest boundary was the Haybittle-Peto boundary
(Haybittle (1971)).

» Original suggestion used a very large z-statistic boundary (3) for
interim looks, and 1.96 for final look.

» Haybittle-Peto was modified using the Bonferroni inequality:

> Use p-value threshold 0.001 at interim looks.

> Use p-value threshold o — (k—1)(0.001) at final look.

» E.g., with 3 interim and 1 final analysis, reject at interim if
p <0.001, and at end if p <0.025—3(0.001) = 0.022.

> By Bonferroni, the type 1 error rate, P(reject Hy sometime), is

<0.001+40.001+...40.001 +a —(k—1)(0.001) = a.
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Historical Efficacy Boundaries: Haybittle-Peto

» Desirable properties of Haybittle-Peto.
» Simple to implement.
» Can use regardless of timing of analyses.
> Valid for any test statistic (don’t need to know joint distribution of
test statistic over time because Bonferroni inequality is used).
» Final z-statistic boundary is close to what it would be with no
monitoring (for a reasonable number of analyses).

» Undesirable property of Haybittle-Peto: Reversal of fortune
> Z-statistic boundary drops drastically at the end, causing a logical
inconsistency: Could be under boundary at penultimate look, see a
partial reversal, and be over boundary at end. How could you be
convinced now that you've seen a partial reversal?
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Historical Efficacy Boundaries: Haybittle-Peto
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15
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Figure: Reversal of fortune problem with Haybittle-Peto.
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Historical Efficacy Boundaries: Pocock

» Pocock (1977) raised the z-statistic boundary by the same
amount for each look.

» Pre-specify number of looks, k, and assume they are equally
spaced.

» Use z-score boundary ¢ = ¢(k) such that

k
P(UZ,-EC) =a.
i=1
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Historical Efficacy Boundaries: Pocock

Table: 1-sided z-score/p-value boundaries for Pocock procedure.

#Looks (k) | ©=0005 | @=0025 | o=0.05
1 2576 1.960 1.645
0.0050 0.0250 0.0500
2 2772 2.178 1.875
0.0028 0.147 0.0304
3 2.873 2.289 1.992
0.0020 0.0110 0.0232
4 2.939 2.361 2.067
0.0016 0.0091 0.0194
5 2.986 2.413 2122
0.0014 0.0079 0.0169
6 3.023 2.453 2.164
0.0013 0.0071 0.0152
7 3.053 2.485 2197
0.0011 0.0065 0.0140
8 3.078 2512 2.225
0.0010 0.0060 0.0130
9 3.099 2535 2.249
0.0010 0.0056 0.0123
10 3117 2555 2.270
0.0009 0.0053 0.0116
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Historical Efficacy Boundaries: Pocock

» Problem with Pocock: Z-statistic boundary at end is too high
(equivalently, p-value boundary is too low).

» Example: for k = 5 looks, 1-sided 0.025 final boundary for
z-statistic (p-value) is 2.413 (0.0079).

» Causes loss of power, requiring larger sample sizes.

» Also practical reasons for wanting high early boundaries and
lower late boundaries. Early in trial, staff may not understand
protocol.

» Pocock recommends against his own procedure.
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Historical Efficacy Boundaries: O’Brien-Fleming

» Haybittle-Peto had a desirable final z-statistic boundary, but
dropped so abruptly that it allowed a logical inconsistency.

» Assume looks are equally-spaced.

» What is the steepest descending boundary that avoids the logical
inconsistency? Answer: O’Brien and Fleming (1979) boundary.

> Z-statistic boundary at look i is proportional to 1/+/i.

» Z-statistic boundaries at looks 1,2,...,k are

a__,a a
\/‘T 7\/57'“7\/E7

where a = a(k) is a constant making the type 1 error rate a.
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Historical Efficacy Boundaries: O’Brien-Fleming

Table: 1-sided O’Brien-Fleming z-score/p-value boundaries for o = 0.025.

k 1 2 3 4 5 6 7 8 9 10
1 1.960
0.0250
2 2.796 1.977
0.0026 0.0240
3 3.471 2.454 2.004
0.0003 0.0071 | 0.0225
4 4,048 2.862 2.337 | 2.024
26x107° 0.0021 0.0097 | 0.0215
5 4562 3.226 2,634 | 2.281 | 2.040
25x10°8 0.0006 | 0.0042 | 0.0113 | 0.0207
6 5.029 3.556 2.903 | 2514 | 2.249 | 2.053
25x10°7 0.0002 | 0.0018 | 0.0060 | 0.0123 | 0.0200
7 5.458 3.860 3.151 | 2.729 | 2.441 | 2.228 | 2.063
2.4x1078 0.0001 | 0.0008 | 0.0032 | 0.0073 | 0.0129 | 0.0196
8 5.861 4.144 3.384 | 2.930 | 2621 | 2.393 | 2215 | 2.072
23x1079 | 1.7x 1073 | 0.0004 | 0.0017 | 0.0044 | 0.0084 | 0.0134 | 0.0191
9 6.240 4.412 3.603 | 3.120 | 2.791 | 2.547 | 2.358 | 2.206 | 2.080
22x1071° | 51x107® | 0.0002 | 0.0009 | 0.0026 | 0.0054 | 0.0092 | 0.0137 | 0.0188
10 6.600 4.667 3.810 | 3.300 | 2.951 | 2.694 | 2.494 | 2.333 | 2.200 | 2.087
2.1x107" | 1.5x107% | 0.0001 | 0.0005 | 0.0016 | 0.0035 | 0.0063 | 0.0098 | 0.0139 | 0.0184
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Historical Efficacy Boundaries

Z-Score Boundary
15 20 25 30 35 40 45

'Brien—Fleming

Figure: Haybittle-Peto, Pocock, and O'Brien-Fleming boundaries for 4 equally-spaced

looks.
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Unified Approach: Information, Z-Scores, B-Values

» We want to unify monitoring so same boundaries apply to many
different testing settings.

» We will see that for large sample sizes, joint distribution of test
statistics over time is same for different tests.
» Lan and Zucker (1993).
»> Proschan et al. (2006).
> Jennison and Turnbull (2000)

» Warning: This section is technical.

» May be difficult to absorb the first time, and you may need to
return to this material.
> We summarize important points in blue.
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Unified Approach: Information, Z-Scores, B-Values

> First step: Think about simple setting of iid N(5,1) data
Yi, Yo,..., Yy and we monitor after n, n < N:

> Estimator is 6, = Yp = Sn/n, Sn=Y", V..

» Sample size n measures amount of information contained in 5.
> Note: var(8,) = 1/n, so n=1/var(8,) is information in .

» Fraction of information at interim analysis, t = n/N, is called
information time or information fraction.
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Unified Approach: Information, Z-Scores, B-Values

> For t=n/N, Z(t) = S2. Note that

vn
E{Z(t)} = E (j%) = 3‘; =vné
- (VNe) \/Z— V1,

Sn

where 6 = ma—E(>—E{Z(1)}.

VN

» Can also find variances and covariances of Z(t) process.

(2)
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Unified Approach: Information, Z-Scores, B-Values

» Summary of z-score process: Joint distribution of Z(t),...,Z(t)
is multivariate normal with:

> E{Z(t)} = 6+/t, where § =E{Z(1)}.
> var{Z(t)} =

> cov{Z(s),Z(t)} = /s/t,s<t.

» Note that z-scores become more correlated the closer their
information times are to each other.
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Unified Approach: Information, Z-Scores, B-Values

» We can instead monitor using ‘B-values’.

> Let B(f) = VIZ(t) = \f(%):%

> B(t) is proportional to a sum of iid N(8, 1) observations, where
the proportionality constant makes B(1) = Z(1), (z-score at end).

» Think of B(¢) like a sum.

> Sums of iid components have independent increments. For
example, if iy < iz, 5, — S, 721 i1 Y; is independent of S;,
because S;, involves only the first i; components and S;, — S;,
involves only the subsequent i> — iy observations.
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Unified Approach: Information, Z-Scores, B-Values

» Equivalently, if & < t, B(t) — B(#) is independent of B(t;).

» More generally, B(t),B(t) — B(t),...,B(t) — B(tx_1) are
independent.

> Also, E{B(t)} = VIE{Z(t)} = Vt6Vt=0t. 6 =E{Z(1)}.

» Summary of B-values: B(t) has the following properties:

» The joint distribution of B(t;),..., B(f) is multivariate normal.
> E{B(t)} =0t, 6 =E{Z(1)}.
> var{B(t)} =t and, for s <t, cov{B(s),B(t)} = s.

> B(t) is called a Brownian motion with drift 6.
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Unified Approach: Information, Z-Scores, B-Values

Brownian Motion, B(t)

15

1.0

0.5

B
-15 -10 -05 O.

Figure: Brownian motion B(t) with drift 0. ¢ is information time. Paths are continuous
everywhere but differentiable nowhere!
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Unified Approach: Information, Z-Scores, B-Values

» B-values tell whether treatment trend is continuing or reversing. If
large B-values mean treatment works, then B(t) > B(s) for t > s
means more events in control than treatment between time s and
t.

» Not true for z-scores because even if number of events doesn'’t
change from time s to {, z-score changes because denominator
changes.

» Also, can easily tell whether data are consistent with originally
hypothesized treatment effect. Let 6 = E{Z(1)} under originally
hypothesized treatment effect. Then:

> If B(t) < 6t, treatment doing worse than expected.
> If B(t) > 0t, treatment doing better than expected.
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Another Interpretation of Brien-Fleming Procedure

» B-values also help us understand another motivation for
O’Brien-Fleming.

» Pocock is a constant boundary for Z(t), whereas
O’'Brien-Fleming is a constant boundary for B(t).

> To see this, note that if we use constant B-value boundary a at
times t;=i/k,i=1,...,k, then

a
i/k’

B(i/k) > a< Z(i/k) >

so0 z-score boundary is proportional to 1/+/i, which is how we
defined the O’Brien-Fleming boundary.

28/105



Unified Approach: Information, Z-Scores, B-Values

Table: Properties of Z(t) and B(t) processes, where
6 =E{Z(1)} =E{B(1)}. See Appendix 1 at end of this lecture for

additional details.

Z(t) | B(t)
E{Z(t)} or E{B(t)} 0Vt | ot
Var{Z(t)} or var{B(t)} 1 t

S

Cov{Z(s),Z(t)} or Cov{B(s),B(t)}, s<t 2 s
Independent increments? No | Yes
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Unified Approach: Information, Z-Scores, B-Values

Table: Properties of Z(t) and B(t) processes, where
6 =E{Z(1)} =E{B(1)}. See Appendix 1 at end of this lecture for

additional details.

Z(t) | B(t)
E{Z(t)} or E{B(t)} 0Vt | ot
1 t

Var{Z(t)} or var{B(t)}
Cov{Z(s),Z(t)} or Cov{B(s),B(t)}, s<'t 3 s
Independent increments? No | Yes

» We can monitor with B(t) or Z(t), but calculations of probabilities
are easier with B(t) because of independent increments and
B(t) tells whether treatment trend is continuing or reversing.
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Unified Approach: Information, Z-Scores, B-Values

> Key Fact: The same joint distribution of tests statistics
holds for many different test statistics, provided we define
information time correctly

>

vvyyVvyy

One- and two-sample t-tests.

One and two-sample z-tests of proportions.
The logrank test and Cox model.

Large sample tests using an MLE.

Tests based on a complete, sufficient statistic.
Many more.

> Information time is n/N, except for survival, when it is d/D,
where nand N are interim and final sample sizes and d and
D are interim and final numbers of people with events.

» See Lan and Zucker (1993); chapter 2 of Proschan et al. (2006);

chapters 3 and 11 of Jennison and Turnbull (2000).
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Unified Approach: Information, Z-Scores, B-Values

» Key idea is that many estimators 5 behave just like a mean
of some number, I, of iid N(5,1) observations.

» Just as § behaves like a mean, /5 behaves like a sum.

> We just have to define / (information) appropriately;
I=1/var(§).

» What really matters is information fraction, t = I/ k.4, where | and
l.,a are the information at interim analysis and end of trial.

» For most estimators, information is proportional to sample size,
so t =n/N, where nand N are interim and final sample sizes.

» In survival, information is proportional to # events, so { = d/D,
where d and D are interim and final # people with events.
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Alpha Spending Functions

» For any z-score boundary ¢y, ..., Ck, We can compute
probabilities of crossing boundaries by different times.

> Likewise, if we know probabilities of crossing by different times,
we can re-construct boundaries.

» Lan and DeMets (1983): Instead of specifying boundaries,
specify an alpha spending function o*(t) giving cumulative
alpha spent by information time t.

> o*(t) increases as t increases.
> a*(0) =0, o*(1) = a (spend no alpha at beginning and all alpha by
the end).

» Then use information times to construct boundaries.
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Alpha Spending Functions

» Properties depend on which spending function we choose.

> Most popular spending function for a 1-sided test at level «a:

a*(t)=2{1—¢<z\%2>}, 3)

where z,, = 1(1-a/2).
» For 1-sided, a = 0.025,

cose ()

» Generates boundaries similar to O’Brien-Fleming’s for
equally-spaced t, but spending function approach does not
require equal spacing
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Alpha Spending Functions

» We illustrate boundary construction using this spending function
and 3 looks for a survival trial planned for 200 deaths by end.

» Suppose first look occurs at 58th death, t =58/200 = 0.29.

» Cumulative alpha to spend by t =0.29 is

. oS (22414 5
a(0.29)_2{1 ¢(m>}_3.15x10 : (5)
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Alpha Spending Functions

» We illustrate boundary construction using this spending function
and 3 looks for a survival trial planned for 200 deaths by end.

» Suppose first look occurs at 58th death, t =58/200 = 0.29.

» Cumulative alpha to spend by t =0.29 is

. oS (22414 5
a(0.29)_2{1 ¢(m>}_3.15x10 : (5)

» Need to find ¢y such that P{Z(0.29) > ¢;} =3.15x 107°.

» In R, can use IdBounds command in ldbounds function.
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Alpha Spending Functions

library(ldbounds) ;t<-c(.29) ;1dBounds(t, iuse=1, alpha=0.025, sides=1)

» iuse=1 is O'Brien-Fleming spending function. R responds with:

Lan-DeMets bounds for a given spending function

n= 1
Overall alpha: 0.025

Type: One-Sided Bounds
alpha: 0.025

Spending function: 0’Brien-Fleming

Boundaries:
Time  Upper
0.2900 4.0011

» First z-score boundary is ¢y = 4.0011.
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Alpha Spending Functions

> Suppose Z(0.29) < 4.0011, so go to second look.
» Second look occurs after 110th death, so { =110/200 = 0.55.

» Cumulative alpha to spend by t = 0.55 is

a*(0.55)—2{1 —® (i’%‘)} —0.0025. (6)
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Alpha Spending Functions

> Suppose Z(0.29) < 4.0011, so go to second look.
» Second look occurs after 110th death, so { =110/200 = 0.55.

» Cumulative alpha to spend by t = 0.55 is

a*(0.55)—2{1 —® (Zﬁ%’)} —0.0025. (6)

» Need to find ¢, such that
P{Z(0.29) > 4.0011UZ(0.55) > ¢, } = 0.0025

(cumulative error rate 0.0025).
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Alpha Spending Functions

t<-c(.29,0.55); 1ldBounds(t, iuse=1, alpha=0.025, sides=1)
Lan-DeMets bounds for a given spending function

n= 2
Overall alpha: 0.025

Type: One-Sided Bounds
alpha: 0.025

Spending function: 0’Brien-Fleming

Boundaries:
Time  Upper

1 0.29 4.0011

2 0.55 2.8074

> ¢, =2.8074.
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Alpha Spending Functions

> Suppose Z(f) < 2.8074, so go last look at t = 1:

» Cumulative alphato spend by t =1 is

a*(1):2{1¢<2'3}?4>}:o.025. (7)

» Need to find ¢3 such that
P{Z(0.29) > 4.0011UZ(0.55) > 1.8074UZ(1) > c3} = 0.025

(cumulative error rate 0.025).
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Alpha Spending Functions

t<-c(.29,0.55,1); 1dBounds(t, iuse=1, alpha=0.025, sides=1)
Lan-DeMets bounds for a given spending function

n= 3

Overall alpha: 0.025

Type: One-Sided Bounds
alpha: 0.025

Spending function: 0’Brien-Fleming

Boundaries:
Time  Upper
1 0.29 4.0011
2 0.55 2.8074
3 1.00 1.9740
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Alpha Spending Functions

» Last boundary is ¢z = 1.9740.

» Boundaries at the 3 looks are:
> t=0.29: ¢; = 4.0011.
> t,=0.55: ¢, = 2.8074.
> t=1: c3 = 1.9740.

» Note: Could also use Free software at U. Wisconsin (see
Appendix 2 at end of this lecture).
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Alpha Spending Functions

» For 2-sided test at a = 0.05, change R command to:

t<-c(.29,0.55,1); ldBounds(t, iuse=1, alpha=0.05, sides=2)
Lan-DeMets bounds for a given spending function

n= 3

Overall alpha: 0.05

Type: Two-Sided Symmetric Bounds
Lower alpha: 0.025

Upper alpha: 0.025

Spending function: 0’Brien-Fleming

Boundaries:

Time Lower Upper
1 0.29 -4.001115 4.001115
2 0.556 -2.807364 2.807364

3 1.00 -1.973987 1.973987
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Alpha Spending Functions

» We have been using the cumulative alpha formulation. An
equivalent way to compute ¢; uses the first crossing formulation:

P(Z(ti))<ecin...nZ(ti_1) < ci1NZ(E) > ) =a* () —a*(ti_q)
(for 2-sided symmetric test, replace Z(t;) with | Z(t)]).

» That is, probability of first crossing boundary at time {; is
o (t;) — o (ti—1).

» Then cumulative probability of crossing by {; is

o (t)+{a" () —a*(t)} +... +{a" () — &’ (ti-1)} = & (B).
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Alpha Spending Functions

» Big advantages of spending function approach:

> Looks need not be equally-spaced.
> Don’t even have to pre-specify number of looks (but number
and timing of looks assumed independent of data).

» Nonetheless, pre-specification of number and timing of looks is
advisable.
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Alpha Spending Functions

» Pocock-like spending function: Lan and DeMets noticed that
amount spent by Pocock boundaries looked like a log function for
a large number of looks.

» To get similar spending function:

o*(t) = aln(a+bt),
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Alpha Spending Functions

» Pocock-like spending function: Lan and DeMets noticed that
amount spent by Pocock boundaries looked like a log function for
a large number of looks.

» To get similar spending function:

o*(t) = aln(a+bt),
0=a=1
o*(1) = a=b=e—1
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Alpha Spending Functions

» Pocock-like spending function: Lan and DeMets noticed that
amount spent by Pocock boundaries looked like a log function for
a large number of looks.

» To get similar spending function:

o*(t) = aln(a+bt),

a*(0) = 0=a=1

o(1) = a=b=e-1

a’(t)y = aln{1+(e—1)t}. (8)

(8) is Pocock-like spending function. Generates boundaries
similar to those of Pocock’s when looks are equally spaced.
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Alpha Spending Functions

Cumulative Alpha
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Alpha Spending Functions

» O’Brien-Fleming-like spending function is convex and spends
almost no « early in trial, then rises quickly toward end
(desirable).

» In contrast, Pocock-like spending function is concave and spends
more aggressively early (undesirable).

» Consequence: O’Brien-Fleming-like spending function (good)
creates high early boundaries and boundaries close to 1.96 at
end, whereas Pocock (bad) has lower early boundaries but
higher late boundaries.
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Alpha Spending Functions

» There are also families of spending functions like the Kim
DeMets power family (Kim and DeMets (1987)):

o (t) = at?,

where small values of power parameter ¢ spend o aggressively
early, whereas larger values spend alpha conservatively until
closeto t=1.

» Another family is the Hwang, Shih-DeCani family (Hwang IK
(1990)):

1— —t
a*(0)=0, a*(t)=ax {ex"(”} t>0.
1—exp(—7)
» vy can be positive (aggressive early spending) or negative
(conservative early spending).
» y=—4is like O’Brien-Fleming.
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Alpha Spending Functions

Cumulative Alpha

Figure: The power family o*(t) = 0.025¢¢ for different values of ¢.
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Alpha Spending Functions

Cumulative Alpha

.010 .015 .020 .025

.005

Hwang, Shih, DeCani
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Information Fraction

Figure: Wang, Shih, DeCani family of spending functions,
{1 —exp(—7t)}/{1 —exp(—7)} for different values of y.
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Effect of Efficacy Monitoring on Power

» Just like in non-monitoring setting, power in monitoring setting
depends only on E{Z(1)} = 6, the expected z-score at end (drift
parameter of Brownian motion).

» Monitoring must incur a sample size penalty; always more
powerful to spend all alpha at end (Neyman-Pearson lemma).

» The size of the penalty depends on the spending function

»> Pocock—big penalty
» O’Brien-Fleming—small penalty.

> Why?
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Effect of Efficacy Monitoring on Power

» Power for 1-sided test at level o always satisfies following
inequality, where Z is z-statistic at end of trial

Py(Z > cx) < Power, monitoring < Py(Z > z4)

Py(Z > ¢x) < Power, monitoring < Power, no monitoring.

where ¢ is boundary at end and z, is the 1 — ath quantile of
standard normal.

» For O'Brien-Fleming-like boundaries, ¢y is close to z, and left
side is close to power with no monitoring.

» Bottom line: O’Brien-Fleming spending function has
minimal effect on power.
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Effect of Efficacy Monitoring on Power

» We can compute sample size/power for monitoring using the EZ
principle.

» Just like in non-monitoring setting, power depends on EZ,
namely E{Z(1)} (the drift parameter, 6).

» Can use R to compute drift parameter 6 for given power.

» Then equate E{Z(1)} to given value of drift and solve for N.
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Effect of Efficacy Monitoring on Power

» For example, suppose we want 4 equally-spaced looks.
> t=(1/4,2/4,3/4,1).

» To use R, first compute boundaries:

t<-c(1/4,2/4,3/4,1)

bdry<-1ldBounds(t, iuse=1, alpha=0.05, sides=2)
lwr<-bdry$lower.bounds

upr<-bdry$upper .bounds

» Now Iwr and upr contain lower and upper boundaries
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Effect of Efficacy Monitoring on Power

» Now compute drift parameter using:

1ldPower(t, za=lwr, zb=upr, pow=0.90, drift=NULL)

» Note: Can use Idpower to compute either the drift parameter for
given power or power for given drift parameter.

» Whichever you give R (drift parameter or power level), it will
supply the other.

» R responds with the following output:
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Effect of Efficacy Monitoring on Power

Lan-DeMets method for group sequential boundaries

n= 4
Boundaries:

Time Lower
1 0.25 -4.332634
2 0.50 -2.963112
3 0.75 -2.359023
4 1.00 -2.014059

Power : 0.9

Drift: 3.271063

Upper
4.332634
2.963112
2.359023
2.014059

Lower probs
0.000000e+00
6.586691e-08
9.702757e-08
5.061840e-08

Upper probs
0.003497291
0.254380134
0.427384452
0.214737908

> Tells us we need a drift parameter of 3.2711.
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Effect of Efficacy Monitoring on Power

> Tells us that in sample size calculations, make expected z-score
3.2711 instead of 1.96 +1.28 = 3.24.

» Example: For a t-test, expected z-score at end is

0

» Equate to 3.2711 and solve for N. Per-arm sample size is

202(3.2711)?

N= 52

per arm.
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Effect of Efficacy Monitoring on Power

> If 6 =5and o =14, N~ 168 per arm.

» Compare to 165 per arm with no monitoring.

» For “Pocock” spending function, only difference is replace
bdry<-1dBounds(t, iuse=1, alpha=0.05, sides=2)
with

bdry<-1dBounds(t, iuse=2, alpha=0.05, sides=2)
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Effect of Monitoring on Power

» For Pocock, drift parameter needed for 90% power is 3.5177.

» New per-arm sample size is

2(14)3(3.5177)2

52 ~ 195.

/\/ =

> Bottom line: Much more substantial sample size penalty for
Pocock spending function than O’Brien-Fleming spending
function.
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CAST

>
4

>

Recall the Cardiac Arrhythmia Suppression Trial (CAST).
Patients with prior heart attack and arrhythmias.

Several papers showed arrhythmias are associated with
increased risk of death after heart attack (see, e.g., CDP (1973),
Ruberman et al. (1977)).

Class | antiarrhythmic drugs encainide, flecainide, and moricizine
were approved based on surrogate arrhythmia endpoint.

Goal of CAST: Determine whether suppressing arrhythmias
leads to fewer sudden deaths/cardiac arrests.

CAST titrated encainide, flecainide, and moricizine until they
found one that worked (did not care which drug used).

Wanted to ensure arrhythmias could be suppressed, so patients

whose arrhythmias not suppressed were not randomized.
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CAST

CAST DESIGN
80% no out of
sup? study
yes
1/2 1/2
Drug that Matching
suppressed placebo

Figure: CAST design.
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CAST

Some died during titration, but that’s expected in sick population.
Doctors already believed suppression hypothesis.

In fact, some felt it was unethical to withhold treatment after
finding a drug that suppressed arrhythmias.

> Led to recruitment problems in CAST.

So convinced were doctors that results could only be beneficial
that CAST investigators proposed a 1-sided test at « = 0.05.

At first DSMB meeting 3/14/87, DSMB reviewed protocol and
recommended using 1-sided oo = 0.025 instead of 0.05 for
efficacy. Asked for monitoring guideline in future.

Next meeting January 1988: Board chose to be blinded.
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CAST

> Next DSMB meeting: 9/16/88. DSMB discussed and approved
monitoring plan.

» Plan used a = 0.025 for efficacy.
» DSMB decided to use symmetric lower 0.025 boundary for harm.

» Spending function spent a = 0.0125 linearly until just before end,
then spent remaining 0.0125 at end:

. 0.0125¢ ift<1,
a’(t) = , 9)
0.025  ift=1.
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CAST

.025 °
— .015
3
o
.005
T T T T
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1
0.8 1.0
t

Figure: Spending function for efficacy used in CAST. Used symmetric lower boundary.
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CAST

» After approving monitoring plan, the DSMB examined data.

» Proportion with sudden death/cardiac arrest:

> Arm X: 3/576.
> Arm Y:19/571.

» Information fraction after 22 of 425 expected events:
t=22/425=0.05.

» No boundary was yet in place, but suppose it were.

» Can spend a*(0.05) = 0.0125(0.05) = 0.000625. Boundary would
have been —3.22 and logrank z-score was —3.43.
> Would have crossed harm boundary!

» Board decided no matter which arm was placebo, they wouldn’t
stop. Remained blinded.
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CAST

>

>

Next DSMB meeting: 4/16-4/17, 1989.

There were now 48 sudden deaths/cardiac arrests, 35 of which
were on arm Y!

Now clear they overestimated final number events. Now
expected to be 300, so { =48/300 =0.16.

Boundary +2.97.
DSMB unblinded and discovered arm Y was active.
Logrank z-score: Z(0.16) = —3.22. Harm boundary crossed!

DSMB was shocked.
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CAST

» Maybe pills were mis-labeled? No. In preparation for meeting,
they analyzed pills and found no mis-labeling.

» Maybe randomization failed? No. Baseline characteristics were
similar across arms.

» Maybe harm was confined to a certain subgroup? No. Results
were consistent across subgroups and secondary endpoint of
mortality.

» Maybe harm was confined to 1 or 2 drugs? It appeared that
encainide and flecainide were the “bad actors” and moricizine
was good.

» Decided to discontinue encainide and flecainide and continue
CAST Il with moricizine.
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CAST

» DSMB chose to be blinded again. Saw results by Arm P versus
Arm Q.

» Changed entry criteria to get sicker patients: Thought drugs
should work in sicker patients.

» Decided to spend 0.05 for harm and 0.025 for benefit.

» Included 2-week placebo titration phase to see if too many
patients were dying while titrating drugs.

» On July 31, 1991, there were 3 events on arm P and 15 on arm
Q in 2-week titration phase.

» Arm Q was moricizine!

» CAST Il ended.
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CAST

» Lessons from CAST:
»> Can have benefit on surrogate (arrhythmias) and harm on
endpoint of real interest (sudden death/cardiac arrest).
»> Harm can never be ruled out. Use 2-sided tests in clinical
trials.
> May make sense to use asymmetric boundaries for harm

versus benefit.
» Blinding DSMBs is ill-advised. Members think this makes
them more objective, but the opposite is true.

»> Pre-conceived ideas enter maximally if blinded.
> Why waste time pondering what you would do if results were in
one direction or the other, when they are only in one direction?

» CAST references: CAST (1989) and CAST (1992).

» Moore (1995) gives a history of the suppression hypothesis and
development and testing of antiarrhythmic drugs.
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Small Sample Sizes

» Methods so far have considered large samples sizes.
» What can we do if sample sizes are small?

» One improvement for continuous outcomes: Apply p-value
boundary to p-value computed using t-distribution.

» Example: Suppose you monitor continuous outcome using
t-statistic with 4 equally-spaced looks and Pocock boundary for
1-sided o = 0.025.

> At first look after 5 people per-arm, compute t-statistic
Yr—Ye
2s2/5
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Small Sample Sizes

» The z-score (1-sided p-value) boundary at each look is 2.361
(0.0091).

» Bad idea: Apply z-score boundary to T. Inaccurate because
at 1stlook, T has only 8 d.f., very different from N(0,1).

» Much better idea: Compute 1-sided p-value using
t-distribution with 8 df. Then apply boundary 0.0091 to
p-value.

> Reject Hp at any analysis if p < 0.0091, where p is 1-sided
p-value using t-distribution with the given df.
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Small Sample Sizes

» Another approach with small sample sizes: Use permutation test.

» E.g, with spending function a*(t), determine boundary ¢; such
that.
Pperm(Z(H) >cU...UZ(t) >c) =a*(t),

where P,em(A) denotes permutation probability of A:

P (A) = # permutations such that event A occurs
permisir total # permutations ’
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Post-Monitoring Inference: Panoply of Problems

» Assume nuisance parameters are known.

» With no monitoring, z-statistic is sufficient statistic.
> Inferences should be based solely on Z.

> Likelihood ratio for testing Hy : 6 = 0 versus Hq : 6 > 0 is monotone.
> Most powerful test against each simple alternative Hy : 6 = 6; is same
for all 6; > 0.
> Z >z, is UMP level o test for Hy : 6 > 0.

» MLE of 0 is Z and is unbiased.
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Post-Monitoring Inference: Panoply of Problems

» These are all problematic with monitoring.
> If 7 is info time when trial stopped, likelihood ratio is
L(6)/L(0) = exp {eﬁZ(f) - (92/2)1} .

> Consequently, sufficient statistic is pair {7,Z(7)}, so inferences
should be based solely on {7,Z(7)} or, equivalently, {z,B(7)}.

» No monotone likelihood ratio, so most powerful test against
H; : 6 =1 could be different from most powerful test against
H; : 6 =2 (no UMP test against Hy : 6 > 0).

> Must specify how to order sample space to compute p-value to test
H1 106 >0.

> MLE of 6, B(t)/z, is biased high.
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Post-Monitoring Inference: Panoply of Problems

» Regarding calculating 1-sided p-value adjusted for monitoring,
consider all outcomes consistent with boundaries, and order
them in some way:

» MLE ordering orders by B(t)/t. {12,Z(12)} more extreme than
{m1,2(m)} it B(2)/ 72 = B(71) /7.

» Z-score ordering orders by Z(t). {12,Z(72)} more extreme than
{m,2(m)} if Z(72) = Z(m).

» B-value ordering orders by B(t). {10,Z(72)} more extreme than
{m1,2(71)} if B(w2) = B(11).

> Stagewise ordering orders first by 7, then by Z(7). {12,Z(1)}
more extreme than {71,Z(ty)} if 7o < 7y orif 70 = 74 and
Z(12) = Z(11).
»> My favorite because does not force us to consider future events to
compute p-value.
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Post-Monitoring Inference: Panoply of Problems

» Regarding estimation, suppose | have 2 independent unbiased
estimators, & and &, of treatment effect §.

> | peek at 5.
> If & is very large, | report only 5.
> If &; is not large, | average it with 5, and report the average.

» Intuitively clear that this overestimates o.

» That is monitoring! Suppose 1 interim analysis at halfway point.
> |f interim estimate is very large, stop trial and report 5.
> If interim estimate is not large, continue to end, so final estimate is
average, (8 + &,)/2, of 1st and 2nd half estimates.
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Summary

» Unified monitoring:

» Information / in treatment effect estimator & is 1/var(3), and
information time is t = lyrrent/ final-

> B(t) and 5(t) behave like sum and sample mean of /iid N(§,1)
observations.

> t often reduces to ratio of current to final sample size (non-survival)
or current to final number of people with events (survival).

» Same boundaries apply to different test statistics.

» Can monitor using Z(t) or Brownian motion B(t). Joint
distribution over time is multivariate normal with:
> E{Z(t)} =61, cov{Z(s),Z(t)} =+/s/t,s<t.
> E{B(t)} =0t, cov{B(s),B(t)}=s,s<t
6 =E{Z(1)} =E{B(1)} is drift parameter.
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Summary

» For small sample sizes apply p-value boundary or use
permutation test.

» classic boundaries (Haybittle-Peto, Pocock, O’Brien-Fleming)
require equal spacing and pre-specification of number of looks.

» Desirable z-score boundaries (e.g., O’'Brien-Fleming) are high
early and close to z, at end. Effect on power is minimal (unlike
Pocock).

» Haybittle-Peto simple and valid regardless of joint distribution of
test statistic, but has reversal of fortune problem.

» Alpha spending functions are flexible and preferable to classic
boundaries. Neither number nor timing of looks must be
pre-specified. Can pick shape to ensure desired properties.

» Inference following monitoring is complicated.
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Appendix 1: Unified Approach

» Consider trial with continuous outcome and paired differences
Dy,Ds,. ... Dy, one member on treatment, other on control.

P _ E;n . . o E;A/
Interim: Z, = Nk Final: Zy = NoZ

cov(Zn,Zy) = cov{ S Sw }
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Appendix 1: Unified Approach

» Consider trial with continuous outcome and paired differences
Dy,Ds,. ... Dy, one member on treatment, other on control.

. Sn . SN
Interim: Z, = , Final: Zy = .
" Vno? N No?2
E;n éghj })
cov(Zn, Z = cov ,——
(2n 2N) {\/no2 VNo?

cov{Sp, Sy}
v no2v No?
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Appendix 1: Unified Approach

» Consider trial with continuous outcome and paired differences
Dy,Ds,. ... Dy, one member on treatment, other on control.

. Sh . Sy
Interim: Z, = , Final: Zy = .
" Vno? N No?
E;n éghj })
cov(Zn, Z = cov ,——
(2n 2n) {\/no2 vV No?
cov{Sp, Sy}
v no?2vNo?

cov{Sn, Sn+(Sn—5n)}
no2v/ No?
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Appendix 1: Unified Approach

_ cov{Sn, Sn} +cov{S.(Sn — sn)}
v no2vNo?
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Appendix 1: Unified Approach

cov{Sp, Sp} +cov{Sn, (Sny —sn)}

Vno2v No2
var(Sp) +0 nc?

Vno2vVNo?2  vVno2vNo?
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Appendix 1: Unified Approach

cov{Sp, Sp} +cov{Sn, (Sny —sn)}

Vno2v No2
var(Sp) +0 nc?

Vno2vVNo?2  vVno2vNo?

Vn/N=+t, t=n/N.

> tis called the information fraction or information time of the
interim analysis.

> Note that t =0 and 1 at the beginning and end of the trial.
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Appendix 1: Unified Approach

» Similarly, at interim analyses with n; and n» observations,

n < no,
n ny/N
cov(Zn,, Zn,) = ,/n;—”n;;N—«/h/tg. (10)

» The closer the two interim analyses are, the higher the
correlation of z-statistics. The mean of the z-statistic is:

E{Z(t)} = E{ Sn }

no?
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Appendix 1: Unified Approach

» Similarly, at interim analyses with n; and n» observations,
m <np,

N
coV(Zny Zn) = \/Zj— Z;;N—\/H/tz. (10)

» The closer the two interim analyses are, the higher the
correlation of z-statistics. The mean of the z-statistic is:

E{Z(t)} = E{ Sn }

no?

nu_ /np
no? o
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Appendix 1: Unified Approach

» Similarly, at interim analyses with n; and n» observations,

n < ng,
n ny/N
cov(Zn,, Zn,) = ,/n;—”n;;N—«/h/tg. (10)

» The closer the two interim analyses are, the higher the
correlation of z-statistics. The mean of the z-statistic is:
S
E{Z(t)} = E{ L }
no?

nu _ V/nu

ne2 ©

6 =E{Z(1)} = Qso

E{Z()} =6Vt (11)
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Appendix 1: Unified Approach

» By the central limit theorem, Z({;) is approximately normal for
large sample size.

» Moreover, the joint distribution of {Z(t),...,Z(t)} is also
approximately multivariate normal.

» Sometimes it is more convenient to look at the B-value rather

than the z-statistic.

B(t) = VtZ(t). (12)
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Appendix 1: Unified Approach

» The B-value has mean

E{B(1)} VIE{Z(1)}

Vi (ex/f) — ot. (13)

Also, for s < t,

cov{B(s),B(t)} = cov{ﬁZ(s),\/EZ(t)}
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» The B-value has mean

VIE{Z(t)}
Vi (ex/f) — ot. (13)

E{B(1)}

Also, for s < t,

cov{B(s),B(t)}

cov{ﬁZ(s),\/EZ(t)}
= VsVtceov{Z(s),Z(t)}

90/105



Appendix 1: Unified Approach

» The B-value has mean

E{B(1)}

Also, for s < t,

cov{B(s),B(t)}

VIE{Z(t)}
Vi (ex/f) — ot. (13)

cov{ﬁZ(s),\/EZ(t)}
VsVteov{Z(s),Z(t)}

ﬁﬁﬁ:s. (14)
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Appendix 1: Unified Approach

» Notice that, for s < t,

cov{B(s),B(t)— B(s)} = cov{B(s),B(t)} —cov{B(s), B(s)}

91/105



Appendix 1: Unified Approach

» Notice that, for s < t,

cov{B(s),B(t)— B(s)} = cov{B(s),B(t)} —cov{B(s), B(s)}
s—s=0. (15)

> Because B(s) and B(t) — B(s) are bivariate normal with 0
correlation, B(s) and B(t) — B(s) are independent.

» (Independent increments property) More generally, for
th<b<.. <l theincrements B(t), B(t)— B(t),
..., B(tx) — B(tx_1) are independent.

> B(t) is continuous everywhere, differentiable nowhere.
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Appendix 2: U. Wisconsin Software

» To use U. Wisconsin software instead of R to compute
boundaries for O’Brien-Fleming-like spending function at
information times f = (0.29,0.55, 1), use the following steps.
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Appendix 2: U. Wisconsin Software

L Group Seqential Calculations
File Help
No Computation Selected

Anaiysia Parameters

e e (8 5 (1 <k229

omaton imest: [Exaly Soaced <] 0<t<1)
Test Boundares: TS Symeic <]

e
HPTypeherelosedrch - 0 = ® " m @ = H O @
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Appendix 2: U. Wisconsin Software

1 Lan-DeMets Group Seqential Calculations

Fie Compute_ telp
s No Computation Selected
o

Ans
te
o

Probability  Alt-p
Confidence

H L Type here to search x
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Appendix 2: U. Wisconsin Software

Lan-DeMets Group Seqential Calculations
File Compute Help

Compute Bounds.
Analysis Parar

Spending Fanclion Lower | Upper | Nominal Cum
ntesm k225) Overal Apha: [005_ (0<a<10) || = |
Infomation tmesT?) Spaced v| (0<ts<1)

Function

Bound | Upr Alpha [  Alpha
Test Boundares: [Two-Sided Symmetic ~ Tncate bounds? [No v
Z-Score
Observed 22 [No
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Appendix 2: U. Wisconsin Software

Lan-DeMets Group Segential Calculations
File Compute Help
Compute Bounds.
Analysis Parameters Spending Function
Apha: [005  (0<as
Foncton: [ =] T

Tuncate bounds? [No <]

Time | Lower

Bound

Nominal
Upr Alpha

Upper
Bound

2 |

2 | 067
3| 100

Observed 22 [No |

H L Type here to search
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Appendix 2: U. Wisconsin Software

1 Lan-DeMets Group Seqential Calculations
File Compute Help

Compute Bounds
Analysis Parameters Spending Function
nterm Analyses (5 [3 (1 <k<25)

Information times(x):

Overal Apha: [005 (0<a<10)
Function: n
2ZScors

Observed 22 [No ]

Bound | Upr Alpha
Tncate bounds? [No
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Appendix 2: U. Wisconsin Software

1 Lan-DeMets Group Seqential Calculations
File Compute Help

Analysis Parameters
Intedm Analyses () 3 (1 <k<25)

Infomation tmes(c): [Useriopt v (0<t<1)

Compute Bounds

Spending Function

Time | Lower | Upper | Nomin
i Bound | Bound | Upr Alpha [ Alpha
Function: T o=
X ) ? )
Test Boundaries: [Two-Sided Symmetic: Truncate bounds? [No 2| 0%
Z-Score 3
Observed 22 [No v

98/105



Appendix 2: U. Wisconsin Software

1 Lan-DeMets Group Seqential Caluiations
File Compute Help

Compute Bounds.
Analysis Parameters

Spending Function
term foyses (4 [T (1 <k<29)

éomaton tmes(t: [oerrod <]
Test Boundires:

Aora: [005 | (@<ax10
Do e = 4001140011 000003
oo Sced Symmetic <] Tancate bours? [No <] 200 2607 00050 000502
Zscore 970 1970 002613 005000
Obsened 27 [ie

.0 0.1

02 03 0.4 05 06 07 08 09 1,

H L Type here to search
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Appendix 2: U. Wisconsin Software

» Free software says ¢, = 2.8074.
> Last look is at 200th death, t =200/200 = 1.

» Cumulative alphato spendby t =1 is

ar(1) —2{1 —0 <2'2}114>} =0.025.
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Appendix 2: U. Wisconsin Software

» Free software says ¢, = 2.8074.
> Last look is at 200th death, t =200/200 = 1.

» Cumulative alphato spendby t =1 is

cx*(1)—2{1—¢<2'2}114>}—o.025. (16)

» Need to find ¢3 such that

P[{Z(0.29) > 4.0011}U{Z(0.55) > 2.8074} U{Z(1) > c3}] = 0.025.
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Appendix 2: U. Wisconsin Software

» Free software says ¢, = 2.8074.
> Last look is at 200th death, t =200/200 = 1.

» Cumulative alphato spendby t =1 is

cx*(1)—2{1—¢<2'2}114>}—o.025. (16)

» Need to find ¢3 such that
P[{Z(0.29) >4.0011}u{Z(0.55) >2.8074}U{Z(1) > c3}] =0.025.

> Free software says ¢ = 1.9740.
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Appendix 2: U. Wisconsin Software

Lan-DeMets Group Sequential Boundaries
Calculations

Compute Spending

Analysis Parameters
Interim Analyses (k): 3

Information times(t): User Input
Test Boundaries: Two-Sided Symmetric

Spending Function
Overall Significance Level: 0.05

Spending Function: OBrien-Fleming

Truncate Bounds? No

e Lower Upper Nominal UprAlpha | Cum Alpha

029 |-4.0011 [4.0011 |0.00003 0.00006
055 |-2.8074 |2.8074 |0.00250 0.00502
100 [-1.9740 [1.9740 [0.02419 0.05000

Group Sequential Boundaries

s
s
3
2 e
1
o] i i . —-u
1
2
3 o
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Appendix 2: U. Wisconsin Software

» Now use University of Wisconsin software to compute sample
size/power for 4 equally-spaced looks using either the
O’Brien-Fleming-like spending function or Pocock-like spending
function.
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Appendix 2: U. Wisconsin Software

» Use WiInLD software at U. of Wisconsin.

» Click on “Compute” menu and click on “Drift”. Choose “Interim
Analyses (k)”, select 4 and hit enter (must hit enter).

» Table at upper right shows 4 equally-spaced looks (to change to
unequal spacings, use “Use Input” under “Information Times”).

» Choose power level (default is 0.90) under “Power and Bounds
Parameters”.

» Choose spending function under “Spending Function” (default is
O’Brien-Fleming).
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Appendix 2: U. Wisconsin Software

» Click on the “Calculate” button.
» In lower left, under “Drift” is number 3.2711.

» Tells us that in sample size calculations, make expected z-score
3.2711 instead of 1.96 +1.28 = 3.24.

» Example: For a t-test, expected z-score at end is

0

» Equate to 3.2711 and solve for N. Per-arm sample size is

262(3.2711)?

N= 52

per arm.
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Appendix 2: U. of Wisconsin Software

» If 6 =5and o =14, N~ 168 per arm.
» Compare to 165 per arm with no monitoring.

» Now choose “Pocock” spending function and hit “Calculate”.
> New drift is 3.5177.
»> New per-arm sample size is

2(14)%(3.5177)? _
== ~1%

> More substantial sample size penalty.

N
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Lecture 5: Monitoring for Fultility
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What is futility monitoring?

Interim look at the analysis of the primary endpoint for the purposes
of examining whether the trial has a reasonable chance of providing
useful scientific evidence

» Futility analyses often consider the current trend in the data and
whether the trial has a reasonable chance of producing a
statistically significant result at end of study

» There could be many factors contributing to possible futility

> Lack of treatment effect

> Lower than expected recruitment rate
> Lower than expected event rate

» Emerging evidence from other trials

» Futility caused by poor recruitment, too much loss to follow-up or
non-adherence, is called operational futility
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When is futility monitoring worth considering?

» Futility monitoring gives a trial a chance to stop early if there
appears to be little to no chance the trial will provide useful
evidence

» Trials for which a failure to show an advantage for a new
treatment would not lead to changes in medical practice would
be candidates for interim futility assessments

» Stopping trials on a path to failure prevents patients from taking
unnecessary risks

» Stopping trials on a path to failure saves resources that can be
redirected to therapies with better potential

» Some have argued large publicly funded trials should always
consider futility monitoring, saving costs and recruiting fewer
patients to failed trials (Sully et al., 2014)
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Table 1. Trials That May Incorporate Interim Futility Analysis in Their
Monitoring Plans.

Trial Type

Placebo-controlled trials of an investigational treatment for a
serious medical condition

Trials comparing an investigational treatment with a standard
treatment

Trials comparing a drug combination with one or more of its
components

Trials comparing a higher dose with the standard dose of an
available treatment

Trials involving considerable participant burden or cost

*Elllenberg and Shaw 2022
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The Cardiovascular Inflammation Reduction Trial
(CIRT)

Background

» Inflammation plays a key role in atherothrombosis
» The Canakinumab Anti-inflammatory Thrombosis Outcomes
Study (CANTOS) found use of a monoclonal antibody reduced
cardiovascular events over placebo, without lowering blood
pressure or lipids
> Largest reduction in events were in subjects with largest reductions
in interleukin-6 and high-sensitivity C-reactive protein
» There was interest to study another anti-inflammatory drug
> Low-dose methotrexate is an inexpensive, effective, and widely
used treatment for inflammatory conditions, including rheumatoid
arthritis, psoriatic and juvenile arthritis
> In observational studies, patients with rheumatoid/psoriatic arthritis
who received low-dose methotrexate had fewer cardiovascular

events than patients receiving other therapies/placebo.
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The Cardiovascular Inflammation Reduction Trial
(CIRT)

NCT01594333

» Randomized placebo-controlled trial examining whether
low-dose methotrexate reduces heart attacks, strokes, or death

» NIH-sponsored trial launched in 2013 with goal of randomizing
7000 men and women

» Trial included medically stable participants with type 2 diabetes
or metabolic syndrome and history of a heart attack or multiple
coronary blockages

» Study protocol included a statistical plan for early termination for
“futility”

> |If emerging data indicate trial unlikely to demonstrate benefit, this
would not lead to changes in clinical practice
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CIRT Futility Analysis

NCT01594333

» There were two planned looks, when 50% and 75% of the
planned primary events had accrued

» In March of 2018, the DSMB recommended trial termination.
> Median follow-up of 2.3 years in 4786 participants

» The Methotrexate HR crossed a prespecified inefficacy boundary
(Freidlin et al. (2010))

» Methotrexate did not reduce high-sensitivity C-reactive protein
levels during the run-in phase

» Methotrexate elevated liver enzymes
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ACTIV-4B Example

A trial that ended for logistical reasons

» Accelerating Covid-19 Therapeutic Interventions and Vaccines
(ACTIV-4B), a placebo-controlled trial testing antithrombotic
agents given prophylactically to people with Covid-19 who had
not yet been hospitalized

» Basis for trial was that thrombosis was a known risk for subjects
with Covid-19

» DSMB recommended trial end for futility when it was observed
event rate far too low to demonstrate benefit for treatment

> 3/558 participants had a thrombotic event (Connors et al., 2021)

» Decision to conclude for futility also that such a low event rate
does not justify the use of anticoagulant or antithrombotic drugs
(Ellenberg and Shaw, 2022)
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When is futility monitoring NOT worth considering?

» Even if a treatment is showing little benefit partway through the
trial, additional safety evidence may be desired
» Trials comparing two or more widely used therapies to see
whether one has advantages over the other
» Non-inferiority trials typically would not need futility monitoring,
since more about exploring safety profiles and not establishing
superiority
» Some settings would require full evidence to accrue in order to
have a convincing null result (as long as ethical)
» Trials of therapies already in use may need a convincing result to
change practice
» Although futility monitoring may not have been pre-specified,
unexpected events or trends in trial may lead a DSMB to
recommend consideration of futility
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Testosterone Trials
Snyder et al. (2016)

> Testosterone Trials studied testosterone therapy in older men
with documented subnormal testosterone levels

» Trial evaluated a widely used product not well studied for many of
the functional outcomes it was advertised for

> |t was deemed important to collect as much data as possible

» Stopping early for futility would be less likely to persuade
providers and consumers than a larger database, and full safety
information was particularly important given concerns about
testosterone’s effects on prostate and cardiovascular health

> No futility plan was provided by the study investigators
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Women'’s Health Initiative (WHI)

Women'’s Health Initiative Study Group and others (1998)

The WHI Hormone Replacement Therapy (HRT) Trials studied the
risks and benefits of estrogen therapy in post-menopausal women.
» HRT came into wide use in 1960s, based largely on
presumptions and observational data
> Observational studies suggested HRT reduced a women’s risk of
coronary heart disease (CHD) by 40-50%
» Evidence from trials suggested estrogen prevented hip fracture
» Some concern regarding increased risk of breast cancer
» Two trials launched in 1993 that would enroll a 27,347 women.
> 16,608 in the progestin+ estrogen trial (EP) and 10,739 in the
estrogen alone (E alone) trial.
» Primary outcome was CHD; secondary outcome hip fracture;
safety outcome breast cancer
» The WHI HRT trials monitored for efficacy and harm
» The results of these trials changed clinical practice (Rossouw
et al., 2002; Anderson et al., 2004)
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Monitoring the Women’s Health Initiative (WHI)

Wittes et al. (2007)

» There were a number of twists and turns in the monitoring of the
WHI HRT, including early indications of increased risk of venus
thrombosis and stroke

> In May 2001, the DSMB was convinced neither trial would show
a benefit of HRT on CHD
» Study continued because there would need to be unequivocal
results in order to change practice
» More data would also help elucidate some contrary trends: EP
seemed to increase or breast cancer, E alone decreased risk
> In July 2002, 3 years before expected end, its EP arm was halted
because compared to placebo, experimental developed more
heart disease, invasive breast cancer, and other harmful
outcomes such that risks outweighed benefits
> In Feb 2004, the E alone arm was halted due to concerns of
stroke, with no apparent benefit on CHD
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PRECISION Trial

Nissen et al. (2016)

>

Non-steroidal anti-inflammatory drugs were introduced in the 60s
and became most widely prescribed drug in world

Cox-2 inhibitors were a special class of NSAIDS thought to
reduce gastrointestinal side effects but rofecoxib found to be
associated with possible cardiovascular harm

FDA mandated a trial of cardiovascular safety to evaluate
another Cox-2 inhibitor celecoxib after another trial raised
concern of increased risk

PRECISION trial launched to establish non-inferiority of the
Cox-2 inhibitor celecoxib to ibuprofen and naproxen with respect
to cardiovascular death (including hemorrhagic death), nonfatal
myocardial infarction, or nonfatal stroke

Gastrointestinal and renal outcomes were also examined.

An expected 20,000 randomized and 762 event needed for 90%
power to establish non-inferiority with an upper margin of 1.33
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PRECISION Results

Nissen et al. (2016)

> 24,081 subjects requiring NSAIDs for osteoarthritis or
rheumatoid arthritis were randomly assigned in a 1:1:1 fashion to
celecoxib, naproxen and ibuprofen

» Celecoxib non inferior to naproxen, 0.93; (95% confidence
interval [CI], 0.76 to 1.13); and non-inferior to ibuprofen, 0.85;
95% Cl, 0.70 to 1.04;P < 0.001

» The risk of gastrointestinal events was significantly lower with
celecoxib than with naproxen (P = 0.01) or ibuprofen (P = 0.002)

> Risk of renal events was significantly lower with celecoxib than
with ibuprofen (P = 0.004) but was not significantly lower with
celecoxib than naproxen (P = 0.19)
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Methods for monitoring futility
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Conditional Power

Conditional Power (CP) is the probability that a trial would
successfully reject the null hypothesis if the trial continued until
planned completion.
» CP useful in settings in which a convincing positive result at the
end of the trial is needed to change clinical practice
> If the conditional power falls below a pre-specified threshold
(commonly 10 to 20%), termination for futility may be considered
» CP must be computed by an unblinded statistician
» Calculated using the observed trend in the data so far and a
hypothesized trend for the data not yet collected
» A DSMB may wish to see several estimates of conditional power
based on a range of assumptions about the true treatment effect.
» CP using the originally hypothesized trend generally the main
estimate of CP
» A binding rule w.r.t. CP (i.e., stop if CP < y is called stochastic
curtailment)
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Conditional Power (CP)

To calculate the CP at an interim analysis, we again can make use of
the B-value B(t) = v/tZ(t) and information fraction t (see Lecture
4)

» Where Z(t) is the Z-score at the interim analysis and

» n observations out of the planned N are available at the interim
analysis, yielding t =n/N
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Conditional Power Calculation (part 1)
Proschan (2021)

Suppose c is the critical value needed for signficance at end of trial

CP = P{Z(1)>c|Z(t) =z} = P{B(1) > c| B(t) = zVt}

P{B(1)-B(t) > c— 2Vt | B(t) = 2V}

P {8(1 )—B(t)>c— z\/?} (independent increments).

Also, B(1) — B(t) is normal withmean 6-1—0-t=6(1—t), where
6 =E{Z(1)}, and variance

var{B(1)—B(t)} = var{B(1)}+var{B(f)} —2cov{B(1),B(t)}
= 1+t-2t
1t
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Conditional Power Calculation (part 2)

» Therefore, conditional power is

P - P{B(1)—B(t)—6(1 —t) _ c-zvi-6( _t)}

Vi-t Vit
- c—zVi—-6(1-1)
B 1_¢{ Vi—t }
A zVt+e(1-t)—c
a V-t ’

where z is value of the z-statistic at information time t.
0 = E(Z(1)) and c is critical value at end of study
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CP Example: t-test

Proschan (2021)

Consider trial randomizing patients with hepatitis B to new drug (N)
and standard (S). Primary outcome: change in log;q viral load
between baseline and 1 week expected SD =2.8, N=250 per arm
gives 85% power to detect 0.8 log difference.

At interim analysis: ng=108 and ny = 111, mean change:
Ys=—0.30 and Yy = —0.18, sd of change: sg =2.35 and sy =2.60

(108—1)s2+(111-1)s3,

so pooled variance = 1087112 =6.15

; . : _ _pvar(8)  _ 1/{c?(1/108+1/111)}
information fraction t = varGung) /(202 /250)

ort~ (108+111)/2/250 = 0.438

2(0.438) = —— VsV 030 (018) __ (358

= /(1 /ns+1/ny)  A/6.15(1/108+1/111)
B(0.438) — \/1Z(t) = v/0.438(~0.358) — —0.237
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CP Example: t-test (part 2)

Conditional power under original alternative hypothesis:
Because original power was 85%, expected Z score at end of trial is
0=196+1.04=3

CP3 = (22O EA9)-1%8) — ¢(—0.682) = 0.25

Conditional power under the null hypothesis:

CPy = &(—22TOL L0120 — ¢(—2.931) = 0.002
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PREVAIL II: Binomial CP Example

Proschan (2021)

PREVAIL Il was a trial of Ebola virus disease that compared triple
monoclonal antibody product ZMapp + standard of care (SOC) with
SOC alone

Primary endpoint was 28-day mortality, target ss was 100/arm that
gave =~ 87% power to detect a 50% reduction in mortality: 40% to
20%. Trial ended with 71 observations because epidemic ended, but
an interesting question is would the results have been significant at
end of trial?

There were: 13/35 deaths on SOC and 8/36 deaths on SOC+ZMapp.

_ 1/{p(1-p)(1/35+1/36)} _
t="Soorotipy -~ 0399

_ 13/35-8/36 _
Z(:355) = V/(@1/71)(1-21/71)(1/35+1/36) 1.377

B(.355) = /(.355)Z(.355) = .820

— _ 0.40-0.20 —
0 =E(2(1))= \/(2(:30)(1-.30)/100 3.086

22/44



PREVAIL II: Binomial CP Example (part 2)

Proschan (2021)

Conditional power under original alternative hypothesis:

CPyig = &( 3223080 29%9) 1) — ©(1.059) = 0.86

Conditional power under current trend

CPyeng = (22T L L0 190) — 0(0.436) = 0.67
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PREVAIL II: Survival CP Example

Suppose PREVAIL Il had planned to use the logrank test instead of
test of proportions and that the trial had 80% power to detect a
control to treatment hazard ratio of 1.6, with 142 events.

Suppose at interim analysis, there were 21 deaths observed and that
the log-rank zscore was Z=0.83

The expected Z score at end 6 = 1.96 4 .84 = 2.80

Information fraction is the ratio of current number of deaths to the
number expected at end of trial d/D =21/142 =0.148

Then, B(0.148) = /0.148(0.830) = 0.319

CPrg~= ¢(°'3‘9+2j1(15?1~128)—‘ %) — ¢(0.807) = 0.79

When amount of information is so low (15% in this case), nearly
impossible to stop for futility using conditional power. Note,
conditional power is close to the original power in this case.
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Recall CAST Example

Cardiac Arrhythmia Suppression Trial (CAST)

» Tested whether suppressing arrhythmias in patients with prior
heart attack reduces composite of sudden deaths/cardiac
arrests.

» Planned for 425 sudden deaths/cardiac arrests by end of trial.

» At DSMB meeting 4/17/1989, 35 sudden deaths/cardiac arrests
in active arm, 13 in placebo arm.
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CP can help decision making
CAST Example (Proschan, 2021)

» Expected z-score at end if treatment reduces sudden
deaths/cardiac arrests by 25% 6 = In(4/3)  \/425/4 = 2.965.
Note, 25% reduction means treatment/control hazard ratio is 3/4,
so control/treatment hazard ratio is 1/(3/4)=4/3.

» Information time at interim analysis was (35+13)/425=0.113.

> Z-score was Z(0.113) = —3.22 = z (suggesting harm).

» Conditional power assuming 25% reduction is
¢{zﬂ+9(1 —z‘)—c} o) ~322/113+2.965(1 —.113)—1.96}

Vi—t 1-113
=  ®(—.438) =0.33.

» Only 33% chance of proving benefit at end, given current results
and optimistic 25% reduction. CP under null hypothesis= 0.0006.

» Final # events now predicted to be 300, not 425.

» Using 300 final events and recomputing 6 and t, CP~ 0.10 under
25% reduction and CP = 0.0002 under null hypothesis.
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Planning for Futility Monitoring

» Though futility monitoring tends to be less formal, generally good
idea to specify out a plan in the protocol
» How often to monitor will likely depend on setting

» Timing often tied to achieving some threshold, such as when 50%
and 75% of event rates have accrued

» Hard to have low conditional power when less than 25% of data
accrued

» DSMB may ask for an evaluation of futility partway thru the trial,
even if not pre-specified
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Other factors at play

When evaluating futility, DSMB may consider emerging results from
other trials.

» In the CIRT trial described earlier, the conditional power to detect
the originally targeted effect size was 28%.

» The observed effect sizes in recently completed trials of
anti-inflammatory agents in similar populations were much
smaller than the targeted effect size in CIRT, increasing the
DSMB’s concern that CIRT was very unlikely to show a benefit.

» This emerging outside evidence together with the lack of effect
on inflammatory markers, in addition to low CP, contributed to the
DSMB’s recommendation to terminate the trial for futility.
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Predicted Intervals

Predicted intervals predict the confidence interval that might be
observed at trial's end under a given assumption about the future
data. (Evans et al., 2007; Li et al., 2009)

» Can enhance the interpretation of the conditional power at an
interim analysis

» To calculate predicted intervals you simulate the remaining
unobserved data for the trial, under a hypothesized trend, and
combine with interim data

» Generate a large number of such confidence intervals (Cl) and
plot, ordering by effect size

» The comparisons of the width of the Cl based on observed
interim data alone with the width of the predicted interval sheds
light on precision that could be gained with trial continuation, a
potentially valuable tool for a DSMB

» Easily done in the R Software with package PIPS
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Predicted Intervals: Hypothetical Example
Ellenberg and Shaw (2022)

Predicted interval plot: 100 simulations of a hypothetical trial. At
interim analysis: Deaths were 10/40 in group A vs 8/38 in group B
halfway through trial. Hypothesized trend: 25% mortality for group A
vs 50 % mortality for group B for future data. Can see CP = 20%

1004
90

50+

Percentile of Point Estimate Distribution

10 = E — Actual

£y 0° —_ i
0- s : l Predicted I
-0.4 -0.2 0.0 0.2 0.4

Favors A Favors B

Effect Size (B-A)
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Are there downsides to monitoring for futility ?
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Effect of monitoring for futility on Type | and Type II
errors

» Monitoring for futility increases the probability that there will be a
null result at the end of the trial (i.e. increased probablity of failing
to reject null hypothesis for primary endpoint)

» Type | error can not be inflated by monitoring for futility

» Type Il error can be inflated

32/44



The effect of stochastic curtailment on Power

» A stochastic curtailment rule like stop if CP under originally
hypothesized treatment effect < 0.20 lowers power because if
you had continued, you might have gotten significant result at
end

> Lan et al. (1982) showed that even if you monitored continuously,
power is reduced only by small amount.

> |f type 2 error rate with no monitoring is f and stochastic
curtailment rule stops if CP (computed under original
hypothesis)< y, then actual type 2 error rate is no greater than
B/(1—7).

» E.g., suppose stop if CP < 0.20 and type 2 error rate was
B =0.10 (power= 0.90) with no monitoring. Actual type 2 error
rate is at most 0.10/(1 — 0.20) = 0.125, so actual power is at
least 1 —0.125 = 0.875 even if you monitor continuously!
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Beta spending

» Another approach to futility monitoring is to consider a
beta-spending approach. Analogous to alpha-spending, one
could create a lower futility boundary which would guide stopping
for futility if this boundary is crossed.

» The idea is that you can allow for repeated monitoring for futility
while controlling the trial’s false negative rate, thereby retaining
trial power despite the multiple testing

» Advantage: Can choose the beta spending function of your liking
(making it easier or harder to stop early)

» Tying upper boundary to lower futility boundary allows for slight
increase in «a, to offset fact that futility monitoring lowers
probability of falsely concluding significant result

> This must be followed as a binding rule and so generally is NOT
recommended.

> Better to not have upper tied to the lower boundary, since may

ignore the lower boundary.
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Another downside to futility monitoring: Data in
pipeline could change results

Whether the study team preparing report or DSMB member, need to
think about a few things regarding stopping for futility

» Were the data used for the futility analysis the same for the
endpoint used for final analysis: i.e. adjudicated endpoints?

» How much outstanding data was in pipeline at time of interim
analysis?

» How much follow-up time/events will accrue between time of
stopping for futility and final analysis?
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Example: LUME-2 Lung Trial

Hanna et al. (2016)

» LUME-Lung 2, a phase lll trial of treatment of non—small cell lung
cancer

» This trial was stopped early for futility on the basis of low
conditional power (approximately 10%)

» Final trial results showed a significant benefit for the novel
treatment on the primary end point of progression-free survival
» How did this happen?
> Interim analysis based on the investigators’ evaluation of disease
progression, while final analysis based on centrally adjudicated
determination of progression
> There was also additional follow-up between stopping for futility
and final analysis
> Nice discussion by Lesaffre et al. (2017)
» Conditional power might have been a useful tool to consider

chances for result to turn around.
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Other Tools
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Revised Power

A revised power calculation can be done part-way through a trial
using updated information on important design considerations, such
as the variance of a continuous outcome, event rate, or the expected
recruitment rate.

» The purpose of revised power is to determine whether a null
result at the end of the trial would be informative under the
updated assumptions.

» If the revised power is low, a null result would not rule out the
original hypothesized treatment effect, suggesting that continuing
the trial may be futile.

> Revised power is done blinded, unlike conditional power. It
does not rely on interim trends in the data with respect to
treatment effect.
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Revised Power: Don'’t always have to stop...
Love et al. (2015); Hade et al. (2019)

» An international breast cancer trial was launched in 2013 to
study the effects of surgical timing during the menstrual phase
on disease-free survival

» Prior studies suggested adjuvant oophorectomy surgery during the
luteal phase of the menstrual cycle may improve disease-free
survival and overall survival compared to the follicular phase

» Concern arose from emergent data, including another trial, that
the event rate assumed for the placebo arm during the planning
stage may have been too high, potentially resulting in an
underpowered trial

> In cooperation with the DSMB, investigators agreed to implement
a blinded sample size re-estimation that relied on blinded trial
data

» These calculations resulted in an increase in trial size from 340

to 510 due to the lower expected event rate.
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Bayesian Approaches
Snapinn et al. (2006); Dmitrienko and Wang (2006)

There are a number of Bayesian approaches to futility monitoring

» One can compute predictive power (Dmitrienko and Wang,
2006), which is the conditional power averaged over a range of
assumptions about the treatment difference that will be observed
in the future data.

» The predictive probability framework is a fully Bayesian
approach that specifies a prior probability for the treatment effect
and, using the observed interim data, determines the posterior
probability of a clinically important treatment difference

» For Bayesian approaches, careful thought must be given to
specifying the prior probability.

» Weak priors may give too much weight to early data
»> Dmitrienko and Wang (2006) argue that weak priors are advisable
in large mortality trials to lessen the exposure of critically ill patients

to ineffective interventions
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Summary

» Futility monitoring (FM) allows DSMB to evaluate mid-trial of
whether scientifically useful information will be gained if trial
continues until the planned end

» FM makes sense for some settings, not others

» Conditional Power one of the most common tools used for futility
monitoring

» FM boundaries are generally considered advisory and not
binding

» DSMB will always consider totality of evidence before
recommending stopping for futility
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