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Coding regions tend to have the lowest
levels of diversity in the genome

Diversity at selected loci
D|verS|ty at linked sites
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What are the predomi

forces driving humnr

nant evolutionary
an genomes?!

~40% of amino acid substitutions were

Eyre-Walker & Keightley (2009)

advantageous

10-20% of amino acid substitutions

Boyko et al (2008)

Williamson et al (2007)

were advantageous

10% of the genome affected by

selective sweeps



Diversity levels around a
selective sweep
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The footprint of adaptive amino acid substitutions
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Goal: compare the pattern
around amino acid
substitutions to the pattern
around synonymous
substitutions.

Reflects the typical

strength of selection
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Other organisms...

Drosophila
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Sattath et al (2011) estimate
~13% of amino acid
substitutions were adaptive.



Observed Patterns of Diversity
Around Human Sulbstitutions
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diversity/divergence
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Other organisms...

Chimpanzee

Drosophila

Diversity/neutral diversity
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The Effect of Negative Selection

Fairly Deleterious




Proportion of SNPs
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The Effect of Negative Selection

Consequences:

Some proportion of chromosomes eliminated each
generation

o
00(\ = Decreased effective population size (fONe)

= Decreased neutral variation (foﬂ')

While neutral variation can be lost some neutral
mutations may increase in frequency
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Background selection (BGS)

e Definition: The reduction of diversity at a neutral locus
due to the effects of linked deleterious selection

e Can estimate the effect of BGS by comparing
observed diversity at neutral sites compared to the
level of diversity you would expect under neutrality!

o 7[/7[0
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Earlier Theoretical Work

Hudson & Kaplan (1995)

U
fO:GXp( S—l—R>

U = deleterious mutation rate

s = selection coefficient

R = recombination rate
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Effect of Recombination

e

With recombination, neutral mutations can
escape the grip of deleterious mutations.
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Multiple Targets of Deleterious Mutations

Consider a chromosome composed of neutral
loci and deleterious loci
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DNA Variation

Drosophila
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H/C

Background Selection

e The effects of the continual removal of
deleterious mutations by natural selection on
variability at linked sites.

— Observed human-chimp div.
Exp. w/o mut. rate variation

Exp w/mut. rate variation
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Diversity levels around sites
subject to natural selection
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Modeling the data
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normalized diversity

BGS Features
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* The strength of background selection varies across populations!

o Stronger effects in bottlenecked Out-Of-Africa populations
23 Torres, et al (2018)



BGS Features
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Parameter estimates for a basic bottleneck model of maize domestication.
See Methods for details.

e Strength of BGS varies between Maize and Teosinte

e Stronger in ancestral Teosinte population!

24 Beissinger, et al. (20106)



Demographic Models Matter!

equilibrium
. faster change under BGS
N , N
faster change under neutrality
T T
relative to relative to
starting s?a.r'gng

ending
equilibrium

starting T /no

m/mg equilibrium

* For both contraction and expansion models:

« 1t/ 7y can be greater than or less than the ancestral
population depending on time!

25 Torres, et al. (2020)



Background Selection & Disease”

Background selection drives patterns of genetic variation.
*But does it matter?

eDoes it have implications for studying complex traits?

To find out, we looked at the NHGRI GWAS database:
www.genome.gov / gwastudies /

20
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Effects of Linked Selection

1.0
Greater reduction
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QQ-plot of the reduction in diversity around
GWAS hits compared tg background.



Effects of Linked Selection
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Greater reduction in diversity around GWAS hits

indicates a strong, local burden of negative selection.
Mabher, et al. Human Heredity (2012).



Genetic Load

Genetic load is the reduction in population mean fithess
due to deleterious mutations compared to a
(hypothetical) mutation-free population.

Load is the outcome of the evolutionary process of a
population.

But, unlike other features of genetic variation, it cannot
be directly observed.

Must be indirectly inferred.

30 Kirk Lohmueller



Inferring Genetic Loao

* Empirical counting approaches:

—Under an additive model, the number of derived
deleterious alleles will be proportional to genetic
load

—Under a recessive model, the number of
homozygous derived genotypes will be proportional
to load

31 Kirk Lohmueller



Inferring Genetic Loao

* |t Is widely
appreciated that
African ancestry
individuals have

more variation overall

than individuals with
European ancestry.

* However, European
individuals have
more homozygous
variation.

* Increased load?

No. of heterozygous genotypes per individual
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Inferring Genetic Loao

 However, het.
and hom.
derived alleles
appear to
balance
between African
and European
Americans.

e All iIndividuals
have same
number of
derived alleles!

Mean derived allele frequencies at different types of SNVs
® African American @ European American
0.030 -

© o o
(@) o o
— N N
(@] o (@)

0.010 - = -

Mean derived allele frequency

- e

0.005 -

Noncoding Synonymous Benign Possibly Probably

nonsynonymous damaging damaging
Number per
individual, AA: 21,421 15,401 5,373 1,695 2,002
Number per
individual, EA: 21,345 15,231 5,338 1,682 1,969
33

Simons, et al. (2014)



Serial Founder Effects on Genetic Load
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Key Feature of Natural Selection

® Alleles change frequency unusually fast
® Positive selection tends to increase frequency

® Negative selection tends to decrease
frequency

® All tests for natural selection seek to identify this
feature using different aspects of the data.

® While negative selection shapes majority of
patterns of variation in many species, positive
selection may drive patterns of local variation.

35



The Effect of Positive Selection

Fairly Deleterious
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The Effect of Positive Selection

Neutral

Mildly Deleterious

Fairly Deleterious




Types of Positive Selection

® Selection acts in one population but not another

® Frequencies of the selected alleles in one population will
go up relatively quickly compared to the frequencies of
those same alleles in the other population.

® The test is simple:

® Are there alleles that have unusually large allele
frequency differences between two populations?

38



Testing for Population Divergence

® |magine two populations diverged several thousand
years ago.

® One population stayed where it was, but the other
migrated up a mountain to the Tibetan Plateau.

® Many environmental changes...

® Not obvious where in the genome to look for
adaptations

® [ry exome sequencing

39



Testing for Population Divergence

Sequencing of 50 Human Exomes
Reveals Adaptation to High Altitude

Xin Yi,>** Yu Liang,>* Emilia Huerta-Sanchez,?* Xin Jin,** Zha Xi Ping Cuo,%>* John E. Pool,*°*
Xun Xu,! Hui Jiang,* Nicolas Vinckenbosch,? Thorfinn Sand Korneliussen,” Hancheng Zheng,™*
Tao Liu,* Weiming He,™® Kui Li,*” Ruibang Luo,™* Xifang Nie,* Honglong Wu,"® Meiru Zhao,*
Hongzhi Cao,™” Jing Zou," Ying Shan,™* Shuzheng Li,* Qi Yang,* Asan,? Peixiang Ni,* Geng Tian,"
Junming Xu,' Xiao Liu,* Tao Jiang,™” Renhua Wu," Guangyu Zhou,* Meifang Tang,* Junjie Qin,’
Tong Wang," Shuijian Feng,* Guohong Li,* Huasang," Jiangbai Luosang,* Wei Wang,* Fang Chen,*
Yading Wang, Xiaoguang Zheng,™? Zhuo Li," Zhuoma Bianba,'® Ge Yang,'° Xinping Wang,™
Shuhui Tang,'* Guoyi Gao,™ Yong Chen,” Zhen Luo,” Lamu Gusang,” Zheng Cao," Qinghui Zhang,*
Weihan Ouyang," Xiaoli Ren," Huiging Liang,* Huisong Zheng, Yebo Huang," Jingxiang Li,*

Lars Bolund," Karsten Kristiansen,™’ Yingrui Li,* Yong Zhang," Xiuging Zhang,* Ruigiang Li,"’
Songgang Li,' Huanming Yang,* Rasmus Nielsen,"*’1 Jun Wang,"’t Jian Wang't

40
Yi, X. et al. Science 329, 75-78 (2010).



Testing for Population Divergence
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Testing for Population Divergence
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Testing for Population Divergence
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Types of Positive Selection

[A Selection acts in one population but not another

® Selection operates on a new mutation
® Selection will act to increase the frequency of the allele
® Results in a young allele at relatively high frequency
® The test is simple:

® Are there young alleles at unusually high frequency?

44



Testing for High Freq.Young Alleles

® The age of an allele can be assessed by measuring the
amount of genetic variation around the allele.

® As time passes:
® Mutations occur nearby

® Recombination breaks down the correlation
between the allele and others nearby

45



Testing for High Freq.Young Alleles

® Example: Skin pigmentation

o KITLG is a gene known to contribute to lighter
skin in non-African populations.

Europe E Asia America
. .
- -— .

Africa Middle East S Asia Oceania

* Each plot is a population.

* Each row is an individual’s
haplotype.

* |dentical haplotypes have the
same color.

* | arge red blocks indicate
long haplotypes with very
little variation (i.e., young).




Testing for High Freq.Young Alleles

® Detecting these types of signatures:

® | ong Range Haplotype (LRH) or Extended
Haplotype Homozygosity (EHH) {Sabeti, P. C. et
al. Nature 419, 832-837 (2002)}.

® integrated Haplotype Score (iHS) {Voight, B.F. et
al. PLoS Biol 4, e72 (2006)}.

® Composite Likelihood Ratio (CLR) {Williamson, S.
H. et al. PLoS Genet 3, €90 (2007)}.
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Types of Positive Selection

[A Selection acts in one population but not another
[A Selection acts on a new mutation

® Selection acts on new mutations primarily in one
population

® In this case, we expect high divergence and long
haplotypes in one population

48



Divergence of a Young Allele

® Recall the haplotype patterns before for just two
populations:

® These can be plotted as the probability that two randomly
chosen individuals have an identical haplotype as a function
of distance from the core SNP: '

® Comparing the area under
these two curves is the basis for ©

XP-EHH

1.5 0 1.5
49 Distance from core SNP (Mb)



Divergence of a Young Allele
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Motivation

® Why should we care about finding signatures
of natural selection?

® |t’s cool... It's what often drives speciation

® Understanding disease/complex traits

51



Case Study: Kidney Disease in
African Americans

® |ndividuals of African descent have much higher
incidence of kidney disease than individuals of
European descent.

® GWAS had previously implicated the gene MYH9
with moderate effects (p<10-3)

® But there was no clear biological story.

52



Case Study: Kidney Disease in
African Americans

® | ooking at signatures of selection adds valuable insight.

® Consider iHS from haplotter.uchicago.edu (more on this

later):
Gene iHS p-value
APOLI 0.0033
MYH9 0.014

~log(Q)
30t

25

20
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10}

05t

00t

iHS

Genoric po sitioft (Mb)

enovese, G. et al. Science 329, 841-845 (2010).



Case Study: Kidney Disease in
African Americans

® Tag SNPs chosen across a broader region, and calculated
EHH based on higher resolution data
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Case Study: Kidney Disease in
African Americans

® Subset of SNPs chosen based on signatures of selection
genotyped on a larger panel strongly implicates APOL 1!

25
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WGS

The statistics described do not really handle whole
genome sequencing data (WGS).

Further, the timescale for when selection acted is
not very well specified.

With an abundance of rare variants, WGS should be
informative about recent selection.

Enter the Singleton Density Score (SDS).
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SDS

® Field, et al. (Science, 2016) introduced the Singleton
Density Score (SDS) to capitalize on WGS data with
very large samples.

® |n the presence of a sweep, the distribution of
distances (across individuals) to the nearest
singleton will be skewed towards longer distances.
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Selection score (standardized to Neutral)
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Conclusions

® Natural selection leaves distinctive footprints within
patterns of genetic variation.

® This occurs because alleles driven by natural selection tend
to be younger than neutral alleles at the same frequency.

® Characterizing signatures of natural selection around disease
associated loci can sometimes illuminate mechanistic
relationships.
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