Searching for Signatures of Selection with Selscan

Ryan Hernandez

ryan.hernandez@ucsf.edu

Key Feature of Natural Selection

- Alleles change frequency unusually fast
 - Positive selection tends to increase frequency
 - Negative selection tends to decrease frequency
- All tests for natural selection seek to identify this feature using different aspects of the data.
- While negative selection shapes majority of patterns of variation in many species, positive selection may drive patterns of local variation.

The Effect of Positive Selection

Adaptive Neutral Nearly Neutral Mildly Deleterious Fairly Deleterious Strongly Deleterious

The Effect of Positive Selection

Adaptive Neutral Nearly Neutral Mildly Deleterious Fairly Deleterious Strongly Deleterious

4

Extended Haplotype Homozygosity

- Sabeti, et al. (Nature, 2002) proposed EHH
- Designed to track the decay of haplotype identity away from a locus of interest
 - If selection acts quickly enough
- Originally derives from ideas in Hudson, et al. (Genetics, 1994).

Zachary Szpiech

- \bullet Given a locus of interest, ${\cal C}$ is the set of all distinct haplotypes at that locus.
- Select a "core" haplotype, $c \in C$.
- $\mathcal{H}(c, x)$ is the set of all distinct haplotypes that extend from the locus of interest to marker x and contain the core haplotype c.
- For $h \in \mathcal{H}(c, x)$, n_h is the number of haplotypes of type h
- n_c is the number of the core haplotypes

• If $EHH_c(x)$ is the extended haplotype homozygosity of the core haplotype c out to marker x, then

$$EHH_{c}(x) = \sum_{h \in \mathcal{H}(c,x)} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}}$$
$$\binom{n}{2} := 0 \quad \forall n < 2$$

• If $EHH_c(x)$ is the extended haplotype homozygosity of the core haplotype c out to marker x, then

$$EHH_{c}(x) = \sum_{h \in \mathcal{H}(c,x)} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}} \checkmark^{\# \text{ of ways to choose two h haplotypes}}$$
$$\binom{n}{2} := 0 \ \forall n < 2$$

• If $EHH_c(x)$ is the extended haplotype homozygosity of the core haplotype c out to marker x, then

$$EHH_{c}(x) = \sum_{h \in \mathcal{H}(c,x)} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}} \xleftarrow{\# \text{ of ways to choose two h haplotypes}} \\ \binom{n}{2} := 0 \quad \forall n < 2$$

 Notice that EHH at the core haplotype is necessarily 1 and that it tends to 0 as the number of distinct haplotypes tends to infinity.

	0	0	1	0	I	
0.75						
0.5						
0.25						
0	B	C	D	E	F	G

$$0 \quad 0 \quad 1$$

$$n_{11} = 7$$

$$0.75$$

$$0.5$$

$$0.25$$

$$0 \quad C \quad D \quad E \quad F \quad G$$

$$n_{1111} = 5$$

 $n_{1110} = 2$

ΟΙ

$$\begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ = 5 \\ = 2 \end{array}$$

$$\begin{array}{c} \bullet & \bullet & \bullet \\ 0.75 \\ 0.5 \\ 0.5 \\ 0.25 \\ \bullet & \bullet & \bullet \\ A & B & C & D & E & F & G \end{array}$$

 n_{11110}

 n_{11100}

$$\begin{array}{c} \circ \ 0 \quad \circ \ 1 \\
n_{111100} = 5 \\
n_{111001} = 2 \\
0.75 \\
0.5 \\
0.5 \\
0.25 \\
0 \quad \bullet \quad \bullet \quad \bullet \quad \bullet \\
A \quad B \quad C \quad D \quad E \quad F \quad G \\
\end{array}$$

- When querying a specific region of the genome, for each core haplotype, calculate EHH for successively longer surrounding haplotypes.
- Statistical significance is determined by comparing EHH scores to neutral simulations and random control regions of the genome.

Genome-wide scans

- The EHH approach does not lend itself to a genomewide scan.
- Voight, et al. (2006) create a genome-wide scan statistic based on EHH called integrated Haplotype Score (iHS).

Voight, et al. (2006) PLoS Biology

Caveats

• Power may be overstated.

• If a large proportion of the genome is non-neutral, we lose power to detect the weakest selected variants because of genome-wide normalization.

• iHS no formal test to decide significance.

• Take top 1% of signals

• XP-EHH more sensitive to demographics

- i.e. comparing populations with serial bottlenecks separating them
- Important to combine multiple lines of evidence!

Running selscan: iHS

- Let's give iHS a go!
- Let's consider the LCT gene.
- Make sure you have downloaded and unzipped the ComputationalResources.zip file (e.g. to your Desktop)
- Unzip selscan.zip
- selscan also available: https://github.com/szpiech/selscan.

- Open Rstudio or your terminal/command prompt!
- Change to the new selscan directory
- For example:
 - cd ~/Desktop/ComputationalResources/ selscan/
- There should 4 subdirectories:
 - rhernandez\$ ls
 data linux osx win
- Change Directory to where the data are:
 - cd data

- All the commands we are running can be found in the selscan_CMD.txt file.
- Copy the appropriate executable to the data directory:
- osx:
 - cp ../osx/selscan .
- linux:
 - cp ../linux/selscan .
- Windows:
 - copy ..\win\selscan.exe .

- Test that it works:
 - osx/linux: ./selscan (Win: selscan.exe)
 selscan v1.1.0b
 ERROR: Must specify one and only one of
 EHH (-ehh)
 iHS (--ihs)
 XP-EHH (--xpehh)
 PI (--pi)
 nSL (--nsl)

- iHS requires 2 files, a map file and a hap file.
 - --map <string>: A mapfile with one row per variant site.
 - Formatted with 4 columns:
 - <chr#> <locusID> <genetic pos>
 <physical pos>
 - --hap <string>: A hapfile with one row per haplotype, and one column per variant.
 Variants should be coded 0/1.

- Now run it!
 - All in one line type:
 - ./selscan (Win: selscan.exe) --ihs --map CEU.chr2.map --hap CEU.chr2.ihshap --out CEU.chr2 selscan v1.1.0b Opening ../data/CEU.chr2.hap... Loading 224 haplotypes and 1971 loci... Opening .../data/CEU.chr2.map... Loading map data for 1971 loci --skip-low-freq set. Removing all variants < 0.05. Removed 359 low frequency variants. Starting iHS calculations with alt flag not set. =========================>

Normalize

• All in one line type:

• ./norm

--ihs

--files CEU.chr2.ihs.out bg.ihs.out

```
norm v1.1.0aYou have provided 2 output files for joint
normalization.
Opened ../data/CEU.chr2.ihs.out
Opened ../data/bg.ihs.out
Total loci: 666285
Reading all frequency and iHS data.
Calculating mean and variance per frequency bin:
```

iHS

- Now let's plot it!
- Click on the R console in Rstudio (or open R)
- Read in data for CEU:

setwd("cd ~/Desktop/selscan/data")

CEU=read.table("CEU.chr2.ihs.out.100bins.norm")

```
plot(CEU[,2], CEU[,7])
```


iHS

- Often analyze absolute value, and smooth it out.
- My preferred method for smoothing is using loess

SP=0.2 #this is the span, a parameter you can change (higher = more smoothing)

CEU.x=CEU[,2]; #the x-coordinates in Mb

y=abs(CEU[,7]) #iHS is actually the absolute value

CEU.loess=loess(y~CEU.x,span=SP,data.frame(x=CEU.x,y=y)); #step 1

CEU.predict=predict(CEU.loess,data.frame(x=CEU.x)); #step 2

```
plot(CEU[,2], abs(CEU[,7]))
```

```
lines(CEU.x, CEU.predict, lwd=2, col='blue')
```

Breakout Groups!! Running iHS with selscan

- Open up your command prompt (i.e., rev your engines)
- Let's give iHS a go!
- Let's consider the LCT gene.
- Follow commands in selscan_CMD.txt
 - You will need selscan.zip
 - In terminal run:
 - selscan ...
 - norm ...
 - Plot it in R!

iHS

Other populations??

- Now run selscan on the YRI population
- YRI is a sample of individuals from Yoruba, Nigeria, where they do not have a long tradition of domesticating cows.
- Update the selscan commands by replacing "CEU" with "YRI"
- Breakout Groups!!

□ When poll is active, respond at pollev.com/ryanhernande972
□ Text RYANHERNANDE972 to 22333 once to join

Do you think there is selection in this region in the YRI population?

Yes!

No!

Unclear...

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Other populations??

• "CEU" vs "YRI"

What about admixture?

- African American genomes contain admixture with African ancestry (~80%) and European ancestry (~20%).
- ASW is one sample of African Americans (from the Southwest)
- One guess might be that it should be intermediate

Do you think the African American samples will exhibit a signature of selection in this locus?

Yes! No!

Unclear...

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Other populations??

- Now run selscan on the ASW population
- Update the selscan command by replacing "CEU" with "ASW"
- Breakout groups!!

□ When poll is active, respond at pollev.com/ryanhernande972
□ Text RYANHERNANDE972 to 22333 once to join

Do you think there is selection in this region in the ASW population?

Yes!

No!

Unclear...

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Other populations??

- Now run selscan on the ASW population
- Update the selscan command by replacing "CEU" with "ASW"
- In these data, ASW is much more similar to YRI than "expected".

Summary

- iHS is one example of a statistic geared toward detecting a "classic sweep".
- It is based on the idea that a new mutation has been selected, and quickly spread through the population.
- selscan is one piece of software that can run many different selection statistics in an efficient manner.