Searching for Signatures of Selection with Selscan

Ryan Hernandez

Key Feature of Natural Selection

- Alleles change frequency unusually fast
- Positive selection tends to increase frequency
- Negative selection tends to decrease frequency
- All tests for natural selection seek to identify this feature using different aspects of the data.
- While negative selection shapes majority of patterns of variation in many species, positive selection may drive patterns of local variation.

The Effect of Positive Selection

Adaptive
Neutral
Nearly Neutral
Mildly Deleterious
Fairly Deleterious
Strongly Deleterious

The Effect of Positive Selection

Adaptive
Neutral
Nearly Neutral
Mildly Deleterious
Fairly Deleterious
Strongly Deleterious

Extended Haplotype Homozygosity

- Sabeti, et al. (Nature, 2002) proposed EHH
- Designed to track the decay of haplotype identity away from a locus of interest
- If selection acts quickly enough
- Originally derives from ideas in Hudson, et al. (Genetics, 1994).

Calculating EHH

- Given a locus of interest, \mathcal{C} is the set of all distinct haplotypes at that locus.
- Select a "core" haplotype, $c \in \mathcal{C}$.
- $\mathcal{H}(c, x)$ is the set of all distinct haplotypes that extend from the locus of interest to marker x and contain the core haplotype c.
- For $h \in \mathcal{H}(c, x), n_{h}$ is the number of haplotypes of type h
- n_{c} is the number of the core haplotypes

Calculating EHH

- If $E H H_{c}(x)$ is the extended haplotype homozygosity of the core haplotype c out to marker x , then

$$
\begin{array}{r}
E H H_{c}(x)=\sum_{h \in \mathcal{H}(c, x)} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}} \\
\binom{n}{2}:=0 \forall n<2
\end{array}
$$

Calculating EHH

- If $E H H_{c}(x)$ is the extended haplotype homozygosity of the core haplotype c out to marker x , then

$$
\begin{gathered}
E H H_{c}(x)=\sum_{h \in \mathcal{H}(c, x)} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}} \longleftarrow \text { \# of ways to choose two } \mathrm{h} \text { haplotypes } \\
\binom{n}{2}:=0 \quad \forall n<2
\end{gathered}
$$

Calculating EHH

- If $E H H_{c}(x)$ is the extended haplotype homozygosity of the core haplotype c out to marker x , then

$$
\begin{gathered}
E H H_{c}(x)=\sum_{h \in \mathcal{H}(c, x)} \frac{\binom{n_{h}}{2}}{\binom{n_{c}}{2}} \sim_{\text {\# o f w ways to choose two } \mathrm{h} \text { haplorypes }}^{\text {to choose two core haployppes }} \\
\binom{n}{2}:=0 \forall n<2
\end{gathered}
$$

Calculating EHH

- Notice that EHH at the core haplotype is necessarily 1 and that it tends to 0 as the number of distinct haplotypes tends to infinity.

0	1	1	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	1	1
1	1	1	1	0	0	0
1	1	1	1	0	0	1
1	1	1	1	0	0	0
1	1	1	0	0	1	1
1	1	1	0	0	1	1
1	1	1	1	0	0	0
1	1	1	1	0	0	0

A B C D
0

A	B	C	D	E	F	G
0	1	1	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	1	1
1	1	1	1	0	0	0
1	1	1	1	0	0	1
1	1	1	1	0	0	0
1	1	1	0	0	1	1
1	1	1	0	0	1	1
1	1	1	1	0	0	0
1	1	1	1	0	0	0

A	B	C	D	E	F	G
0	1	1	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	1	1
1	1	1	1	0	0	0
1	1	1	1	0	0	1
1	1	1	1	0	0	0
1	1	1	0	0	1	1
1	1	1	0	0	1	1
1	1	1	1	0	0	0
1	1	1	1	0	0	0

A	B	C	D	E	F	G
0	1	1	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	1	1
1	1	1	1	0	0	0
1	1	1	1	0	0	1
1	1	1	1	0	0	0
1	1	1	0	0	1	1
1	1	1	0	0	1	1
1	1	1	1	0	0	0
1	1	1	1	0	0	0

A	B	C	D	E	F	G
0	1	1	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	1	1
1	1	1	1	0	0	0
1	1	1	1	0	0	1
1	1	1	1	0	0	0
1	1	1	0	0	1	1
1	1	1	0	0	1	1
1	1	1	1	0	0	0
1	1	1	1	0	0	0

A	B	C	D	E	F	G
0	1	1	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	1	1
1	1	1	1	0	0	0
1	1	1	1	0	0	1
1	1	1	1	0	0	0
1	1	1	0	0	1	1
1	1	1	0	0	1	1
1	1	1	1	0	0	0
1	1	1	1	0	0	0

$$
\begin{aligned}
& \begin{array}{l}
n_{1111000}=4 \quad 1 \\
n_{1110011}=2 \\
n_{1111001}=1
\end{array} \\
& 0.5 \\
& 0.25 \\
& \begin{array}{llllllll}
0 & 0 & O & O & O & O & O & - \\
A & B & C & D & E & F & G
\end{array}
\end{aligned}
$$

A	B	C	D	E	F	G
0	1	1	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	1	1
1	1	1	1	0	0	0
1	1	1	1	0	0	1
1	1	1	1	0	0	0
1	1	1	0	0	1	1
1	1	1	0	0	1	1
1	1	1	1	0	0	0
1	1	1	1	0	0	0

EHH

EHH

EHH

EHH

EHH

EHH

- When querying a specific region of the genome, for each core haplotype, calculate EHH for successively longer surrounding haplotypes.
- Statistical significance is determined by comparing EHH scores to neutral simulations and random control regions of the genome.

Genome-wide scans

- The EHH approach does not lend itself to a genomewide scan.
- Voight, et al. (2006) create a genome-wide scan statistic based on EHH called integrated Haplotype Score (iHS).

CEU TGP Phase 3, lactase (LCT) region

Caveats

- Power may be overstated.
- If a large proportion of the genome is non-neutral, we lose power to detect the weakest selected variants because of genome-wide normalization.
- iHS no formal test to decide significance.
- Take top 1% of signals
- XP-EHH more sensitive to demographics
- i.e. comparing populations with serial bottlenecks separating them
- Important to combine multiple lines of evidence!

Running selscan: iHS

- Let's give iHS a go!
- Let's consider the LCT gene.
- Make sure you have downloaded and unzipped the ComputationalResources.zip file (e.g. to your Desktop)
- Unzip selscan.zip
- selscan also available: https://github.com/szpiech/selscan.

selscan

- Open Rstudio or your terminal/command prompt!
- Change to the new selscan directory
- For example:
- cd ~/Desktop/ComputationalResources/ selscan/
- There should 4 subdirectories:
- rhernandez\$ ls data linux osx win
- Change Directory to where the data are:
- cd data

selscan

- All the commands we are running can be found in the selscan_CMD.txt file.
- Copy the appropriate executable to the data directory:
- OSX:
- cp ../osx/selscan .
- linux:
- cp ../linux/selscan .
- Windows:
- copy .. \win\selscan.exe .

selscan

- Test that it works:
- osx/linux: . /selscan
(Win: selscan.exe) selscan v1.1.0b
ERROR: Must specify one and only one of EHH (-ehh)
iHS (--ihs)
XP-EHH (--xpehh)
PI (--pi)
nSL (--nsl)

selscan

- iHS requires 2 files, a map file and a hap file.
- --map <string>: A mapfile with one row per variant site.
- Formatted with 4 columns:
- <chr\#> <locusID> <genetic pos> <physical pos>
- --hap <string>: A hapfile with one row per haplotype, and one column per variant. Variants should be coded 0/1.

selscan

- Now run it!
- All in one line type:
-. /selscan (Win: selscan.exe)
--ihs
--map CEU.chr2.map
--hap CEU.chr2.ihshap
--out CEU.chr2
selscan v1.1.0b
Opening ../data/CEU.chr2.hap...
Loading 224 haplotypes and 1971 loci...
Opening ../data/CEU.chr2.map...
Loading map data for 1971 loci
--skip-low-freq set. Removing all variants < 0.05 .
Removed 359 low frequency variants.
Starting iHS calculations with alt flag not set.
$\mid===============================1$

Normalize

- All in one line type:
-./norm

> --ihs
> --files CEU.chr2.ihs.out bg.ihs.out
norm v1.1.0aYou have provided 2 output files for joint normalization.
Opened ../data/CEU.chr2.ihs.out
Opened ../data/bg.ihs.out
Total loci: 666285
Reading all frequency and iHS data.
Calculating mean and variance per frequency bin:

iHS

- Now let's plot it!
- Click on the R console in Rstudio (or open R)
- Read in data for CEU:
setwd("cd ~/Desktop/selscan/data")
CEU=read.table("CEU.chr2.ihs.out.100bins.norm")
plot(CEU[,2], CEU[,7])

iHS

- Often analyze absolute value, and smooth it out.
- My preferred method for smoothing is using loess

```
SP=0.2 #this is the span, a parameter you can change (higher = more
smoothing)
CEU.x=CEU[,2]; #the x-coordinates in Mb
y=abs(CEU[,7]) #iHS is actually the absolute value
CEU.loess=loess(y~CEU.x,span=SP,data.frame(x=CEU.x,y=y)); #step 1
CEU.predict=predict(CEU.loess,data.frame(x=CEU.x)); #step 2
plot(CEU[,2], abs(CEU[,7]))
lines(CEU.x, CEU.predict, lwd=2, col='blue')
```


Breakout Groups!!

Running iHS with selscan

- Open up your command prompt (i.e., rev your engines)
- Let's give iHS a go!
- Let's consider the LCT gene.
- Follow commands in selscan_CMD.txt
- You will need selscan.zip
- In terminal run:
- selscan ...
- norm ...
- Plot it in R!

iHS

Other populations??

- Now run selscan on the YRI population
- YRI is a sample of individuals from Yoruba, Nigeria, where they do not have a long tradition of domesticating cows.
- Update the selscan commands by replacing "CEU" with "YRI"
- Breakout Groups!!
\square When poll is active, respond at pollev.com/ryanhernande972 Text RYANHERNANDE972 to $\mathbf{2 2 3 3 3}$ once to join

Do you think there is selection in this region in the YRI population?

Unclear...

Other populations??

- "CEU" vs "YRI"

What about admixture?

- African American genomes contain admixture with African ancestry ($\sim 80 \%$) and European ancestry ($\sim 20 \%$).
- ASW is one sample of African Americans (from the Southwest)
- One guess might be that it should be intermediate

When poll is active, respond at pollev.com/ryanhernande972県 Text RYANHERNANDE972 to $\mathbf{2 2 3 3 3}$ once to join

Do you think the African American samples will exhibit a signature of selection in this

locus?

Yes!
No!

Unclear...

Other populations??

- Now run selscan on the ASW population
- Update the selscan command by replacing "CEU" with "ASW"
- Breakout groups!!
\square When poll is active, respond at pollev.com/ryanhernande972 Text RYANHERNANDE972 to $\mathbf{2 2 3 3 3}$ once to join

Do you think there is selection in this region in the ASW population?

Unclear...

Other populations??

- Now run selscan on the ASW population
- Update the selscan command by replacing "CEU" with "ASW"
- In these data, ASW is much more similar to YRI than "expected".

Summary

- iHS is one example of a statistic geared toward detecting a "classic sweep".
- It is based on the idea that a new mutation has been selected, and quickly spread through the population.
- selscan is one piece of software that can run many different selection statistics in an efficient manner.

