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Key Feature of Natural Selection

• Alleles change frequency unusually fast

• Positive selection tends to increase frequency

• Negative selection tends to decrease 
frequency

• All tests for natural selection seek to identify this 
feature using different aspects of the data.

• While negative selection shapes majority of 
patterns of variation in many species, positive 
selection may drive patterns of local variation.
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Extended Haplotype Homozygosity

• Sabeti, et al. (Nature, 2002) proposed EHH 

• Designed to track the decay of haplotype 
identity away from a locus of interest 

• If selection acts quickly enough

• Originally derives from ideas in Hudson, et 
al. (Genetics, 1994).
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Calculating EHH

• Given a locus of interest,     is the set of all distinct 
haplotypes at that locus.

• Select a “core” haplotype,        .

•            is the set of all distinct haplotypes that extend 
from the locus of interest to marker x and contain the 
core haplotype c.

• For                 ,     is the number of haplotypes of 
type h

•     is the number of the core haplotypes

H(c, x)

C

c 2 C

h 2 H(c, x) nh

nc

Szpiech and Hernandez (2014) Molecular Biology and Evolution
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Calculating EHH

• If                is the extended haplotype homozygosity 
of the core haplotype c out to marker x, then
EHHc(x)

EHHc(x) =
X

h2H(c,x)

�nh

2

�
�nc

2

�

✓
n

2

◆
:= 0 8n < 2

Szpiech and Hernandez (2014) Molecular Biology and Evolution
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Calculating EHH

• Notice that EHH at the core haplotype is necessarily 1 
and that it tends to 0 as the number of distinct 
haplotypes tends to infinity.
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EHH

• When querying a specific region of the genome, for 
each core haplotype, calculate EHH for successively 
longer surrounding haplotypes.

• Statistical significance is determined by comparing 
EHH scores to neutral simulations and random control 
regions of the genome. 
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Genome-wide scans

• The EHH approach does not lend itself to a genome-
wide scan.

• Voight, et al. (2006) create a genome-wide scan 
statistic based on EHH called integrated Haplotype 
Score (iHS).

Voight, et al. (2006) PLoS Biology
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Caveats

• Power may be overstated.

• If a large proportion of the genome is non-neutral, we lose power to detect 
the weakest selected variants because of genome-wide normalization.

• iHS no formal test to decide significance.

• Take top 1% of signals

• XP-EHH more sensitive to demographics

• i.e. comparing populations with serial bottlenecks separating them

• Important to combine multiple lines of evidence!
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Running selscan:  iHS
• Let’s give iHS a go!

• Let’s consider the LCT gene.  

• Make sure you have downloaded and unzipped the 
ComputationalResources.zip file (e.g. to your Desktop)

• Unzip selscan.zip

• selscan also available: https://github.com/szpiech/selscan.
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selscan
• Open Rstudio or your terminal/command prompt!

• Change to the new selscan directory

• For example:

• cd ~/Desktop/ComputationalResources/
selscan/

• There should 4 subdirectories: 

• rhernandez$ ls  
data linux osx win

• Change Directory to where the data are:

• cd data
52



selscan
• All the commands we are running can be found in the 

selscan_CMD.txt file.

• Copy the appropriate executable to the data directory:

• osx:

• cp ../osx/selscan .

• linux:

• cp ../linux/selscan .

• Windows:

• copy ..\win\selscan.exe .
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selscan
• Test that it works:

• osx/linux: ./selscan  (Win:  selscan.exe)  
selscan v1.1.0b  
ERROR: Must specify one and only one of  
EHH (—ehh)  
iHS (--ihs)  
XP-EHH (--xpehh)  
PI (--pi)  
nSL (--nsl)
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selscan
• iHS requires 2 files, a map file and a hap file.

• --map <string>: A mapfile with one row per 
variant site.

• Formatted with 4 columns:

• <chr#> <locusID> <genetic pos> 
<physical pos>

• --hap <string>: A hapfile with one row per 
haplotype, and one column per variant. 
Variants should be coded 0/1.
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selscan
• Now run it!

• All in one line type:

• ./selscan  (Win: selscan.exe)
--ihs
 --map CEU.chr2.map
 --hap CEU.chr2.ihshap
 --out CEU.chr2

selscan v1.1.0b  
Opening ../data/CEU.chr2.hap...  
Loading 224 haplotypes and 1971 loci...  
Opening ../data/CEU.chr2.map...  
Loading map data for 1971 loci  
--skip-low-freq set. Removing all variants < 0.05.  
Removed 359 low frequency variants.  
Starting iHS calculations with alt flag not set.  
|=====================================>          |
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Normalize
• All in one line type:

• ./norm

--ihs
 --files CEU.chr2.ihs.out bg.ihs.out

norm v1.1.0aYou have provided 2 output files for joint 
normalization.  
Opened ../data/CEU.chr2.ihs.out  
Opened ../data/bg.ihs.out

Total loci: 666285  
Reading all frequency and iHS data.  
Calculating mean and variance per frequency bin:
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iHS
• Now let’s plot it!  

• Click on the R console in Rstudio (or open R)

• Read in data for CEU:

setwd("cd ~/Desktop/selscan/data“)

CEU=read.table(“CEU.chr2.ihs.out.100bins.norm”)

plot(CEU[,2], CEU[,7])
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iHS
• Often analyze absolute value, and smooth it out.

• My preferred method for smoothing is using loess

SP=0.2 #this is the span, a parameter you can change (higher = more 
smoothing)

CEU.x=CEU[,2]; #the x-coordinates in Mb

y=abs(CEU[,7]) #iHS is actually the absolute value

CEU.loess=loess(y~CEU.x,span=SP,data.frame(x=CEU.x,y=y)); #step 1

CEU.predict=predict(CEU.loess,data.frame(x=CEU.x)); #step 2  

plot(CEU[,2], abs(CEU[,7]))

lines(CEU.x, CEU.predict, lwd=2, col='blue')
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Breakout Groups!!
Running iHS with selscan

• Open up your command prompt (i.e., rev your engines)

• Let’s give iHS a go!

• Let’s consider the LCT gene.  

• Follow commands in selscan_CMD.txt

• You will need selscan.zip

• In terminal run: 

• selscan …

• norm …

• Plot it in R!
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iHS
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Other populations??
• Now run selscan on the YRI population

• YRI is a sample of individuals from Yoruba, Nigeria, where they 
do not have a long tradition of domesticating cows.

• Update the selscan commands by replacing “CEU” with “YRI”

• Breakout Groups!!

•
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Other populations??
• “CEU” vs “YRI”
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What about admixture?
• African American genomes contain admixture with African 

ancestry (~80%) and European ancestry (~20%).

• ASW is one sample of African Americans (from the Southwest)

• One guess might be that it should be intermediate
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Other populations??
• Now run selscan on the ASW population

• Update the selscan command by replacing “CEU” with “ASW”

• Breakout groups!!
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Other populations??
• Now run selscan on the ASW population

• Update the selscan command by replacing “CEU” with “ASW”

• In these data, ASW is much more similar to YRI than “expected”.
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Summary
• iHS is one example of a statistic geared toward detecting a 

“classic sweep”.

• It is based on the idea that a new mutation has been selected, 
and quickly spread through the population.

• selscan is one piece of software that can run many different 
selection statistics in an efficient manner.
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